Abstract

We have numerically studied the effect of mutual interactions between soliton and dispersive waves and the possibility to create a solitonic well consisting of initial twin-solitons moving away from each other to trap the incident dispersive wave. Different from the case of the solitonic cage formed by the velocity-matched twin-solitons, the intense dispersive wave can break up into small pulses, which are almost completely trapped within the solitonic well. Moreover, the corresponding spectrum of the trapped dispersive wave can be narrowed firstly and then expanded, and a new dispersive wave can be generated as the twin-solitons collision occurred. By adjusting either the peak power or temporal width of incident dispersive wave, both the intensity of the collision-induced dispersive wave and the position where it is generated can be controlled.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dark solitons manipulation using optical event horizon

Zhixiang Deng, Jun Liu, Xianwei Huang, Chujun Zhao, and Xinlin Wang
Opt. Express 26(13) 16535-16546 (2018)

Active control of adiabatic soliton fission by external dispersive wave at optical event horizon

Zhixiang Deng, Jun Liu, Xianwei Huang, Chujun Zhao, and Xinlin Wang
Opt. Express 25(23) 28556-28566 (2017)

Optical event horizon-based complete transformation and control of dark solitons

Zhixiang Deng, Yu Chen, Jun Liu, Chujun Zhao, and Dianyuan Fan
Opt. Lett. 43(21) 5327-5330 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  2. D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82(2), 1287–1299 (2010).
    [Crossref]
  3. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
    [Crossref] [PubMed]
  4. J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16(6), 3644–3651 (2008).
    [Crossref] [PubMed]
  5. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Opt. Express 12(1), 124–135 (2004).
    [Crossref] [PubMed]
  6. A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95(21), 213902 (2005).
    [Crossref] [PubMed]
  7. A. Choudhary and F. König, “Efficient frequency shifting of dispersive waves at solitons,” Opt. Express 20(5), 5538–5546 (2012).
    [Crossref] [PubMed]
  8. C. Liu, E. J. Rees, T. Laurila, S. Jian, and C. F. Kaminski, “Periodic interactions between solitons and dispersive waves during the generation of non-coherent supercontinuum radiation,” Opt. Express 20(6), 6316–6324 (2012).
    [Crossref] [PubMed]
  9. J. Gu, H. Guo, S. Wang, and X. Zeng, “Probe-controlled soliton frequency shift in the regime of optical event horizon,” Opt. Express 23(17), 22285–22290 (2015).
    [Crossref] [PubMed]
  10. K. E. Webb, M. Erkintalo, Y. Xu, N. G. Broderick, J. M. Dudley, G. Genty, and S. G. Murdoch, “Nonlinear optics of fibre event horizons,” Nat. Commun. 5, 4969 (2014).
    [Crossref] [PubMed]
  11. A. Demircan, Sh. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106(16), 163901 (2011).
    [Crossref] [PubMed]
  12. X. Liu, B. Zhou, H. Guo, and M. Bache, “Mid-IR femtosecond frequency conversion by soliton-probe collision in phase-mismatched quadratic nonlinear crystals,” Opt. Lett. 40(16), 3798–3801 (2015).
    [Crossref] [PubMed]
  13. L. Tartara, “Soliton control by a weak dispersive pulse,” J. Opt. Soc. Am. B 32(3), 395–399 (2015).
    [Crossref]
  14. A. Bendahmane, A. Mussot, M. Conforti, and A. Kudlinski, “Observation of the stepwise blue shift of a dispersive wave preceding its trapping by a soliton,” Opt. Express 23(13), 16595–16601 (2015).
    [Crossref] [PubMed]
  15. A. Demircan, S. Amiranashvili, C. Brée, and G. Steinmeyer, “Compressible octave spanning supercontinuum generation by two-pulse collisions,” Phys. Rev. Lett. 110(23), 233901 (2013).
    [Crossref] [PubMed]
  16. A. V. Yulin, R. Driben, B. A. Malomed, and D. V. Skryabin, “Soliton interaction mediated by cascaded four wave mixing with dispersive waves,” Opt. Express 21(12), 14474–14479 (2013).
    [Crossref] [PubMed]
  17. R. Driben, A. V. Yulin, A. Efimov, and B. A. Malomed, “Trapping of light in solitonic cavities and its role in the supercontinuum generation,” Opt. Express 21(16), 19091–19096 (2013).
    [Crossref] [PubMed]
  18. S. F. Wang, A. Mussot, M. Conforti, X. L. Zeng, and A. Kudlinski, “Bouncing of a dispersive wave in a solitonic cage,” Opt. Lett. 40(14), 3320–3323 (2015).
    [Crossref] [PubMed]
  19. I. Oreshnikov, R. Driben, and A. V. Yulin, “Weak and strong interactions between dark solitons and dispersive waves,” Opt. Lett. 40(21), 4871–4874 (2015).
    [Crossref] [PubMed]
  20. I. Oreshnikov, R. Driben, and A. V. Yulin, “Interaction of high-order solitons with external dispersive waves,” Opt. Lett. 40(23), 5554–5557 (2015).
    [Crossref] [PubMed]
  21. M. Erkintalo, G. Genty, and J. M. Dudley, “Giant dispersive wave generation through soliton collision,” Opt. Lett. 35(5), 658–660 (2010).
    [Crossref] [PubMed]
  22. M. Erkintalo, G. Genty, and J. M. Dudley, “Experimental signatures of dispersive waves emitted during soliton collisions,” Opt. Express 18(13), 13379–13384 (2010).
    [Crossref] [PubMed]
  23. A. Tonello, D. Modotto, K. Krupa, A. Labruyere, B. M. Shalaby, V. Couderc, A. Barthelemy, U. Minoni, S. Wabnitz, and A. B. Aceves, “Dispersive wave emission in dual concentric core fiber: the role of soliton-soliton collisions,” IEEE Photonics Technol. Lett. 27(11), 1145–1148 (2015).
    [Crossref]
  24. G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, “Optical wave breaking and pulse compression due to cross-phase modulation in optical fibers,” Opt. Lett. 14(2), 137–139 (1989).
    [Crossref] [PubMed]
  25. G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, “Temporal and spectral effects of cross-phase modulation on copropagating ultrashort pulses in optical fibers,” Phys. Rev. A Gen. Phys. 40(9), 5063–5072 (1989).
    [Crossref] [PubMed]
  26. S. F. Wang, A. Mussot, M. Conforti, A. Bendahmane, X. L. Zeng, and A. Kudlinski, “Optical event horizons from the collision of a soliton and its own dispersive wave,” Phys. Rev. A 92(2), 023837 (2015).
    [Crossref]
  27. Z. X. Deng, X. H. Shi, C. Tan, and X. Q. Fu, “Reversible conversion between optical frequencies of probe and idler waves in regime of optical event horizon,” J. Opt. Soc. Am. B 33(5), 857–863 (2016).
    [Crossref]

2016 (1)

2015 (9)

S. F. Wang, A. Mussot, M. Conforti, A. Bendahmane, X. L. Zeng, and A. Kudlinski, “Optical event horizons from the collision of a soliton and its own dispersive wave,” Phys. Rev. A 92(2), 023837 (2015).
[Crossref]

J. Gu, H. Guo, S. Wang, and X. Zeng, “Probe-controlled soliton frequency shift in the regime of optical event horizon,” Opt. Express 23(17), 22285–22290 (2015).
[Crossref] [PubMed]

A. Tonello, D. Modotto, K. Krupa, A. Labruyere, B. M. Shalaby, V. Couderc, A. Barthelemy, U. Minoni, S. Wabnitz, and A. B. Aceves, “Dispersive wave emission in dual concentric core fiber: the role of soliton-soliton collisions,” IEEE Photonics Technol. Lett. 27(11), 1145–1148 (2015).
[Crossref]

X. Liu, B. Zhou, H. Guo, and M. Bache, “Mid-IR femtosecond frequency conversion by soliton-probe collision in phase-mismatched quadratic nonlinear crystals,” Opt. Lett. 40(16), 3798–3801 (2015).
[Crossref] [PubMed]

L. Tartara, “Soliton control by a weak dispersive pulse,” J. Opt. Soc. Am. B 32(3), 395–399 (2015).
[Crossref]

A. Bendahmane, A. Mussot, M. Conforti, and A. Kudlinski, “Observation of the stepwise blue shift of a dispersive wave preceding its trapping by a soliton,” Opt. Express 23(13), 16595–16601 (2015).
[Crossref] [PubMed]

S. F. Wang, A. Mussot, M. Conforti, X. L. Zeng, and A. Kudlinski, “Bouncing of a dispersive wave in a solitonic cage,” Opt. Lett. 40(14), 3320–3323 (2015).
[Crossref] [PubMed]

I. Oreshnikov, R. Driben, and A. V. Yulin, “Weak and strong interactions between dark solitons and dispersive waves,” Opt. Lett. 40(21), 4871–4874 (2015).
[Crossref] [PubMed]

I. Oreshnikov, R. Driben, and A. V. Yulin, “Interaction of high-order solitons with external dispersive waves,” Opt. Lett. 40(23), 5554–5557 (2015).
[Crossref] [PubMed]

2014 (1)

K. E. Webb, M. Erkintalo, Y. Xu, N. G. Broderick, J. M. Dudley, G. Genty, and S. G. Murdoch, “Nonlinear optics of fibre event horizons,” Nat. Commun. 5, 4969 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (2)

2011 (1)

A. Demircan, Sh. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106(16), 163901 (2011).
[Crossref] [PubMed]

2010 (3)

2008 (1)

2007 (1)

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

2005 (1)

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95(21), 213902 (2005).
[Crossref] [PubMed]

2004 (1)

1989 (2)

G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, “Optical wave breaking and pulse compression due to cross-phase modulation in optical fibers,” Opt. Lett. 14(2), 137–139 (1989).
[Crossref] [PubMed]

G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, “Temporal and spectral effects of cross-phase modulation on copropagating ultrashort pulses in optical fibers,” Phys. Rev. A Gen. Phys. 40(9), 5063–5072 (1989).
[Crossref] [PubMed]

Aceves, A. B.

A. Tonello, D. Modotto, K. Krupa, A. Labruyere, B. M. Shalaby, V. Couderc, A. Barthelemy, U. Minoni, S. Wabnitz, and A. B. Aceves, “Dispersive wave emission in dual concentric core fiber: the role of soliton-soliton collisions,” IEEE Photonics Technol. Lett. 27(11), 1145–1148 (2015).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, “Temporal and spectral effects of cross-phase modulation on copropagating ultrashort pulses in optical fibers,” Phys. Rev. A Gen. Phys. 40(9), 5063–5072 (1989).
[Crossref] [PubMed]

G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, “Optical wave breaking and pulse compression due to cross-phase modulation in optical fibers,” Opt. Lett. 14(2), 137–139 (1989).
[Crossref] [PubMed]

Alfano, R. R.

G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, “Temporal and spectral effects of cross-phase modulation on copropagating ultrashort pulses in optical fibers,” Phys. Rev. A Gen. Phys. 40(9), 5063–5072 (1989).
[Crossref] [PubMed]

G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, “Optical wave breaking and pulse compression due to cross-phase modulation in optical fibers,” Opt. Lett. 14(2), 137–139 (1989).
[Crossref] [PubMed]

Amiranashvili, S.

A. Demircan, S. Amiranashvili, C. Brée, and G. Steinmeyer, “Compressible octave spanning supercontinuum generation by two-pulse collisions,” Phys. Rev. Lett. 110(23), 233901 (2013).
[Crossref] [PubMed]

Amiranashvili, Sh.

A. Demircan, Sh. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106(16), 163901 (2011).
[Crossref] [PubMed]

Bache, M.

Baldeck, P. L.

G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, “Temporal and spectral effects of cross-phase modulation on copropagating ultrashort pulses in optical fibers,” Phys. Rev. A Gen. Phys. 40(9), 5063–5072 (1989).
[Crossref] [PubMed]

G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, “Optical wave breaking and pulse compression due to cross-phase modulation in optical fibers,” Opt. Lett. 14(2), 137–139 (1989).
[Crossref] [PubMed]

Barthelemy, A.

A. Tonello, D. Modotto, K. Krupa, A. Labruyere, B. M. Shalaby, V. Couderc, A. Barthelemy, U. Minoni, S. Wabnitz, and A. B. Aceves, “Dispersive wave emission in dual concentric core fiber: the role of soliton-soliton collisions,” IEEE Photonics Technol. Lett. 27(11), 1145–1148 (2015).
[Crossref]

Bendahmane, A.

S. F. Wang, A. Mussot, M. Conforti, A. Bendahmane, X. L. Zeng, and A. Kudlinski, “Optical event horizons from the collision of a soliton and its own dispersive wave,” Phys. Rev. A 92(2), 023837 (2015).
[Crossref]

A. Bendahmane, A. Mussot, M. Conforti, and A. Kudlinski, “Observation of the stepwise blue shift of a dispersive wave preceding its trapping by a soliton,” Opt. Express 23(13), 16595–16601 (2015).
[Crossref] [PubMed]

Brée, C.

A. Demircan, S. Amiranashvili, C. Brée, and G. Steinmeyer, “Compressible octave spanning supercontinuum generation by two-pulse collisions,” Phys. Rev. Lett. 110(23), 233901 (2013).
[Crossref] [PubMed]

Broderick, N. G.

K. E. Webb, M. Erkintalo, Y. Xu, N. G. Broderick, J. M. Dudley, G. Genty, and S. G. Murdoch, “Nonlinear optics of fibre event horizons,” Nat. Commun. 5, 4969 (2014).
[Crossref] [PubMed]

Choudhary, A.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Conforti, M.

Couderc, V.

A. Tonello, D. Modotto, K. Krupa, A. Labruyere, B. M. Shalaby, V. Couderc, A. Barthelemy, U. Minoni, S. Wabnitz, and A. B. Aceves, “Dispersive wave emission in dual concentric core fiber: the role of soliton-soliton collisions,” IEEE Photonics Technol. Lett. 27(11), 1145–1148 (2015).
[Crossref]

Cristiani, I.

Degiorgio, V.

Demircan, A.

A. Demircan, S. Amiranashvili, C. Brée, and G. Steinmeyer, “Compressible octave spanning supercontinuum generation by two-pulse collisions,” Phys. Rev. Lett. 110(23), 233901 (2013).
[Crossref] [PubMed]

A. Demircan, Sh. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106(16), 163901 (2011).
[Crossref] [PubMed]

Deng, Z. X.

Driben, R.

Dudley, J. M.

Efimov, A.

R. Driben, A. V. Yulin, A. Efimov, and B. A. Malomed, “Trapping of light in solitonic cavities and its role in the supercontinuum generation,” Opt. Express 21(16), 19091–19096 (2013).
[Crossref] [PubMed]

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95(21), 213902 (2005).
[Crossref] [PubMed]

Eggleton, B. J.

Erkintalo, M.

Fu, X. Q.

Genty, G.

Gorbach, A. V.

D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82(2), 1287–1299 (2010).
[Crossref]

Gu, J.

Guo, H.

Jalali, B.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Jian, S.

Joly, N.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95(21), 213902 (2005).
[Crossref] [PubMed]

Kaminski, C. F.

Knight, J. C.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95(21), 213902 (2005).
[Crossref] [PubMed]

König, F.

Koonath, P.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Krupa, K.

A. Tonello, D. Modotto, K. Krupa, A. Labruyere, B. M. Shalaby, V. Couderc, A. Barthelemy, U. Minoni, S. Wabnitz, and A. B. Aceves, “Dispersive wave emission in dual concentric core fiber: the role of soliton-soliton collisions,” IEEE Photonics Technol. Lett. 27(11), 1145–1148 (2015).
[Crossref]

Kudlinski, A.

Labruyere, A.

A. Tonello, D. Modotto, K. Krupa, A. Labruyere, B. M. Shalaby, V. Couderc, A. Barthelemy, U. Minoni, S. Wabnitz, and A. B. Aceves, “Dispersive wave emission in dual concentric core fiber: the role of soliton-soliton collisions,” IEEE Photonics Technol. Lett. 27(11), 1145–1148 (2015).
[Crossref]

Laurila, T.

Liu, C.

Liu, X.

Malomed, B. A.

Minoni, U.

A. Tonello, D. Modotto, K. Krupa, A. Labruyere, B. M. Shalaby, V. Couderc, A. Barthelemy, U. Minoni, S. Wabnitz, and A. B. Aceves, “Dispersive wave emission in dual concentric core fiber: the role of soliton-soliton collisions,” IEEE Photonics Technol. Lett. 27(11), 1145–1148 (2015).
[Crossref]

Modotto, D.

A. Tonello, D. Modotto, K. Krupa, A. Labruyere, B. M. Shalaby, V. Couderc, A. Barthelemy, U. Minoni, S. Wabnitz, and A. B. Aceves, “Dispersive wave emission in dual concentric core fiber: the role of soliton-soliton collisions,” IEEE Photonics Technol. Lett. 27(11), 1145–1148 (2015).
[Crossref]

Murdoch, S. G.

K. E. Webb, M. Erkintalo, Y. Xu, N. G. Broderick, J. M. Dudley, G. Genty, and S. G. Murdoch, “Nonlinear optics of fibre event horizons,” Nat. Commun. 5, 4969 (2014).
[Crossref] [PubMed]

Mussot, A.

Omenetto, F. G.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95(21), 213902 (2005).
[Crossref] [PubMed]

Oreshnikov, I.

Rees, E. J.

Ropers, C.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Russell, P.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95(21), 213902 (2005).
[Crossref] [PubMed]

Shalaby, B. M.

A. Tonello, D. Modotto, K. Krupa, A. Labruyere, B. M. Shalaby, V. Couderc, A. Barthelemy, U. Minoni, S. Wabnitz, and A. B. Aceves, “Dispersive wave emission in dual concentric core fiber: the role of soliton-soliton collisions,” IEEE Photonics Technol. Lett. 27(11), 1145–1148 (2015).
[Crossref]

Shi, X. H.

Skryabin, D. V.

A. V. Yulin, R. Driben, B. A. Malomed, and D. V. Skryabin, “Soliton interaction mediated by cascaded four wave mixing with dispersive waves,” Opt. Express 21(12), 14474–14479 (2013).
[Crossref] [PubMed]

D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82(2), 1287–1299 (2010).
[Crossref]

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95(21), 213902 (2005).
[Crossref] [PubMed]

Solli, D. R.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Steinmeyer, G.

A. Demircan, S. Amiranashvili, C. Brée, and G. Steinmeyer, “Compressible octave spanning supercontinuum generation by two-pulse collisions,” Phys. Rev. Lett. 110(23), 233901 (2013).
[Crossref] [PubMed]

A. Demircan, Sh. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106(16), 163901 (2011).
[Crossref] [PubMed]

Tan, C.

Tartara, L.

Taylor, A. J.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95(21), 213902 (2005).
[Crossref] [PubMed]

Tediosi, R.

Tonello, A.

A. Tonello, D. Modotto, K. Krupa, A. Labruyere, B. M. Shalaby, V. Couderc, A. Barthelemy, U. Minoni, S. Wabnitz, and A. B. Aceves, “Dispersive wave emission in dual concentric core fiber: the role of soliton-soliton collisions,” IEEE Photonics Technol. Lett. 27(11), 1145–1148 (2015).
[Crossref]

Wabnitz, S.

A. Tonello, D. Modotto, K. Krupa, A. Labruyere, B. M. Shalaby, V. Couderc, A. Barthelemy, U. Minoni, S. Wabnitz, and A. B. Aceves, “Dispersive wave emission in dual concentric core fiber: the role of soliton-soliton collisions,” IEEE Photonics Technol. Lett. 27(11), 1145–1148 (2015).
[Crossref]

Wang, S.

Wang, S. F.

S. F. Wang, A. Mussot, M. Conforti, X. L. Zeng, and A. Kudlinski, “Bouncing of a dispersive wave in a solitonic cage,” Opt. Lett. 40(14), 3320–3323 (2015).
[Crossref] [PubMed]

S. F. Wang, A. Mussot, M. Conforti, A. Bendahmane, X. L. Zeng, and A. Kudlinski, “Optical event horizons from the collision of a soliton and its own dispersive wave,” Phys. Rev. A 92(2), 023837 (2015).
[Crossref]

Webb, K. E.

K. E. Webb, M. Erkintalo, Y. Xu, N. G. Broderick, J. M. Dudley, G. Genty, and S. G. Murdoch, “Nonlinear optics of fibre event horizons,” Nat. Commun. 5, 4969 (2014).
[Crossref] [PubMed]

Xu, Y.

K. E. Webb, M. Erkintalo, Y. Xu, N. G. Broderick, J. M. Dudley, G. Genty, and S. G. Murdoch, “Nonlinear optics of fibre event horizons,” Nat. Commun. 5, 4969 (2014).
[Crossref] [PubMed]

Yulin, A. V.

Zeng, X.

Zeng, X. L.

S. F. Wang, A. Mussot, M. Conforti, X. L. Zeng, and A. Kudlinski, “Bouncing of a dispersive wave in a solitonic cage,” Opt. Lett. 40(14), 3320–3323 (2015).
[Crossref] [PubMed]

S. F. Wang, A. Mussot, M. Conforti, A. Bendahmane, X. L. Zeng, and A. Kudlinski, “Optical event horizons from the collision of a soliton and its own dispersive wave,” Phys. Rev. A 92(2), 023837 (2015).
[Crossref]

Zhou, B.

IEEE Photonics Technol. Lett. (1)

A. Tonello, D. Modotto, K. Krupa, A. Labruyere, B. M. Shalaby, V. Couderc, A. Barthelemy, U. Minoni, S. Wabnitz, and A. B. Aceves, “Dispersive wave emission in dual concentric core fiber: the role of soliton-soliton collisions,” IEEE Photonics Technol. Lett. 27(11), 1145–1148 (2015).
[Crossref]

J. Opt. Soc. Am. B (2)

Nat. Commun. (1)

K. E. Webb, M. Erkintalo, Y. Xu, N. G. Broderick, J. M. Dudley, G. Genty, and S. G. Murdoch, “Nonlinear optics of fibre event horizons,” Nat. Commun. 5, 4969 (2014).
[Crossref] [PubMed]

Nature (1)

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Opt. Express (9)

J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16(6), 3644–3651 (2008).
[Crossref] [PubMed]

I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Opt. Express 12(1), 124–135 (2004).
[Crossref] [PubMed]

A. Choudhary and F. König, “Efficient frequency shifting of dispersive waves at solitons,” Opt. Express 20(5), 5538–5546 (2012).
[Crossref] [PubMed]

C. Liu, E. J. Rees, T. Laurila, S. Jian, and C. F. Kaminski, “Periodic interactions between solitons and dispersive waves during the generation of non-coherent supercontinuum radiation,” Opt. Express 20(6), 6316–6324 (2012).
[Crossref] [PubMed]

J. Gu, H. Guo, S. Wang, and X. Zeng, “Probe-controlled soliton frequency shift in the regime of optical event horizon,” Opt. Express 23(17), 22285–22290 (2015).
[Crossref] [PubMed]

A. Bendahmane, A. Mussot, M. Conforti, and A. Kudlinski, “Observation of the stepwise blue shift of a dispersive wave preceding its trapping by a soliton,” Opt. Express 23(13), 16595–16601 (2015).
[Crossref] [PubMed]

A. V. Yulin, R. Driben, B. A. Malomed, and D. V. Skryabin, “Soliton interaction mediated by cascaded four wave mixing with dispersive waves,” Opt. Express 21(12), 14474–14479 (2013).
[Crossref] [PubMed]

R. Driben, A. V. Yulin, A. Efimov, and B. A. Malomed, “Trapping of light in solitonic cavities and its role in the supercontinuum generation,” Opt. Express 21(16), 19091–19096 (2013).
[Crossref] [PubMed]

M. Erkintalo, G. Genty, and J. M. Dudley, “Experimental signatures of dispersive waves emitted during soliton collisions,” Opt. Express 18(13), 13379–13384 (2010).
[Crossref] [PubMed]

Opt. Lett. (6)

Phys. Rev. A (1)

S. F. Wang, A. Mussot, M. Conforti, A. Bendahmane, X. L. Zeng, and A. Kudlinski, “Optical event horizons from the collision of a soliton and its own dispersive wave,” Phys. Rev. A 92(2), 023837 (2015).
[Crossref]

Phys. Rev. A Gen. Phys. (1)

G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, “Temporal and spectral effects of cross-phase modulation on copropagating ultrashort pulses in optical fibers,” Phys. Rev. A Gen. Phys. 40(9), 5063–5072 (1989).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

A. Demircan, S. Amiranashvili, C. Brée, and G. Steinmeyer, “Compressible octave spanning supercontinuum generation by two-pulse collisions,” Phys. Rev. Lett. 110(23), 233901 (2013).
[Crossref] [PubMed]

A. Demircan, Sh. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106(16), 163901 (2011).
[Crossref] [PubMed]

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95(21), 213902 (2005).
[Crossref] [PubMed]

Rev. Mod. Phys. (2)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82(2), 1287–1299 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Wavenumberκ and relative group delay of the fiber, exhibiting frequency combinations for initial twin-solitons moving away from each other and an incident DW with slightly group-velocity mismatched.
Fig. 2
Fig. 2 Density maps of the temporal evolution of the interaction of a single DW packet with a single soliton. The incident DW appears to reflect off the soliton and break up into multiple scattering waves during the collision. Top row: for different temporal separation between them t 0 : (a) 4, (b) 5, (c) 6, (d) 7, but ω s2 is fixed to 1.5. It shows that one can achieve even greater numbers of scattering waves by increasing t 0 . Bottom row: for the different initial relative carrier frequency of soliton ω s2 : (e) 0.3, (f) 0.7, (g) 1, (h) 2, but t 0 is fixed to 5. It displays that the scattering waves became more sparse with the increasing initial relative carrier frequency ω s2 . Here, the parameters are δ 3 =1, P inc =5, P s =25, ω inc =38.2 and w=0.22.
Fig. 3
Fig. 3 (a, b) The radiation spectral narrowing trapped between two separating solitons for the peak power of incident DW Pinc = 1. The leading and trailing solitons have normalized peak power Ps = 25, and frequencies ωs1 = 0, ωs2 = 1.5, respectively. Temporally, the leading (first) soliton is initially 5 units ahead of the incident DW while the trailing (second) soliton trails the incident DW by 5 units at the input of fiber. The incident dispersive wave is taken with frequency ωinc = –38.2. Due to their different group velocity, twin-solitons separate during the course of the propagation. (c, d) The intense dispersive wave field trapped in a solitonic well formed by the twin-solitons moving away from each other. The parameters are the same as in (a, b) except that the peak power of incident DW is set to Pinc = 4.0. The evolutions are in the temporal (a, c) and frequency-domains (b, d) representations.
Fig. 4
Fig. 4 (a, b) The dispersive wave generation induced by twin-solitons collision with the incident DW field P inc =5.3. The other parameters are the same as that used in Fig. 3. The white arrows indicate CDW. CDW represents the soliton collision-induced dispersive wave. (c, d) The same as in (a, b) other than the Raman effect is included. The Raman response parameters are θ=0.18, τ 1 =0.061 and τ 2 =0.16.
Fig. 5
Fig. 5 Z c and the power of collision-induced dispersive wave, P CDW , as a function of (a) peak power and (b) temporal width of the incident wave. The red filled circles lines correspond to the collision point of twin-solitons. The peak power of dispersive wave induced by twin-solitons collision is shown by the blue filled lines.
Fig. 6
Fig. 6 Z c and the peak power of CDW, P CDW , versus the difference between initial carrier frequencies of the twins-soliton, ω s2 ω s1 . Red filled circles lines correspond to the position where the collision of twin-solitons occur. The peak power of CDW is shown by the blue filled lines. The peak power and temporal width of incident DW are fixed to 5.3 and 0.22, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

i Z A+ 1 2 T 2 Ai δ 3 T 3 A+(1θ)|A | 2 A+θA + R( t )|A(T t ) | 2 d t =0,
R(t)= τ 1 2 + τ 2 2 τ 1 τ 2 2 Θ(t)exp( t τ 2 )sin( t τ 2 ),
A(0,T)= P s sech[ P s (T t 0 )]exp(i ω s1 T)+ P s sech[ P s (T+ t 0 )]exp(i ω s2 T) + P inc exp( T 2 /2 w 2 )]exp(i ω inc T),

Metrics