Abstract

Surface enhanced Raman spectroscopy (SERS) has drawn much research interest in the past decades as an efficient technique to detect low-concentration molecules. Among many technologies, which can be used to fabricate SERS substrates, laser ablation is a simple and high-speed method to produce large-area SERS substrates. This work investigates the angular texturing effect by dynamic laser ablation and its influence on SERS signals. By tuning the angle between the Si surface and laser irradiation, the distributions and sizes of laser induced hybrid micro/nano-structures are studied. By decorating with a silver film, plenty of hot spots can be created among these structures for SERS. It is found that when the incident laser angle is 15° at the laser fluence of 16.0 J/cm2, the SERS performance is well optimized. This work realizes antisymmetric distribution of nanoparticles deposited on Si surface, which provides a flexible tuning of the hybrid micro/nano-structures’ fabrication with high controllability for practical applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Controlled synthesis of hollow Ag@Au nano-urchins with unique synergistic effects for ultrasensitive surface-enhanced Raman spectroscopy

Hua Zhang, Linlin Xu, Yue Tian, Ming Chen, Xiangdong Liu, and Feng Chen
Opt. Express 25(23) 29389-29400 (2017)

Hybrid surface-enhanced Raman scattering substrate from gold nanoparticle and photonic crystal: Maneuverability and uniformity of Raman spectra

Cheng Yi Wu, Chia Chi Huang, Jia Sin Jhang, An Chi Liu, Chun-Chen Chiang, Ming-Lung Hsieh, Ping-Ji Huang, Le Dac Tuyen, Le Quoc Minh, Tzyy Schiuan Yang, Lai-Kwan Chau, Hung-Chih Kan, and Chia Chen Hsu
Opt. Express 17(24) 21522-21529 (2009)

Doubly resonant surface-enhanced Raman scattering on gold nanorod decorated inverse opal photonic crystals

Le Dac Tuyen, An Chi Liu, Chia-Chi Huang, Pei-Cheng Tsai, Jian Hung Lin, Chin-Wei Wu, Lai-Kwan Chau, Tzyy Schiuan Yang, Le Quoc Minh, Hung-Chih Kan, and Chia Chen Hsu
Opt. Express 20(28) 29266-29275 (2012)

References

  • View by:
  • |
  • |
  • |

  1. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [Crossref]
  2. S. Song, Y. Qin, Y. He, Q. Huang, C. Fan, and H.-Y. Chen, “Functional nanoprobes for ultrasensitive detection of biomolecules,” Chem. Soc. Rev. 39(11), 4234–4243 (2010).
    [Crossref] [PubMed]
  3. M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36(6–7), 485–496 (2005).
    [Crossref]
  4. D.-Y. Wu, J.-F. Li, B. Ren, and Z.-Q. Tian, “Electrochemical surface-enhanced Raman spectroscopy of nanostructures,” Chem. Soc. Rev. 37(5), 1025–1041 (2008).
    [Crossref] [PubMed]
  5. T. T. B. Quyen, C.-C. Chang, W.-N. Su, Y.-H. Uen, C.-J. Pan, J.-Y. Liu, J. Rick, K.-Y. Lin, and B.-J. Hwang, “Self-focusing Au@SiO2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection,” J. Mater. Chem. B Mater. Biol. Med. 2(6), 629–636 (2014).
    [Crossref]
  6. Y. Wang, X. Zhang, P. Gao, Z. Shao, X. Zhang, Y. Han, and J. Jie, “Air heating approach for multilayer etching and roll-to-roll transfer of silicon nanowire arrays as SERS substrates for high sensitivity molecule detection,” ACS Appl. Mater. Interfaces 6(2), 977–984 (2014).
    [Crossref] [PubMed]
  7. A. S. Indrasekara, S. Meyers, S. Shubeita, L. C. Feldman, T. Gustafsson, and L. Fabris, “Gold nanostar substrates for SERS-based chemical sensing in the femtomolar regime,” Nanoscale 6(15), 8891–8899 (2014).
    [Crossref] [PubMed]
  8. E. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
    [Crossref]
  9. D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, and J. Popp, “Surface-enhanced Raman spectroscopy (SERS): progress and trends,” Anal. Bioanal. Chem. 403(1), 27–54 (2012).
    [Crossref] [PubMed]
  10. B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012).
    [Crossref]
  11. J. Stropp, G. Trachta, G. Brehm, and S. Schneider, “A new version of AgFON substrates for high-throughput analytical SERS applications,” J. Raman Spectrosc. 34(1), 26–32 (2003).
    [Crossref]
  12. E. D. Diebold, N. H. Mack, S. K. Doorn, and E. Mazur, “Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering,” Langmuir 25(3), 1790–1794 (2009).
    [Crossref] [PubMed]
  13. Z. Zhou, J. Xu, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Surface-enhanced Raman scattering substrate fabricated by femtosecond laser direct writing,” Jpn. J. Appl. Phys. 47(11R), 189–192 (2008).
    [Crossref]
  14. T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photonics Rev. 4(1), 123–143 (2010).
    [Crossref]
  15. H. W. Chang, Y. C. Tsai, C. W. Cheng, C. Y. Lin, Y. W. Lin, and T. M. Wu, “Nanostructured Ag surface fabricated by femtosecond laser for surface-enhanced Raman scattering,” J. Colloid Interface Sci. 360(1), 305–308 (2011).
    [Crossref] [PubMed]
  16. P. Feng, L. Jiang, X. Li, W. Rong, K. Zhang, and Q. Cao, “Gold-film coating assisted femtosecond laser fabrication of large-area, uniform periodic surface structures,” Appl. Opt. 54(6), 1314–1319 (2015).
    [Crossref] [PubMed]
  17. Q. Yang, X. Li, L. Jiang, N. Zhang, G. Zhang, X. Shi, K. Zhang, J. Hu, and Y. Lu, “Nanopillar arrays with nanoparticles fabricated by a femtosecond laser pulse train for highly sensitive SERRS,” Opt. Lett. 40(9), 2045–2048 (2015).
    [Crossref] [PubMed]
  18. A. Hamdorf, M. Olson, C.-H. Lin, L. Jiang, J. Zhou, H. Xiao, and H.-L. Tsai, “Femtosecond and nanosecond laser fabricated substrate for surface-enhanced Raman scattering,” Opt. Lett. 36(17), 3353–3355 (2011).
    [Crossref] [PubMed]
  19. C.-H. Lin, L. Jiang, J. Zhou, H. Xiao, S.-J. Chen, and H.-L. Tsai, “Laser-treated substrate with nanoparticles for surface-enhanced Raman scattering,” Opt. Lett. 35(7), 941–943 (2010).
    [Crossref] [PubMed]
  20. M. Muniz-Miranda, C. Gellini, and E. Giorgetti, “Surface-enhanced Raman scattering from copper nanoparticles obtained by laser ablation,” J. Phys. Chem. C 115(12), 5021–5027 (2011).
    [Crossref]
  21. J. Yang, J. Li, Z. Du, Q. Gong, J. Teng, and M. Hong, “Laser hybrid micro/nano-structuring of Si surfaces in air and its applications for SERS detection,” Sci. Rep. 4, 6657 (2014).
    [Crossref] [PubMed]
  22. C.-H. Xue, S.-T. Jia, J. Zhang, and J.-Z. Ma, “Large-area fabrication of superhydrophobic surfaces for practical applications: an overview,” Sci. Technol. Adv. Mater. 11(3), 033002 (2010).
    [Crossref]
  23. J. Kehrle, I. M. Höhlein, Z. Yang, A. R. Jochem, T. Helbich, T. Kraus, J. G. Veinot, and B. Rieger, “Thermoresponsive and photoluminescent hybrid silicon nanoparticles by surface-initiated group transfer polymerization of diethyl vinylphosphonate,” Angew. Chem. Int. Ed. Engl. 53(46), 12494–12497 (2014).
    [PubMed]
  24. G. S. Fu, Y. L. Wang, L. Z. Chu, Y. Zhou, W. Yu, L. Han, and Y. C. Peng, “The size distribution of Si nanoparticles prepared by pulsed-laser ablation in pure He, Ar or Ne gas,” Europhys. Lett. 69(5), 758–762 (2005).
    [Crossref]
  25. P. Peyre and R. Fabbro, “Laser shock processing: a review of the physics and applications,” Opt. Quantum Electron. 27(12), 1213–1229 (1995).
  26. L. V. Zhigilei, “Dynamics of the plume formation and parameters of the ejected clusters in short-pulse laser ablation,” Appl. Phys., A Mater. Sci. Process. 76(3), 339–350 (2003).
    [Crossref]
  27. T. Seto, T. Orii, M. Hirasawa, and N. Aya, “Fabrication of silicon nanostructured films by deposition of size-selected nanoparticles generated by pulsed laser ablation,” Thin Solid Films 437(1-2), 230–234 (2003).
    [Crossref]

2015 (2)

2014 (5)

T. T. B. Quyen, C.-C. Chang, W.-N. Su, Y.-H. Uen, C.-J. Pan, J.-Y. Liu, J. Rick, K.-Y. Lin, and B.-J. Hwang, “Self-focusing Au@SiO2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection,” J. Mater. Chem. B Mater. Biol. Med. 2(6), 629–636 (2014).
[Crossref]

Y. Wang, X. Zhang, P. Gao, Z. Shao, X. Zhang, Y. Han, and J. Jie, “Air heating approach for multilayer etching and roll-to-roll transfer of silicon nanowire arrays as SERS substrates for high sensitivity molecule detection,” ACS Appl. Mater. Interfaces 6(2), 977–984 (2014).
[Crossref] [PubMed]

A. S. Indrasekara, S. Meyers, S. Shubeita, L. C. Feldman, T. Gustafsson, and L. Fabris, “Gold nanostar substrates for SERS-based chemical sensing in the femtomolar regime,” Nanoscale 6(15), 8891–8899 (2014).
[Crossref] [PubMed]

J. Yang, J. Li, Z. Du, Q. Gong, J. Teng, and M. Hong, “Laser hybrid micro/nano-structuring of Si surfaces in air and its applications for SERS detection,” Sci. Rep. 4, 6657 (2014).
[Crossref] [PubMed]

J. Kehrle, I. M. Höhlein, Z. Yang, A. R. Jochem, T. Helbich, T. Kraus, J. G. Veinot, and B. Rieger, “Thermoresponsive and photoluminescent hybrid silicon nanoparticles by surface-initiated group transfer polymerization of diethyl vinylphosphonate,” Angew. Chem. Int. Ed. Engl. 53(46), 12494–12497 (2014).
[PubMed]

2012 (2)

D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, and J. Popp, “Surface-enhanced Raman spectroscopy (SERS): progress and trends,” Anal. Bioanal. Chem. 403(1), 27–54 (2012).
[Crossref] [PubMed]

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012).
[Crossref]

2011 (3)

A. Hamdorf, M. Olson, C.-H. Lin, L. Jiang, J. Zhou, H. Xiao, and H.-L. Tsai, “Femtosecond and nanosecond laser fabricated substrate for surface-enhanced Raman scattering,” Opt. Lett. 36(17), 3353–3355 (2011).
[Crossref] [PubMed]

H. W. Chang, Y. C. Tsai, C. W. Cheng, C. Y. Lin, Y. W. Lin, and T. M. Wu, “Nanostructured Ag surface fabricated by femtosecond laser for surface-enhanced Raman scattering,” J. Colloid Interface Sci. 360(1), 305–308 (2011).
[Crossref] [PubMed]

M. Muniz-Miranda, C. Gellini, and E. Giorgetti, “Surface-enhanced Raman scattering from copper nanoparticles obtained by laser ablation,” J. Phys. Chem. C 115(12), 5021–5027 (2011).
[Crossref]

2010 (4)

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photonics Rev. 4(1), 123–143 (2010).
[Crossref]

C.-H. Xue, S.-T. Jia, J. Zhang, and J.-Z. Ma, “Large-area fabrication of superhydrophobic surfaces for practical applications: an overview,” Sci. Technol. Adv. Mater. 11(3), 033002 (2010).
[Crossref]

C.-H. Lin, L. Jiang, J. Zhou, H. Xiao, S.-J. Chen, and H.-L. Tsai, “Laser-treated substrate with nanoparticles for surface-enhanced Raman scattering,” Opt. Lett. 35(7), 941–943 (2010).
[Crossref] [PubMed]

S. Song, Y. Qin, Y. He, Q. Huang, C. Fan, and H.-Y. Chen, “Functional nanoprobes for ultrasensitive detection of biomolecules,” Chem. Soc. Rev. 39(11), 4234–4243 (2010).
[Crossref] [PubMed]

2009 (1)

E. D. Diebold, N. H. Mack, S. K. Doorn, and E. Mazur, “Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering,” Langmuir 25(3), 1790–1794 (2009).
[Crossref] [PubMed]

2008 (2)

Z. Zhou, J. Xu, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Surface-enhanced Raman scattering substrate fabricated by femtosecond laser direct writing,” Jpn. J. Appl. Phys. 47(11R), 189–192 (2008).
[Crossref]

D.-Y. Wu, J.-F. Li, B. Ren, and Z.-Q. Tian, “Electrochemical surface-enhanced Raman spectroscopy of nanostructures,” Chem. Soc. Rev. 37(5), 1025–1041 (2008).
[Crossref] [PubMed]

2007 (1)

E. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

2005 (2)

M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36(6–7), 485–496 (2005).
[Crossref]

G. S. Fu, Y. L. Wang, L. Z. Chu, Y. Zhou, W. Yu, L. Han, and Y. C. Peng, “The size distribution of Si nanoparticles prepared by pulsed-laser ablation in pure He, Ar or Ne gas,” Europhys. Lett. 69(5), 758–762 (2005).
[Crossref]

2003 (3)

L. V. Zhigilei, “Dynamics of the plume formation and parameters of the ejected clusters in short-pulse laser ablation,” Appl. Phys., A Mater. Sci. Process. 76(3), 339–350 (2003).
[Crossref]

T. Seto, T. Orii, M. Hirasawa, and N. Aya, “Fabrication of silicon nanostructured films by deposition of size-selected nanoparticles generated by pulsed laser ablation,” Thin Solid Films 437(1-2), 230–234 (2003).
[Crossref]

J. Stropp, G. Trachta, G. Brehm, and S. Schneider, “A new version of AgFON substrates for high-throughput analytical SERS applications,” J. Raman Spectrosc. 34(1), 26–32 (2003).
[Crossref]

1997 (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

1995 (1)

P. Peyre and R. Fabbro, “Laser shock processing: a review of the physics and applications,” Opt. Quantum Electron. 27(12), 1213–1229 (1995).

Aya, N.

T. Seto, T. Orii, M. Hirasawa, and N. Aya, “Fabrication of silicon nanostructured films by deposition of size-selected nanoparticles generated by pulsed laser ablation,” Thin Solid Films 437(1-2), 230–234 (2003).
[Crossref]

Blackie, E.

E. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Böhme, R.

D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, and J. Popp, “Surface-enhanced Raman spectroscopy (SERS): progress and trends,” Anal. Bioanal. Chem. 403(1), 27–54 (2012).
[Crossref] [PubMed]

Brehm, G.

J. Stropp, G. Trachta, G. Brehm, and S. Schneider, “A new version of AgFON substrates for high-throughput analytical SERS applications,” J. Raman Spectrosc. 34(1), 26–32 (2003).
[Crossref]

Cao, Q.

Chang, C.-C.

T. T. B. Quyen, C.-C. Chang, W.-N. Su, Y.-H. Uen, C.-J. Pan, J.-Y. Liu, J. Rick, K.-Y. Lin, and B.-J. Hwang, “Self-focusing Au@SiO2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection,” J. Mater. Chem. B Mater. Biol. Med. 2(6), 629–636 (2014).
[Crossref]

Chang, H. W.

H. W. Chang, Y. C. Tsai, C. W. Cheng, C. Y. Lin, Y. W. Lin, and T. M. Wu, “Nanostructured Ag surface fabricated by femtosecond laser for surface-enhanced Raman scattering,” J. Colloid Interface Sci. 360(1), 305–308 (2011).
[Crossref] [PubMed]

Chen, H.-Y.

S. Song, Y. Qin, Y. He, Q. Huang, C. Fan, and H.-Y. Chen, “Functional nanoprobes for ultrasensitive detection of biomolecules,” Chem. Soc. Rev. 39(11), 4234–4243 (2010).
[Crossref] [PubMed]

Chen, S.-J.

Cheng, C. W.

H. W. Chang, Y. C. Tsai, C. W. Cheng, C. Y. Lin, Y. W. Lin, and T. M. Wu, “Nanostructured Ag surface fabricated by femtosecond laser for surface-enhanced Raman scattering,” J. Colloid Interface Sci. 360(1), 305–308 (2011).
[Crossref] [PubMed]

Cheng, Y.

Z. Zhou, J. Xu, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Surface-enhanced Raman scattering substrate fabricated by femtosecond laser direct writing,” Jpn. J. Appl. Phys. 47(11R), 189–192 (2008).
[Crossref]

Chong, T. C.

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photonics Rev. 4(1), 123–143 (2010).
[Crossref]

Chu, L. Z.

G. S. Fu, Y. L. Wang, L. Z. Chu, Y. Zhou, W. Yu, L. Han, and Y. C. Peng, “The size distribution of Si nanoparticles prepared by pulsed-laser ablation in pure He, Ar or Ne gas,” Europhys. Lett. 69(5), 758–762 (2005).
[Crossref]

Cialla, D.

D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, and J. Popp, “Surface-enhanced Raman spectroscopy (SERS): progress and trends,” Anal. Bioanal. Chem. 403(1), 27–54 (2012).
[Crossref] [PubMed]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Diebold, E. D.

E. D. Diebold, N. H. Mack, S. K. Doorn, and E. Mazur, “Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering,” Langmuir 25(3), 1790–1794 (2009).
[Crossref] [PubMed]

Doorn, S. K.

E. D. Diebold, N. H. Mack, S. K. Doorn, and E. Mazur, “Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering,” Langmuir 25(3), 1790–1794 (2009).
[Crossref] [PubMed]

Du, Z.

J. Yang, J. Li, Z. Du, Q. Gong, J. Teng, and M. Hong, “Laser hybrid micro/nano-structuring of Si surfaces in air and its applications for SERS detection,” Sci. Rep. 4, 6657 (2014).
[Crossref] [PubMed]

Etchegoin, P. G.

E. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Fabbro, R.

P. Peyre and R. Fabbro, “Laser shock processing: a review of the physics and applications,” Opt. Quantum Electron. 27(12), 1213–1229 (1995).

Fabris, L.

A. S. Indrasekara, S. Meyers, S. Shubeita, L. C. Feldman, T. Gustafsson, and L. Fabris, “Gold nanostar substrates for SERS-based chemical sensing in the femtomolar regime,” Nanoscale 6(15), 8891–8899 (2014).
[Crossref] [PubMed]

Fan, C.

S. Song, Y. Qin, Y. He, Q. Huang, C. Fan, and H.-Y. Chen, “Functional nanoprobes for ultrasensitive detection of biomolecules,” Chem. Soc. Rev. 39(11), 4234–4243 (2010).
[Crossref] [PubMed]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Feldman, L. C.

A. S. Indrasekara, S. Meyers, S. Shubeita, L. C. Feldman, T. Gustafsson, and L. Fabris, “Gold nanostar substrates for SERS-based chemical sensing in the femtomolar regime,” Nanoscale 6(15), 8891–8899 (2014).
[Crossref] [PubMed]

Feng, P.

Frontiera, R. R.

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012).
[Crossref]

Fu, G. S.

G. S. Fu, Y. L. Wang, L. Z. Chu, Y. Zhou, W. Yu, L. Han, and Y. C. Peng, “The size distribution of Si nanoparticles prepared by pulsed-laser ablation in pure He, Ar or Ne gas,” Europhys. Lett. 69(5), 758–762 (2005).
[Crossref]

Gao, P.

Y. Wang, X. Zhang, P. Gao, Z. Shao, X. Zhang, Y. Han, and J. Jie, “Air heating approach for multilayer etching and roll-to-roll transfer of silicon nanowire arrays as SERS substrates for high sensitivity molecule detection,” ACS Appl. Mater. Interfaces 6(2), 977–984 (2014).
[Crossref] [PubMed]

Gellini, C.

M. Muniz-Miranda, C. Gellini, and E. Giorgetti, “Surface-enhanced Raman scattering from copper nanoparticles obtained by laser ablation,” J. Phys. Chem. C 115(12), 5021–5027 (2011).
[Crossref]

Giorgetti, E.

M. Muniz-Miranda, C. Gellini, and E. Giorgetti, “Surface-enhanced Raman scattering from copper nanoparticles obtained by laser ablation,” J. Phys. Chem. C 115(12), 5021–5027 (2011).
[Crossref]

Gong, Q.

J. Yang, J. Li, Z. Du, Q. Gong, J. Teng, and M. Hong, “Laser hybrid micro/nano-structuring of Si surfaces in air and its applications for SERS detection,” Sci. Rep. 4, 6657 (2014).
[Crossref] [PubMed]

Gustafsson, T.

A. S. Indrasekara, S. Meyers, S. Shubeita, L. C. Feldman, T. Gustafsson, and L. Fabris, “Gold nanostar substrates for SERS-based chemical sensing in the femtomolar regime,” Nanoscale 6(15), 8891–8899 (2014).
[Crossref] [PubMed]

Hamdorf, A.

Han, L.

G. S. Fu, Y. L. Wang, L. Z. Chu, Y. Zhou, W. Yu, L. Han, and Y. C. Peng, “The size distribution of Si nanoparticles prepared by pulsed-laser ablation in pure He, Ar or Ne gas,” Europhys. Lett. 69(5), 758–762 (2005).
[Crossref]

Han, Y.

Y. Wang, X. Zhang, P. Gao, Z. Shao, X. Zhang, Y. Han, and J. Jie, “Air heating approach for multilayer etching and roll-to-roll transfer of silicon nanowire arrays as SERS substrates for high sensitivity molecule detection,” ACS Appl. Mater. Interfaces 6(2), 977–984 (2014).
[Crossref] [PubMed]

He, Y.

S. Song, Y. Qin, Y. He, Q. Huang, C. Fan, and H.-Y. Chen, “Functional nanoprobes for ultrasensitive detection of biomolecules,” Chem. Soc. Rev. 39(11), 4234–4243 (2010).
[Crossref] [PubMed]

Helbich, T.

J. Kehrle, I. M. Höhlein, Z. Yang, A. R. Jochem, T. Helbich, T. Kraus, J. G. Veinot, and B. Rieger, “Thermoresponsive and photoluminescent hybrid silicon nanoparticles by surface-initiated group transfer polymerization of diethyl vinylphosphonate,” Angew. Chem. Int. Ed. Engl. 53(46), 12494–12497 (2014).
[PubMed]

Henry, A.-I.

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012).
[Crossref]

Hirasawa, M.

T. Seto, T. Orii, M. Hirasawa, and N. Aya, “Fabrication of silicon nanostructured films by deposition of size-selected nanoparticles generated by pulsed laser ablation,” Thin Solid Films 437(1-2), 230–234 (2003).
[Crossref]

Höhlein, I. M.

J. Kehrle, I. M. Höhlein, Z. Yang, A. R. Jochem, T. Helbich, T. Kraus, J. G. Veinot, and B. Rieger, “Thermoresponsive and photoluminescent hybrid silicon nanoparticles by surface-initiated group transfer polymerization of diethyl vinylphosphonate,” Angew. Chem. Int. Ed. Engl. 53(46), 12494–12497 (2014).
[PubMed]

Hong, M.

J. Yang, J. Li, Z. Du, Q. Gong, J. Teng, and M. Hong, “Laser hybrid micro/nano-structuring of Si surfaces in air and its applications for SERS detection,” Sci. Rep. 4, 6657 (2014).
[Crossref] [PubMed]

Hong, M. H.

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photonics Rev. 4(1), 123–143 (2010).
[Crossref]

Hu, J.

Huang, Q.

S. Song, Y. Qin, Y. He, Q. Huang, C. Fan, and H.-Y. Chen, “Functional nanoprobes for ultrasensitive detection of biomolecules,” Chem. Soc. Rev. 39(11), 4234–4243 (2010).
[Crossref] [PubMed]

Hwang, B.-J.

T. T. B. Quyen, C.-C. Chang, W.-N. Su, Y.-H. Uen, C.-J. Pan, J.-Y. Liu, J. Rick, K.-Y. Lin, and B.-J. Hwang, “Self-focusing Au@SiO2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection,” J. Mater. Chem. B Mater. Biol. Med. 2(6), 629–636 (2014).
[Crossref]

Indrasekara, A. S.

A. S. Indrasekara, S. Meyers, S. Shubeita, L. C. Feldman, T. Gustafsson, and L. Fabris, “Gold nanostar substrates for SERS-based chemical sensing in the femtomolar regime,” Nanoscale 6(15), 8891–8899 (2014).
[Crossref] [PubMed]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Jia, S.-T.

C.-H. Xue, S.-T. Jia, J. Zhang, and J.-Z. Ma, “Large-area fabrication of superhydrophobic surfaces for practical applications: an overview,” Sci. Technol. Adv. Mater. 11(3), 033002 (2010).
[Crossref]

Jiang, L.

Jie, J.

Y. Wang, X. Zhang, P. Gao, Z. Shao, X. Zhang, Y. Han, and J. Jie, “Air heating approach for multilayer etching and roll-to-roll transfer of silicon nanowire arrays as SERS substrates for high sensitivity molecule detection,” ACS Appl. Mater. Interfaces 6(2), 977–984 (2014).
[Crossref] [PubMed]

Jochem, A. R.

J. Kehrle, I. M. Höhlein, Z. Yang, A. R. Jochem, T. Helbich, T. Kraus, J. G. Veinot, and B. Rieger, “Thermoresponsive and photoluminescent hybrid silicon nanoparticles by surface-initiated group transfer polymerization of diethyl vinylphosphonate,” Angew. Chem. Int. Ed. Engl. 53(46), 12494–12497 (2014).
[PubMed]

Kehrle, J.

J. Kehrle, I. M. Höhlein, Z. Yang, A. R. Jochem, T. Helbich, T. Kraus, J. G. Veinot, and B. Rieger, “Thermoresponsive and photoluminescent hybrid silicon nanoparticles by surface-initiated group transfer polymerization of diethyl vinylphosphonate,” Angew. Chem. Int. Ed. Engl. 53(46), 12494–12497 (2014).
[PubMed]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kraus, T.

J. Kehrle, I. M. Höhlein, Z. Yang, A. R. Jochem, T. Helbich, T. Kraus, J. G. Veinot, and B. Rieger, “Thermoresponsive and photoluminescent hybrid silicon nanoparticles by surface-initiated group transfer polymerization of diethyl vinylphosphonate,” Angew. Chem. Int. Ed. Engl. 53(46), 12494–12497 (2014).
[PubMed]

Le Ru, E.

E. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Li, J.

J. Yang, J. Li, Z. Du, Q. Gong, J. Teng, and M. Hong, “Laser hybrid micro/nano-structuring of Si surfaces in air and its applications for SERS detection,” Sci. Rep. 4, 6657 (2014).
[Crossref] [PubMed]

Li, J.-F.

D.-Y. Wu, J.-F. Li, B. Ren, and Z.-Q. Tian, “Electrochemical surface-enhanced Raman spectroscopy of nanostructures,” Chem. Soc. Rev. 37(5), 1025–1041 (2008).
[Crossref] [PubMed]

Li, X.

Lin, C. Y.

H. W. Chang, Y. C. Tsai, C. W. Cheng, C. Y. Lin, Y. W. Lin, and T. M. Wu, “Nanostructured Ag surface fabricated by femtosecond laser for surface-enhanced Raman scattering,” J. Colloid Interface Sci. 360(1), 305–308 (2011).
[Crossref] [PubMed]

Lin, C.-H.

Lin, K.-Y.

T. T. B. Quyen, C.-C. Chang, W.-N. Su, Y.-H. Uen, C.-J. Pan, J.-Y. Liu, J. Rick, K.-Y. Lin, and B.-J. Hwang, “Self-focusing Au@SiO2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection,” J. Mater. Chem. B Mater. Biol. Med. 2(6), 629–636 (2014).
[Crossref]

Lin, Y. W.

H. W. Chang, Y. C. Tsai, C. W. Cheng, C. Y. Lin, Y. W. Lin, and T. M. Wu, “Nanostructured Ag surface fabricated by femtosecond laser for surface-enhanced Raman scattering,” J. Colloid Interface Sci. 360(1), 305–308 (2011).
[Crossref] [PubMed]

Liu, J.-Y.

T. T. B. Quyen, C.-C. Chang, W.-N. Su, Y.-H. Uen, C.-J. Pan, J.-Y. Liu, J. Rick, K.-Y. Lin, and B.-J. Hwang, “Self-focusing Au@SiO2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection,” J. Mater. Chem. B Mater. Biol. Med. 2(6), 629–636 (2014).
[Crossref]

Lu, Y.

Ma, J.-Z.

C.-H. Xue, S.-T. Jia, J. Zhang, and J.-Z. Ma, “Large-area fabrication of superhydrophobic surfaces for practical applications: an overview,” Sci. Technol. Adv. Mater. 11(3), 033002 (2010).
[Crossref]

Mack, N. H.

E. D. Diebold, N. H. Mack, S. K. Doorn, and E. Mazur, “Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering,” Langmuir 25(3), 1790–1794 (2009).
[Crossref] [PubMed]

März, A.

D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, and J. Popp, “Surface-enhanced Raman spectroscopy (SERS): progress and trends,” Anal. Bioanal. Chem. 403(1), 27–54 (2012).
[Crossref] [PubMed]

Mazur, E.

E. D. Diebold, N. H. Mack, S. K. Doorn, and E. Mazur, “Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering,” Langmuir 25(3), 1790–1794 (2009).
[Crossref] [PubMed]

Meyer, M.

E. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Meyers, S.

A. S. Indrasekara, S. Meyers, S. Shubeita, L. C. Feldman, T. Gustafsson, and L. Fabris, “Gold nanostar substrates for SERS-based chemical sensing in the femtomolar regime,” Nanoscale 6(15), 8891–8899 (2014).
[Crossref] [PubMed]

Midorikawa, K.

Z. Zhou, J. Xu, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Surface-enhanced Raman scattering substrate fabricated by femtosecond laser direct writing,” Jpn. J. Appl. Phys. 47(11R), 189–192 (2008).
[Crossref]

Moskovits, M.

M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36(6–7), 485–496 (2005).
[Crossref]

Muniz-Miranda, M.

M. Muniz-Miranda, C. Gellini, and E. Giorgetti, “Surface-enhanced Raman scattering from copper nanoparticles obtained by laser ablation,” J. Phys. Chem. C 115(12), 5021–5027 (2011).
[Crossref]

Olson, M.

Orii, T.

T. Seto, T. Orii, M. Hirasawa, and N. Aya, “Fabrication of silicon nanostructured films by deposition of size-selected nanoparticles generated by pulsed laser ablation,” Thin Solid Films 437(1-2), 230–234 (2003).
[Crossref]

Pan, C.-J.

T. T. B. Quyen, C.-C. Chang, W.-N. Su, Y.-H. Uen, C.-J. Pan, J.-Y. Liu, J. Rick, K.-Y. Lin, and B.-J. Hwang, “Self-focusing Au@SiO2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection,” J. Mater. Chem. B Mater. Biol. Med. 2(6), 629–636 (2014).
[Crossref]

Peng, Y. C.

G. S. Fu, Y. L. Wang, L. Z. Chu, Y. Zhou, W. Yu, L. Han, and Y. C. Peng, “The size distribution of Si nanoparticles prepared by pulsed-laser ablation in pure He, Ar or Ne gas,” Europhys. Lett. 69(5), 758–762 (2005).
[Crossref]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Peyre, P.

P. Peyre and R. Fabbro, “Laser shock processing: a review of the physics and applications,” Opt. Quantum Electron. 27(12), 1213–1229 (1995).

Popp, J.

D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, and J. Popp, “Surface-enhanced Raman spectroscopy (SERS): progress and trends,” Anal. Bioanal. Chem. 403(1), 27–54 (2012).
[Crossref] [PubMed]

Qin, Y.

S. Song, Y. Qin, Y. He, Q. Huang, C. Fan, and H.-Y. Chen, “Functional nanoprobes for ultrasensitive detection of biomolecules,” Chem. Soc. Rev. 39(11), 4234–4243 (2010).
[Crossref] [PubMed]

Quyen, T. T. B.

T. T. B. Quyen, C.-C. Chang, W.-N. Su, Y.-H. Uen, C.-J. Pan, J.-Y. Liu, J. Rick, K.-Y. Lin, and B.-J. Hwang, “Self-focusing Au@SiO2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection,” J. Mater. Chem. B Mater. Biol. Med. 2(6), 629–636 (2014).
[Crossref]

Ren, B.

D.-Y. Wu, J.-F. Li, B. Ren, and Z.-Q. Tian, “Electrochemical surface-enhanced Raman spectroscopy of nanostructures,” Chem. Soc. Rev. 37(5), 1025–1041 (2008).
[Crossref] [PubMed]

Rick, J.

T. T. B. Quyen, C.-C. Chang, W.-N. Su, Y.-H. Uen, C.-J. Pan, J.-Y. Liu, J. Rick, K.-Y. Lin, and B.-J. Hwang, “Self-focusing Au@SiO2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection,” J. Mater. Chem. B Mater. Biol. Med. 2(6), 629–636 (2014).
[Crossref]

Rieger, B.

J. Kehrle, I. M. Höhlein, Z. Yang, A. R. Jochem, T. Helbich, T. Kraus, J. G. Veinot, and B. Rieger, “Thermoresponsive and photoluminescent hybrid silicon nanoparticles by surface-initiated group transfer polymerization of diethyl vinylphosphonate,” Angew. Chem. Int. Ed. Engl. 53(46), 12494–12497 (2014).
[PubMed]

Ringe, E.

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012).
[Crossref]

Rong, W.

Schmitt, M.

D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, and J. Popp, “Surface-enhanced Raman spectroscopy (SERS): progress and trends,” Anal. Bioanal. Chem. 403(1), 27–54 (2012).
[Crossref] [PubMed]

Schneider, S.

J. Stropp, G. Trachta, G. Brehm, and S. Schneider, “A new version of AgFON substrates for high-throughput analytical SERS applications,” J. Raman Spectrosc. 34(1), 26–32 (2003).
[Crossref]

Seto, T.

T. Seto, T. Orii, M. Hirasawa, and N. Aya, “Fabrication of silicon nanostructured films by deposition of size-selected nanoparticles generated by pulsed laser ablation,” Thin Solid Films 437(1-2), 230–234 (2003).
[Crossref]

Shao, Z.

Y. Wang, X. Zhang, P. Gao, Z. Shao, X. Zhang, Y. Han, and J. Jie, “Air heating approach for multilayer etching and roll-to-roll transfer of silicon nanowire arrays as SERS substrates for high sensitivity molecule detection,” ACS Appl. Mater. Interfaces 6(2), 977–984 (2014).
[Crossref] [PubMed]

Sharma, B.

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012).
[Crossref]

Shi, L. P.

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photonics Rev. 4(1), 123–143 (2010).
[Crossref]

Shi, X.

Shubeita, S.

A. S. Indrasekara, S. Meyers, S. Shubeita, L. C. Feldman, T. Gustafsson, and L. Fabris, “Gold nanostar substrates for SERS-based chemical sensing in the femtomolar regime,” Nanoscale 6(15), 8891–8899 (2014).
[Crossref] [PubMed]

Song, S.

S. Song, Y. Qin, Y. He, Q. Huang, C. Fan, and H.-Y. Chen, “Functional nanoprobes for ultrasensitive detection of biomolecules,” Chem. Soc. Rev. 39(11), 4234–4243 (2010).
[Crossref] [PubMed]

Stropp, J.

J. Stropp, G. Trachta, G. Brehm, and S. Schneider, “A new version of AgFON substrates for high-throughput analytical SERS applications,” J. Raman Spectrosc. 34(1), 26–32 (2003).
[Crossref]

Su, W.-N.

T. T. B. Quyen, C.-C. Chang, W.-N. Su, Y.-H. Uen, C.-J. Pan, J.-Y. Liu, J. Rick, K.-Y. Lin, and B.-J. Hwang, “Self-focusing Au@SiO2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection,” J. Mater. Chem. B Mater. Biol. Med. 2(6), 629–636 (2014).
[Crossref]

Sugioka, K.

Z. Zhou, J. Xu, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Surface-enhanced Raman scattering substrate fabricated by femtosecond laser direct writing,” Jpn. J. Appl. Phys. 47(11R), 189–192 (2008).
[Crossref]

Teng, J.

J. Yang, J. Li, Z. Du, Q. Gong, J. Teng, and M. Hong, “Laser hybrid micro/nano-structuring of Si surfaces in air and its applications for SERS detection,” Sci. Rep. 4, 6657 (2014).
[Crossref] [PubMed]

Theil, F.

D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, and J. Popp, “Surface-enhanced Raman spectroscopy (SERS): progress and trends,” Anal. Bioanal. Chem. 403(1), 27–54 (2012).
[Crossref] [PubMed]

Tian, Z.-Q.

D.-Y. Wu, J.-F. Li, B. Ren, and Z.-Q. Tian, “Electrochemical surface-enhanced Raman spectroscopy of nanostructures,” Chem. Soc. Rev. 37(5), 1025–1041 (2008).
[Crossref] [PubMed]

Trachta, G.

J. Stropp, G. Trachta, G. Brehm, and S. Schneider, “A new version of AgFON substrates for high-throughput analytical SERS applications,” J. Raman Spectrosc. 34(1), 26–32 (2003).
[Crossref]

Tsai, H.-L.

Tsai, Y. C.

H. W. Chang, Y. C. Tsai, C. W. Cheng, C. Y. Lin, Y. W. Lin, and T. M. Wu, “Nanostructured Ag surface fabricated by femtosecond laser for surface-enhanced Raman scattering,” J. Colloid Interface Sci. 360(1), 305–308 (2011).
[Crossref] [PubMed]

Uen, Y.-H.

T. T. B. Quyen, C.-C. Chang, W.-N. Su, Y.-H. Uen, C.-J. Pan, J.-Y. Liu, J. Rick, K.-Y. Lin, and B.-J. Hwang, “Self-focusing Au@SiO2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection,” J. Mater. Chem. B Mater. Biol. Med. 2(6), 629–636 (2014).
[Crossref]

Van Duyne, R. P.

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012).
[Crossref]

Veinot, J. G.

J. Kehrle, I. M. Höhlein, Z. Yang, A. R. Jochem, T. Helbich, T. Kraus, J. G. Veinot, and B. Rieger, “Thermoresponsive and photoluminescent hybrid silicon nanoparticles by surface-initiated group transfer polymerization of diethyl vinylphosphonate,” Angew. Chem. Int. Ed. Engl. 53(46), 12494–12497 (2014).
[PubMed]

Wang, Y.

Y. Wang, X. Zhang, P. Gao, Z. Shao, X. Zhang, Y. Han, and J. Jie, “Air heating approach for multilayer etching and roll-to-roll transfer of silicon nanowire arrays as SERS substrates for high sensitivity molecule detection,” ACS Appl. Mater. Interfaces 6(2), 977–984 (2014).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Wang, Y. L.

G. S. Fu, Y. L. Wang, L. Z. Chu, Y. Zhou, W. Yu, L. Han, and Y. C. Peng, “The size distribution of Si nanoparticles prepared by pulsed-laser ablation in pure He, Ar or Ne gas,” Europhys. Lett. 69(5), 758–762 (2005).
[Crossref]

Weber, K.

D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, and J. Popp, “Surface-enhanced Raman spectroscopy (SERS): progress and trends,” Anal. Bioanal. Chem. 403(1), 27–54 (2012).
[Crossref] [PubMed]

Wu, D.-Y.

D.-Y. Wu, J.-F. Li, B. Ren, and Z.-Q. Tian, “Electrochemical surface-enhanced Raman spectroscopy of nanostructures,” Chem. Soc. Rev. 37(5), 1025–1041 (2008).
[Crossref] [PubMed]

Wu, T. M.

H. W. Chang, Y. C. Tsai, C. W. Cheng, C. Y. Lin, Y. W. Lin, and T. M. Wu, “Nanostructured Ag surface fabricated by femtosecond laser for surface-enhanced Raman scattering,” J. Colloid Interface Sci. 360(1), 305–308 (2011).
[Crossref] [PubMed]

Xiao, H.

Xu, J.

Z. Zhou, J. Xu, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Surface-enhanced Raman scattering substrate fabricated by femtosecond laser direct writing,” Jpn. J. Appl. Phys. 47(11R), 189–192 (2008).
[Crossref]

Xu, Z.

Z. Zhou, J. Xu, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Surface-enhanced Raman scattering substrate fabricated by femtosecond laser direct writing,” Jpn. J. Appl. Phys. 47(11R), 189–192 (2008).
[Crossref]

Xue, C.-H.

C.-H. Xue, S.-T. Jia, J. Zhang, and J.-Z. Ma, “Large-area fabrication of superhydrophobic surfaces for practical applications: an overview,” Sci. Technol. Adv. Mater. 11(3), 033002 (2010).
[Crossref]

Yang, J.

J. Yang, J. Li, Z. Du, Q. Gong, J. Teng, and M. Hong, “Laser hybrid micro/nano-structuring of Si surfaces in air and its applications for SERS detection,” Sci. Rep. 4, 6657 (2014).
[Crossref] [PubMed]

Yang, Q.

Yang, Z.

J. Kehrle, I. M. Höhlein, Z. Yang, A. R. Jochem, T. Helbich, T. Kraus, J. G. Veinot, and B. Rieger, “Thermoresponsive and photoluminescent hybrid silicon nanoparticles by surface-initiated group transfer polymerization of diethyl vinylphosphonate,” Angew. Chem. Int. Ed. Engl. 53(46), 12494–12497 (2014).
[PubMed]

Yu, W.

G. S. Fu, Y. L. Wang, L. Z. Chu, Y. Zhou, W. Yu, L. Han, and Y. C. Peng, “The size distribution of Si nanoparticles prepared by pulsed-laser ablation in pure He, Ar or Ne gas,” Europhys. Lett. 69(5), 758–762 (2005).
[Crossref]

Zhang, G.

Zhang, J.

C.-H. Xue, S.-T. Jia, J. Zhang, and J.-Z. Ma, “Large-area fabrication of superhydrophobic surfaces for practical applications: an overview,” Sci. Technol. Adv. Mater. 11(3), 033002 (2010).
[Crossref]

Zhang, K.

Zhang, N.

Zhang, X.

Y. Wang, X. Zhang, P. Gao, Z. Shao, X. Zhang, Y. Han, and J. Jie, “Air heating approach for multilayer etching and roll-to-roll transfer of silicon nanowire arrays as SERS substrates for high sensitivity molecule detection,” ACS Appl. Mater. Interfaces 6(2), 977–984 (2014).
[Crossref] [PubMed]

Y. Wang, X. Zhang, P. Gao, Z. Shao, X. Zhang, Y. Han, and J. Jie, “Air heating approach for multilayer etching and roll-to-roll transfer of silicon nanowire arrays as SERS substrates for high sensitivity molecule detection,” ACS Appl. Mater. Interfaces 6(2), 977–984 (2014).
[Crossref] [PubMed]

Zhigilei, L. V.

L. V. Zhigilei, “Dynamics of the plume formation and parameters of the ejected clusters in short-pulse laser ablation,” Appl. Phys., A Mater. Sci. Process. 76(3), 339–350 (2003).
[Crossref]

Zhou, J.

Zhou, Y.

G. S. Fu, Y. L. Wang, L. Z. Chu, Y. Zhou, W. Yu, L. Han, and Y. C. Peng, “The size distribution of Si nanoparticles prepared by pulsed-laser ablation in pure He, Ar or Ne gas,” Europhys. Lett. 69(5), 758–762 (2005).
[Crossref]

Zhou, Z.

Z. Zhou, J. Xu, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Surface-enhanced Raman scattering substrate fabricated by femtosecond laser direct writing,” Jpn. J. Appl. Phys. 47(11R), 189–192 (2008).
[Crossref]

ACS Appl. Mater. Interfaces (1)

Y. Wang, X. Zhang, P. Gao, Z. Shao, X. Zhang, Y. Han, and J. Jie, “Air heating approach for multilayer etching and roll-to-roll transfer of silicon nanowire arrays as SERS substrates for high sensitivity molecule detection,” ACS Appl. Mater. Interfaces 6(2), 977–984 (2014).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, and J. Popp, “Surface-enhanced Raman spectroscopy (SERS): progress and trends,” Anal. Bioanal. Chem. 403(1), 27–54 (2012).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

J. Kehrle, I. M. Höhlein, Z. Yang, A. R. Jochem, T. Helbich, T. Kraus, J. G. Veinot, and B. Rieger, “Thermoresponsive and photoluminescent hybrid silicon nanoparticles by surface-initiated group transfer polymerization of diethyl vinylphosphonate,” Angew. Chem. Int. Ed. Engl. 53(46), 12494–12497 (2014).
[PubMed]

Appl. Opt. (1)

Appl. Phys., A Mater. Sci. Process. (1)

L. V. Zhigilei, “Dynamics of the plume formation and parameters of the ejected clusters in short-pulse laser ablation,” Appl. Phys., A Mater. Sci. Process. 76(3), 339–350 (2003).
[Crossref]

Chem. Soc. Rev. (2)

S. Song, Y. Qin, Y. He, Q. Huang, C. Fan, and H.-Y. Chen, “Functional nanoprobes for ultrasensitive detection of biomolecules,” Chem. Soc. Rev. 39(11), 4234–4243 (2010).
[Crossref] [PubMed]

D.-Y. Wu, J.-F. Li, B. Ren, and Z.-Q. Tian, “Electrochemical surface-enhanced Raman spectroscopy of nanostructures,” Chem. Soc. Rev. 37(5), 1025–1041 (2008).
[Crossref] [PubMed]

Europhys. Lett. (1)

G. S. Fu, Y. L. Wang, L. Z. Chu, Y. Zhou, W. Yu, L. Han, and Y. C. Peng, “The size distribution of Si nanoparticles prepared by pulsed-laser ablation in pure He, Ar or Ne gas,” Europhys. Lett. 69(5), 758–762 (2005).
[Crossref]

J. Colloid Interface Sci. (1)

H. W. Chang, Y. C. Tsai, C. W. Cheng, C. Y. Lin, Y. W. Lin, and T. M. Wu, “Nanostructured Ag surface fabricated by femtosecond laser for surface-enhanced Raman scattering,” J. Colloid Interface Sci. 360(1), 305–308 (2011).
[Crossref] [PubMed]

J. Mater. Chem. B Mater. Biol. Med. (1)

T. T. B. Quyen, C.-C. Chang, W.-N. Su, Y.-H. Uen, C.-J. Pan, J.-Y. Liu, J. Rick, K.-Y. Lin, and B.-J. Hwang, “Self-focusing Au@SiO2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection,” J. Mater. Chem. B Mater. Biol. Med. 2(6), 629–636 (2014).
[Crossref]

J. Phys. Chem. C (2)

E. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

M. Muniz-Miranda, C. Gellini, and E. Giorgetti, “Surface-enhanced Raman scattering from copper nanoparticles obtained by laser ablation,” J. Phys. Chem. C 115(12), 5021–5027 (2011).
[Crossref]

J. Raman Spectrosc. (2)

J. Stropp, G. Trachta, G. Brehm, and S. Schneider, “A new version of AgFON substrates for high-throughput analytical SERS applications,” J. Raman Spectrosc. 34(1), 26–32 (2003).
[Crossref]

M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36(6–7), 485–496 (2005).
[Crossref]

Jpn. J. Appl. Phys. (1)

Z. Zhou, J. Xu, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Surface-enhanced Raman scattering substrate fabricated by femtosecond laser direct writing,” Jpn. J. Appl. Phys. 47(11R), 189–192 (2008).
[Crossref]

Langmuir (1)

E. D. Diebold, N. H. Mack, S. K. Doorn, and E. Mazur, “Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering,” Langmuir 25(3), 1790–1794 (2009).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photonics Rev. 4(1), 123–143 (2010).
[Crossref]

Mater. Today (1)

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012).
[Crossref]

Nanoscale (1)

A. S. Indrasekara, S. Meyers, S. Shubeita, L. C. Feldman, T. Gustafsson, and L. Fabris, “Gold nanostar substrates for SERS-based chemical sensing in the femtomolar regime,” Nanoscale 6(15), 8891–8899 (2014).
[Crossref] [PubMed]

Opt. Lett. (3)

Opt. Quantum Electron. (1)

P. Peyre and R. Fabbro, “Laser shock processing: a review of the physics and applications,” Opt. Quantum Electron. 27(12), 1213–1229 (1995).

Phys. Rev. Lett. (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Sci. Rep. (1)

J. Yang, J. Li, Z. Du, Q. Gong, J. Teng, and M. Hong, “Laser hybrid micro/nano-structuring of Si surfaces in air and its applications for SERS detection,” Sci. Rep. 4, 6657 (2014).
[Crossref] [PubMed]

Sci. Technol. Adv. Mater. (1)

C.-H. Xue, S.-T. Jia, J. Zhang, and J.-Z. Ma, “Large-area fabrication of superhydrophobic surfaces for practical applications: an overview,” Sci. Technol. Adv. Mater. 11(3), 033002 (2010).
[Crossref]

Thin Solid Films (1)

T. Seto, T. Orii, M. Hirasawa, and N. Aya, “Fabrication of silicon nanostructured films by deposition of size-selected nanoparticles generated by pulsed laser ablation,” Thin Solid Films 437(1-2), 230–234 (2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic diagram of angular pulsed laser texturing to fabricate micro/nano-structures for SERS. (b) Microscope image of a single line ablated on Si surface. (τ = 10 ns, PRR = 100 kHz, laser spot size ~20 μm, v = 100 mm/s and laser fluence 16.0 J/cm2).
Fig. 2
Fig. 2 SEM images of laser created Si nanoparticles in regions I, II, III and IV at incident laser angles of 0°, 15°, 30°, 45° and 60°, respectively. All the scale bar dimensions are 500 nm. (τ = 10 ns, PRR = 100 kHz, laser spot size ~20 μm, v = 100 mm/s and laser fluence 16.0 J/cm2).
Fig. 3
Fig. 3 (a) Nanoparticles distribution at an incident angle of 30° in regions II, III and IV. (b) Nanoparticles distribution at incident angles of 0°, 15°, 30°, 45° and 60° in region II.
Fig. 4
Fig. 4 Angular laser texturing for micro/nano-particles’ formation on Si surface.
Fig. 5
Fig. 5 (a-e) SERS spectra of 4-MBT molecules adsorbed on micro/nano-structures ablated at different incident laser angles in regions I, II, III and IV. (f) Average Raman band intensity of 1578 cm−1 at different incident laser angles for regions I, II, III and IV.

Metrics