Abstract

Lower NA in large-mode-area fibers enables better single-mode operation and larger core diameters. Fiber NA has traditionally been limited to 0.06, mostly due to the control tolerance in the fabrication process. It has been recognized recently that transverse mode instability is a major limit to average power scaling in fiber lasers. One effective method to mitigate this limit is to operate nearer to the single-mode regime. Lower fiber NA is critical in this since it allows relatively larger core diameters which is the key to mitigate the limits imposed by nonlinear effects. We have developed a fabrication process of ytterbium-doped silica glass which is capable of highly accurate refractive index control and sufficient uniformity for LMA fibers. This process is also capable of large-volume production. It is based on a significant amount of post-processing once the fiber preforms are made. We have demonstrated 30/400 and 40/400 LMA fibers with a NA of ~0.028 operating very close to the single-mode regime. The second-order mode cuts off at ~1.2μm and ~1.55µm respectively. We have also studied issues related to bend losses due to the low NA and further optimization of LMA fibers.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Asymmetric large-mode-area photonic crystal fiber structure with effective single-mode operation: design and analysis

Than Singh Saini, Ajeet Kumar, and Ravindra Kumar Sinha
Appl. Opt. 55(9) 2306-2311 (2016)

Large-mode-area multicore fibers in the single-moded regime

John M. Fini
Opt. Express 19(5) 4042-4046 (2011)

Extending single mode performance of all-solid large-mode-area single trench fiber

D. Jain, Y. Jung, M. Nunez-Velazquez, and J. K. Sahu
Opt. Express 22(25) 31078-31091 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. E. Fermann, “Single-mode excitation of multimode fibers with ultrashort pulses,” Opt. Lett. 23(1), 52–54 (1998).
    [Crossref] [PubMed]
  2. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25(7), 442–444 (2000).
    [Crossref] [PubMed]
  3. “Laser Marketplace 2015,” Laser Focus World (2015).
  4. D. Larcombe, “Fiber versus CO2 laser cutting,” Industrial Laser Solutions, November 2013.
  5. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35(2), 94–96 (2010).
    [Crossref] [PubMed]
  6. A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
    [Crossref] [PubMed]
  7. B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express 20(10), 11407–11422 (2012).
    [Crossref] [PubMed]
  8. K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Thermally induced mode coupling in rare-earth doped fiber amplifiers,” Opt. Lett. 37(12), 2382–2384 (2012).
    [Crossref] [PubMed]
  9. L. Dong, “Stimulated thermal Rayleigh scattering in optical fibers,” Opt. Express 21(3), 2642–2656 (2013).
    [Crossref] [PubMed]
  10. V. Khitrov, J. D. Minelly, R. Tumminelli, V. Petit, and E. S. Pooler, “3kw single-mode direct diode pumped fiber laser,” Proc. SPIE 8961, 89610V (2014).
    [Crossref]
  11. V. Fomin, M. Abramov, A. Ferin, A. Abramov, D. Mochalov, N. Platonov, and V. Gapontsev, “10 kW single-mode fiber laser,” in 5th International Symposium on High-Power Fiber Lasers and Their Applications, St. Petersburg, June 28-July 1, (2010).
  12. K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high power fiber amplifiers based on large mode area fibers,” Proc. SPIE 8961, 89611R (2014).
    [Crossref]
  13. C. Hupel, S. Kuhn, S. Hein, N. Haarlammert, J. Nold, F. Beier, B. Sattler, T. Schreiber, R. Eberhardt, and A. Tünnermann, “MCVD Based Fabrication of Low-NA Fibers for High Power Fiber Laser Application,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2015), paper AM4A.2.
  14. D. Jain, Y. Jung, P. Barua, S. Alam, and J. K. Sahu, “Demonstration of ultra-low NA rare-earth doped step index fiber for applications in high power fiber lasers,” Opt. Express 23(6), 7407–7415 (2015).
    [Crossref] [PubMed]
  15. V. Petit, R. P. Tumminelli, J. D. Minelly, and V. Khitrov, “Extremely low NA Yb doped preforms (<0.03) fabricated by MCVD,” Proc. SPIE 9728, 97282R (2016).
    [Crossref]
  16. W. Xu, Z. Lin, M. Wang, S. Feng, L. Zhang, Q. Zhou, D. Chen, L. Zhang, S. Wang, C. Yu, and L. Hu, “50 μm core diameter Yb3+/Al3+/F− codoped silica fiber with M2<1.1 beam quality,” Opt. Lett. 41(3), 504–507 (2016).
    [Crossref] [PubMed]
  17. S. Suzuki, H. A. McKay, X. Peng, L. Fu, and L. Dong, “Highly ytterbium-doped silica fibers with low photo-darkening,” Opt. Express 17(12), 9924–9932 (2009).
    [Crossref] [PubMed]
  18. F. Kong, G. Gu, T. W. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Wei, B. Samson, and L. Dong, “Flat-top mode from a 50 µm-core Yb-doped leakage channel fiber,” Opt. Express 21(26), 32371–32376 (2013).
    [Crossref] [PubMed]
  19. G. Gu, F. Kong, T. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Saitoh, and L. Dong, “Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers,” Opt. Express 22(11), 13962–13968 (2014).
    [Crossref] [PubMed]
  20. A. W. Snyder and J. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

2016 (2)

2015 (1)

2014 (3)

G. Gu, F. Kong, T. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Saitoh, and L. Dong, “Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers,” Opt. Express 22(11), 13962–13968 (2014).
[Crossref] [PubMed]

V. Khitrov, J. D. Minelly, R. Tumminelli, V. Petit, and E. S. Pooler, “3kw single-mode direct diode pumped fiber laser,” Proc. SPIE 8961, 89610V (2014).
[Crossref]

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high power fiber amplifiers based on large mode area fibers,” Proc. SPIE 8961, 89611R (2014).
[Crossref]

2013 (2)

2012 (2)

2011 (1)

2010 (1)

2009 (1)

2000 (1)

1998 (1)

Abramov, A.

V. Fomin, M. Abramov, A. Ferin, A. Abramov, D. Mochalov, N. Platonov, and V. Gapontsev, “10 kW single-mode fiber laser,” in 5th International Symposium on High-Power Fiber Lasers and Their Applications, St. Petersburg, June 28-July 1, (2010).

Abramov, M.

V. Fomin, M. Abramov, A. Ferin, A. Abramov, D. Mochalov, N. Platonov, and V. Gapontsev, “10 kW single-mode fiber laser,” in 5th International Symposium on High-Power Fiber Lasers and Their Applications, St. Petersburg, June 28-July 1, (2010).

Afzal, R.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high power fiber amplifiers based on large mode area fibers,” Proc. SPIE 8961, 89611R (2014).
[Crossref]

Alam, S.

Alkeskjold, T. T.

Andersen, T. V.

Barua, P.

Brar, K.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high power fiber amplifiers based on large mode area fibers,” Proc. SPIE 8961, 89611R (2014).
[Crossref]

Broeng, J.

Chen, D.

Courtney, S.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high power fiber amplifiers based on large mode area fibers,” Proc. SPIE 8961, 89611R (2014).
[Crossref]

Dajani, I.

Dilley, C.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high power fiber amplifiers based on large mode area fibers,” Proc. SPIE 8961, 89611R (2014).
[Crossref]

Dong, L.

Dunn, C.

Eidam, T.

Feng, S.

Ferin, A.

V. Fomin, M. Abramov, A. Ferin, A. Abramov, D. Mochalov, N. Platonov, and V. Gapontsev, “10 kW single-mode fiber laser,” in 5th International Symposium on High-Power Fiber Lasers and Their Applications, St. Petersburg, June 28-July 1, (2010).

Fermann, M. E.

Fomin, V.

V. Fomin, M. Abramov, A. Ferin, A. Abramov, D. Mochalov, N. Platonov, and V. Gapontsev, “10 kW single-mode fiber laser,” in 5th International Symposium on High-Power Fiber Lasers and Their Applications, St. Petersburg, June 28-July 1, (2010).

Fu, L.

Gabler, T.

Gapontsev, V.

V. Fomin, M. Abramov, A. Ferin, A. Abramov, D. Mochalov, N. Platonov, and V. Gapontsev, “10 kW single-mode fiber laser,” in 5th International Symposium on High-Power Fiber Lasers and Their Applications, St. Petersburg, June 28-July 1, (2010).

Goldberg, L.

Gu, G.

Hanf, S.

Hansen, K. R.

Hawkins, T.

Hawkins, T. W.

Henrie, J.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high power fiber amplifiers based on large mode area fibers,” Proc. SPIE 8961, 89611R (2014).
[Crossref]

Honea, E.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high power fiber amplifiers based on large mode area fibers,” Proc. SPIE 8961, 89611R (2014).
[Crossref]

Hu, L.

Jain, D.

Jones, M.

Jung, Y.

Kalichevsky-Dong, M. T.

Khitrov, V.

V. Petit, R. P. Tumminelli, J. D. Minelly, and V. Khitrov, “Extremely low NA Yb doped preforms (<0.03) fabricated by MCVD,” Proc. SPIE 9728, 97282R (2016).
[Crossref]

V. Khitrov, J. D. Minelly, R. Tumminelli, V. Petit, and E. S. Pooler, “3kw single-mode direct diode pumped fiber laser,” Proc. SPIE 8961, 89610V (2014).
[Crossref]

Kliner, D. A. V.

Kong, F.

Koplow, J. P.

Lægsgaard, J.

Limpert, J.

Lin, Z.

McKay, H. A.

Minelly, J. D.

V. Petit, R. P. Tumminelli, J. D. Minelly, and V. Khitrov, “Extremely low NA Yb doped preforms (<0.03) fabricated by MCVD,” Proc. SPIE 9728, 97282R (2016).
[Crossref]

V. Khitrov, J. D. Minelly, R. Tumminelli, V. Petit, and E. S. Pooler, “3kw single-mode direct diode pumped fiber laser,” Proc. SPIE 8961, 89610V (2014).
[Crossref]

Mochalov, D.

V. Fomin, M. Abramov, A. Ferin, A. Abramov, D. Mochalov, N. Platonov, and V. Gapontsev, “10 kW single-mode fiber laser,” in 5th International Symposium on High-Power Fiber Lasers and Their Applications, St. Petersburg, June 28-July 1, (2010).

Parsons, J.

Peng, X.

Petit, V.

V. Petit, R. P. Tumminelli, J. D. Minelly, and V. Khitrov, “Extremely low NA Yb doped preforms (<0.03) fabricated by MCVD,” Proc. SPIE 9728, 97282R (2016).
[Crossref]

V. Khitrov, J. D. Minelly, R. Tumminelli, V. Petit, and E. S. Pooler, “3kw single-mode direct diode pumped fiber laser,” Proc. SPIE 8961, 89610V (2014).
[Crossref]

Platonov, N.

V. Fomin, M. Abramov, A. Ferin, A. Abramov, D. Mochalov, N. Platonov, and V. Gapontsev, “10 kW single-mode fiber laser,” in 5th International Symposium on High-Power Fiber Lasers and Their Applications, St. Petersburg, June 28-July 1, (2010).

Pooler, E. S.

V. Khitrov, J. D. Minelly, R. Tumminelli, V. Petit, and E. S. Pooler, “3kw single-mode direct diode pumped fiber laser,” Proc. SPIE 8961, 89610V (2014).
[Crossref]

Robin, C.

Sahu, J. K.

Saitoh, K.

Samson, B.

Savage-Leuchs, M.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high power fiber amplifiers based on large mode area fibers,” Proc. SPIE 8961, 89611R (2014).
[Crossref]

Schreiber, T.

Seise, E.

Smith, A. V.

Smith, J. J.

Suzuki, S.

Tumminelli, R.

V. Khitrov, J. D. Minelly, R. Tumminelli, V. Petit, and E. S. Pooler, “3kw single-mode direct diode pumped fiber laser,” Proc. SPIE 8961, 89610V (2014).
[Crossref]

Tumminelli, R. P.

V. Petit, R. P. Tumminelli, J. D. Minelly, and V. Khitrov, “Extremely low NA Yb doped preforms (<0.03) fabricated by MCVD,” Proc. SPIE 9728, 97282R (2016).
[Crossref]

Tünnermann, A.

Wang, M.

Wang, S.

Ward, B.

Wei, K.

Wirth, C.

Xu, W.

Yu, C.

Zhang, L.

Zhou, Q.

Opt. Express (7)

Opt. Lett. (5)

Proc. SPIE (3)

V. Khitrov, J. D. Minelly, R. Tumminelli, V. Petit, and E. S. Pooler, “3kw single-mode direct diode pumped fiber laser,” Proc. SPIE 8961, 89610V (2014).
[Crossref]

V. Petit, R. P. Tumminelli, J. D. Minelly, and V. Khitrov, “Extremely low NA Yb doped preforms (<0.03) fabricated by MCVD,” Proc. SPIE 9728, 97282R (2016).
[Crossref]

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high power fiber amplifiers based on large mode area fibers,” Proc. SPIE 8961, 89611R (2014).
[Crossref]

Other (5)

C. Hupel, S. Kuhn, S. Hein, N. Haarlammert, J. Nold, F. Beier, B. Sattler, T. Schreiber, R. Eberhardt, and A. Tünnermann, “MCVD Based Fabrication of Low-NA Fibers for High Power Fiber Laser Application,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2015), paper AM4A.2.

A. W. Snyder and J. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

V. Fomin, M. Abramov, A. Ferin, A. Abramov, D. Mochalov, N. Platonov, and V. Gapontsev, “10 kW single-mode fiber laser,” in 5th International Symposium on High-Power Fiber Lasers and Their Applications, St. Petersburg, June 28-July 1, (2010).

“Laser Marketplace 2015,” Laser Focus World (2015).

D. Larcombe, “Fiber versus CO2 laser cutting,” Industrial Laser Solutions, November 2013.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The cross section photos of the (a) 30/400 and (b) 40/400 LMA fibers.
Fig. 2
Fig. 2 (a) 2D refractive index of the 30/400 fiber, (b) refractive index scan along X axis and (c) Y axis.
Fig. 3
Fig. 3 (a) The measured loss of the 30/400 fiber with simulated bend loss using NA = 0.285 and core radius of 32.5μm and (b) The measured loss of the 40/400 fiber with simulated bend loss using NA = 0.27 and core radius of 44μm.
Fig. 4
Fig. 4 Measured efficiencies of fiber lasers made with (a) 4m of the 30/400 fiber coiled at 1.9m in diameter and (b) 2.5m of the 40/400 fiber coiled at 1m.
Fig. 5
Fig. 5 Measured beam quality of the fiber laser made from the 4m 30/400 fiber coiled at 1.9m in diameter.
Fig. 6
Fig. 6 Measured beam quality of the fiber laser made from the 2.5m 40/400 fiber coiled at 1m in diameter.
Fig. 7
Fig. 7 (a) Simulated critical bend diameter versus core diameter for NA = 0.0281, 0.03 and 0.035, and (b) simulated NA versus critical bend diameter for core diameters of 20μm, 30μm, 40μm and 50μm.
Fig. 8
Fig. 8 Simulated mode field diameter (MFD) at 1030nm of a LMA fiber with NA = 0.0281 versus core diameter. The shaded area is single-mode regime. The dotted line is when MFD = core diameter.

Metrics