Abstract

We demonstrate a polymer slot waveguide Young interferometer coated with a bilayer of Al2O3/TiO2. The approach enables relaxed dimensions of the polymer waveguide which simplifies the fabrication of the structure with a resolution of 50 nm. The layers were coated by an atomic layer deposition technique. The feasibility of the device was investigated by exploiting the interferometric structure as a bulk refractive index sensor operating at 975 nm wavelength for detection of an ethanol-water solution. A refractive index change of 1 × 10−6 RIU with a sensing length of only 800 µm was detected. The approach confirms the possibility of realizing a low cost device with a small footprint and enhanced sensitivity by employing the TiO2 rails in the sides of the slot waveguide.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced sensitivity in polymer slot waveguides by atomic layer deposited bilayer coatings

Leila Ahmadi, Jani Tervo, Jyrki Saarinen, and Seppo Honkanen
Appl. Opt. 52(33) 8089-8094 (2013)

Polymeric slot waveguide interferometer for sensor applications

Marianne Hiltunen, Jussi Hiltunen, Petri Stenberg, Sanna Aikio, Lauri Kurki, Pasi Vahimaa, and Pentti Karioja
Opt. Express 22(6) 7229-7237 (2014)

Influence of an Al2O3 surface coating on the response of polymeric waveguide sensors

Leila Ahmadi, Marianne Hiltunen, Jussi Hiltunen, Sanna Aikio, Jyrki Saarinen, Seppo Honkanen, and Matthieu Roussey
Opt. Express 25(21) 25102-25112 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, Processing, and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
    [Crossref]
  2. A. L. Pyayt, “Guiding light in electro-optic polymers,” Polymers (Basel) 3(4), 1591–1599 (2011).
    [Crossref]
  3. K. S. Lee, H. L. T. Lee, and R. J. Ram, “Polymer waveguide backplanes for optical sensor interfaces in microfluidics,” Lab Chip 7(11), 1539–1545 (2007).
    [Crossref] [PubMed]
  4. I. M. Soganci, A. La Porta, and B. J. Offrein, “Flip-chip optical couplers with scalable I/O count for silicon photonics,” Opt. Express 21(13), 16075–16085 (2013).
    [Crossref] [PubMed]
  5. R. Himmelhuber, R. A. Norwood, Y. Enami, and N. Peyghambarian, “Sol-gel material-anabled electro-optic polymer modulators,” Sensors (Basel) 15(8), 18239–18255 (2015).
    [Crossref] [PubMed]
  6. C. Liguda, G. Bottger, A. Kuligk, R. Blum, M. Eichb, H. Roth, J. Kunert, W. Morgenroth, H. Elsner, and H. G. Meyer, “Polymer photonic crystal slab waveguides,” Appl. Phys. Lett. 78(17), 2434–2436 (2001).
    [Crossref]
  7. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
    [Crossref] [PubMed]
  8. P. A. Anderson, B. S. Schmidt, and M. Lipson, “High confinement in silicon slot waveguides with sharp bends,” Opt. Express 14(20), 9197–9202 (2006).
    [Crossref] [PubMed]
  9. F. Dell’Olio and V. M. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15(8), 4977–4993 (2007).
    [Crossref] [PubMed]
  10. L. Vivien, D. Marris-Morini, A. Griol, K. B. Gylfason, D. Hill, J. Lvarez, H. Sohlström, J. Hurtado, D. Bouville, and E. Cassan, “Vertical multiple-slot waveguide ring resonators in silicon nitride,” Opt. Express 16(22), 17237–17242 (2008).
    [Crossref] [PubMed]
  11. C. A. Barrios, B. Sánchez, K. B. Gylfason, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Demonstration of slot-waveguide structures on silicon nitride / silicon oxide platform,” Opt. Express 15(11), 6846–6856 (2007).
    [Crossref] [PubMed]
  12. M. Hiltunen, J. Hiltunen, P. Stenberg, S. Aikio, L. Kurki, P. Vahimaa, and P. Karioja, “Polymeric slot waveguide interferometer for sensor applications,” Opt. Express 22(6), 7229–7237 (2014).
    [Crossref] [PubMed]
  13. P. Bettotti, A. Pitanti, E. Rigo, F. De Leonardis, V. M. N. Passaro, and L. Pavesi, “Modeling of slot waveguide sensors based on polymeric materials,” Sensors (Basel) 11(12), 7327–7340 (2011).
    [Crossref] [PubMed]
  14. M. Hiltunen, J. Hiltunen, P. Stenberg, J. Petäjä, E. Heinonen, P. Vahimaa, and P. Karioja, “Polymeric slot waveguide at visible wavelength,” Opt. Lett. 37(21), 4449–4451 (2012).
    [Crossref] [PubMed]
  15. Z. Cui, Nanofabrication: Principles, Capabilities and Limits (Springer 2009).
  16. D. Barbero, M. Saifullah, P. Hoffmann, H. Mathieu, D. Anderson, G. Jones, M. Well, and U. Steiner, “High-resolution nanoimprinting with a robust and reusable polymer mold,” Adv. Funct. Mater. 17(14), 2419–2425 (2007).
    [Crossref]
  17. L. Ahmadi, J. Tervo, J. Saarinen, and S. Honkanen, “Enhanced sensitivity in polymer slot waveguides by atomic layer deposited bilayer coatings,” Appl. Opt. 52(33), 8089–8094 (2013).
    [Crossref] [PubMed]
  18. L. J. Guo, “Nanoimprinting: Methods and materials requirements,” Adv. Mater. 19(4), 495–513 (2007).
    [Crossref]
  19. R. W. Johnson, A. Hultqvist, and S. F. Bent, “A brief review of atomic layer deposition: from fundamentals to applications,” Mater. Today 17(5), 236–246 (2014).
    [Crossref]
  20. K. F. Palmer and D. Williams, “Optical properties of water in the near infrared,” J. Opt. Soc. Am. 64(8), 1107–1110 (1974).
    [Crossref]
  21. A. Säynätjoki, L. Karvonen, T. Alasaarela, X. Tu, T. Y. Liow, M. Hiltunen, A. Tervonen, G. Q. Lo, and S. Honkanen, “Low-loss silicon slot waveguides and couplers fabricated with optical lithography and atomic layer deposition,” Opt. Express 19(27), 26275–26282 (2011).
    [Crossref] [PubMed]
  22. H. Namatsu, T. Yamaguchi, M. Nagase, K. Yamazaki, and K. Kurihara, “Nano-patterning of a hydrogen-silsesquioxane resist with reduced linewidth fluctuations,” Microelectron. Eng. 41–42, 331–334 (1998).
    [Crossref]
  23. M. Haffner, A. Heeren, M. Fleischer, D. P. Kern, G. Schmidth, and L. W. Molenkamp, “Simple high resolution nanoimprint lithography,” Microelectron. Eng. 84(5-8), 937–939 (2007).
    [Crossref]
  24. D. R. Lide, CRC Handbook of Chemistry and Physics (CRC, 2005).
  25. X. Fan, Advanced Photonic Structures for Biological and Chemical Detection (Springer, 2009).

2015 (1)

R. Himmelhuber, R. A. Norwood, Y. Enami, and N. Peyghambarian, “Sol-gel material-anabled electro-optic polymer modulators,” Sensors (Basel) 15(8), 18239–18255 (2015).
[Crossref] [PubMed]

2014 (2)

M. Hiltunen, J. Hiltunen, P. Stenberg, S. Aikio, L. Kurki, P. Vahimaa, and P. Karioja, “Polymeric slot waveguide interferometer for sensor applications,” Opt. Express 22(6), 7229–7237 (2014).
[Crossref] [PubMed]

R. W. Johnson, A. Hultqvist, and S. F. Bent, “A brief review of atomic layer deposition: from fundamentals to applications,” Mater. Today 17(5), 236–246 (2014).
[Crossref]

2013 (2)

2012 (1)

2011 (3)

P. Bettotti, A. Pitanti, E. Rigo, F. De Leonardis, V. M. N. Passaro, and L. Pavesi, “Modeling of slot waveguide sensors based on polymeric materials,” Sensors (Basel) 11(12), 7327–7340 (2011).
[Crossref] [PubMed]

A. L. Pyayt, “Guiding light in electro-optic polymers,” Polymers (Basel) 3(4), 1591–1599 (2011).
[Crossref]

A. Säynätjoki, L. Karvonen, T. Alasaarela, X. Tu, T. Y. Liow, M. Hiltunen, A. Tervonen, G. Q. Lo, and S. Honkanen, “Low-loss silicon slot waveguides and couplers fabricated with optical lithography and atomic layer deposition,” Opt. Express 19(27), 26275–26282 (2011).
[Crossref] [PubMed]

2008 (1)

2007 (6)

C. A. Barrios, B. Sánchez, K. B. Gylfason, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Demonstration of slot-waveguide structures on silicon nitride / silicon oxide platform,” Opt. Express 15(11), 6846–6856 (2007).
[Crossref] [PubMed]

D. Barbero, M. Saifullah, P. Hoffmann, H. Mathieu, D. Anderson, G. Jones, M. Well, and U. Steiner, “High-resolution nanoimprinting with a robust and reusable polymer mold,” Adv. Funct. Mater. 17(14), 2419–2425 (2007).
[Crossref]

L. J. Guo, “Nanoimprinting: Methods and materials requirements,” Adv. Mater. 19(4), 495–513 (2007).
[Crossref]

K. S. Lee, H. L. T. Lee, and R. J. Ram, “Polymer waveguide backplanes for optical sensor interfaces in microfluidics,” Lab Chip 7(11), 1539–1545 (2007).
[Crossref] [PubMed]

F. Dell’Olio and V. M. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15(8), 4977–4993 (2007).
[Crossref] [PubMed]

M. Haffner, A. Heeren, M. Fleischer, D. P. Kern, G. Schmidth, and L. W. Molenkamp, “Simple high resolution nanoimprint lithography,” Microelectron. Eng. 84(5-8), 937–939 (2007).
[Crossref]

2006 (1)

2004 (1)

2002 (1)

H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, Processing, and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

2001 (1)

C. Liguda, G. Bottger, A. Kuligk, R. Blum, M. Eichb, H. Roth, J. Kunert, W. Morgenroth, H. Elsner, and H. G. Meyer, “Polymer photonic crystal slab waveguides,” Appl. Phys. Lett. 78(17), 2434–2436 (2001).
[Crossref]

1998 (1)

H. Namatsu, T. Yamaguchi, M. Nagase, K. Yamazaki, and K. Kurihara, “Nano-patterning of a hydrogen-silsesquioxane resist with reduced linewidth fluctuations,” Microelectron. Eng. 41–42, 331–334 (1998).
[Crossref]

1974 (1)

Ahmadi, L.

Aikio, S.

Alasaarela, T.

Almeida, V. R.

Anderson, D.

D. Barbero, M. Saifullah, P. Hoffmann, H. Mathieu, D. Anderson, G. Jones, M. Well, and U. Steiner, “High-resolution nanoimprinting with a robust and reusable polymer mold,” Adv. Funct. Mater. 17(14), 2419–2425 (2007).
[Crossref]

Anderson, P. A.

Barbero, D.

D. Barbero, M. Saifullah, P. Hoffmann, H. Mathieu, D. Anderson, G. Jones, M. Well, and U. Steiner, “High-resolution nanoimprinting with a robust and reusable polymer mold,” Adv. Funct. Mater. 17(14), 2419–2425 (2007).
[Crossref]

Barrios, C. A.

Bent, S. F.

R. W. Johnson, A. Hultqvist, and S. F. Bent, “A brief review of atomic layer deposition: from fundamentals to applications,” Mater. Today 17(5), 236–246 (2014).
[Crossref]

Bettotti, P.

P. Bettotti, A. Pitanti, E. Rigo, F. De Leonardis, V. M. N. Passaro, and L. Pavesi, “Modeling of slot waveguide sensors based on polymeric materials,” Sensors (Basel) 11(12), 7327–7340 (2011).
[Crossref] [PubMed]

Blum, R.

C. Liguda, G. Bottger, A. Kuligk, R. Blum, M. Eichb, H. Roth, J. Kunert, W. Morgenroth, H. Elsner, and H. G. Meyer, “Polymer photonic crystal slab waveguides,” Appl. Phys. Lett. 78(17), 2434–2436 (2001).
[Crossref]

Bottger, G.

C. Liguda, G. Bottger, A. Kuligk, R. Blum, M. Eichb, H. Roth, J. Kunert, W. Morgenroth, H. Elsner, and H. G. Meyer, “Polymer photonic crystal slab waveguides,” Appl. Phys. Lett. 78(17), 2434–2436 (2001).
[Crossref]

Bouville, D.

Casquel, R.

Cassan, E.

Dalton, L. R.

H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, Processing, and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

De Leonardis, F.

P. Bettotti, A. Pitanti, E. Rigo, F. De Leonardis, V. M. N. Passaro, and L. Pavesi, “Modeling of slot waveguide sensors based on polymeric materials,” Sensors (Basel) 11(12), 7327–7340 (2011).
[Crossref] [PubMed]

Dell’Olio, F.

Eichb, M.

C. Liguda, G. Bottger, A. Kuligk, R. Blum, M. Eichb, H. Roth, J. Kunert, W. Morgenroth, H. Elsner, and H. G. Meyer, “Polymer photonic crystal slab waveguides,” Appl. Phys. Lett. 78(17), 2434–2436 (2001).
[Crossref]

Elsner, H.

C. Liguda, G. Bottger, A. Kuligk, R. Blum, M. Eichb, H. Roth, J. Kunert, W. Morgenroth, H. Elsner, and H. G. Meyer, “Polymer photonic crystal slab waveguides,” Appl. Phys. Lett. 78(17), 2434–2436 (2001).
[Crossref]

Enami, Y.

R. Himmelhuber, R. A. Norwood, Y. Enami, and N. Peyghambarian, “Sol-gel material-anabled electro-optic polymer modulators,” Sensors (Basel) 15(8), 18239–18255 (2015).
[Crossref] [PubMed]

Fleischer, M.

M. Haffner, A. Heeren, M. Fleischer, D. P. Kern, G. Schmidth, and L. W. Molenkamp, “Simple high resolution nanoimprint lithography,” Microelectron. Eng. 84(5-8), 937–939 (2007).
[Crossref]

Griol, A.

Guo, L. J.

L. J. Guo, “Nanoimprinting: Methods and materials requirements,” Adv. Mater. 19(4), 495–513 (2007).
[Crossref]

Gylfason, K. B.

Haffner, M.

M. Haffner, A. Heeren, M. Fleischer, D. P. Kern, G. Schmidth, and L. W. Molenkamp, “Simple high resolution nanoimprint lithography,” Microelectron. Eng. 84(5-8), 937–939 (2007).
[Crossref]

Heeren, A.

M. Haffner, A. Heeren, M. Fleischer, D. P. Kern, G. Schmidth, and L. W. Molenkamp, “Simple high resolution nanoimprint lithography,” Microelectron. Eng. 84(5-8), 937–939 (2007).
[Crossref]

Heinonen, E.

Hill, D.

Hiltunen, J.

Hiltunen, M.

Himmelhuber, R.

R. Himmelhuber, R. A. Norwood, Y. Enami, and N. Peyghambarian, “Sol-gel material-anabled electro-optic polymer modulators,” Sensors (Basel) 15(8), 18239–18255 (2015).
[Crossref] [PubMed]

Hoffmann, P.

D. Barbero, M. Saifullah, P. Hoffmann, H. Mathieu, D. Anderson, G. Jones, M. Well, and U. Steiner, “High-resolution nanoimprinting with a robust and reusable polymer mold,” Adv. Funct. Mater. 17(14), 2419–2425 (2007).
[Crossref]

Holgado, M.

Honkanen, S.

Hultqvist, A.

R. W. Johnson, A. Hultqvist, and S. F. Bent, “A brief review of atomic layer deposition: from fundamentals to applications,” Mater. Today 17(5), 236–246 (2014).
[Crossref]

Hurtado, J.

Jen, A. K. Y.

H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, Processing, and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Johnson, R. W.

R. W. Johnson, A. Hultqvist, and S. F. Bent, “A brief review of atomic layer deposition: from fundamentals to applications,” Mater. Today 17(5), 236–246 (2014).
[Crossref]

Jones, G.

D. Barbero, M. Saifullah, P. Hoffmann, H. Mathieu, D. Anderson, G. Jones, M. Well, and U. Steiner, “High-resolution nanoimprinting with a robust and reusable polymer mold,” Adv. Funct. Mater. 17(14), 2419–2425 (2007).
[Crossref]

Karioja, P.

Karvonen, L.

Kern, D. P.

M. Haffner, A. Heeren, M. Fleischer, D. P. Kern, G. Schmidth, and L. W. Molenkamp, “Simple high resolution nanoimprint lithography,” Microelectron. Eng. 84(5-8), 937–939 (2007).
[Crossref]

Kuligk, A.

C. Liguda, G. Bottger, A. Kuligk, R. Blum, M. Eichb, H. Roth, J. Kunert, W. Morgenroth, H. Elsner, and H. G. Meyer, “Polymer photonic crystal slab waveguides,” Appl. Phys. Lett. 78(17), 2434–2436 (2001).
[Crossref]

Kunert, J.

C. Liguda, G. Bottger, A. Kuligk, R. Blum, M. Eichb, H. Roth, J. Kunert, W. Morgenroth, H. Elsner, and H. G. Meyer, “Polymer photonic crystal slab waveguides,” Appl. Phys. Lett. 78(17), 2434–2436 (2001).
[Crossref]

Kurihara, K.

H. Namatsu, T. Yamaguchi, M. Nagase, K. Yamazaki, and K. Kurihara, “Nano-patterning of a hydrogen-silsesquioxane resist with reduced linewidth fluctuations,” Microelectron. Eng. 41–42, 331–334 (1998).
[Crossref]

Kurki, L.

La Porta, A.

Lee, H. L. T.

K. S. Lee, H. L. T. Lee, and R. J. Ram, “Polymer waveguide backplanes for optical sensor interfaces in microfluidics,” Lab Chip 7(11), 1539–1545 (2007).
[Crossref] [PubMed]

Lee, K. S.

K. S. Lee, H. L. T. Lee, and R. J. Ram, “Polymer waveguide backplanes for optical sensor interfaces in microfluidics,” Lab Chip 7(11), 1539–1545 (2007).
[Crossref] [PubMed]

Liguda, C.

C. Liguda, G. Bottger, A. Kuligk, R. Blum, M. Eichb, H. Roth, J. Kunert, W. Morgenroth, H. Elsner, and H. G. Meyer, “Polymer photonic crystal slab waveguides,” Appl. Phys. Lett. 78(17), 2434–2436 (2001).
[Crossref]

Liow, T. Y.

Lipson, M.

Lo, G. Q.

Lvarez, J.

Ma, H.

H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, Processing, and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Marris-Morini, D.

Mathieu, H.

D. Barbero, M. Saifullah, P. Hoffmann, H. Mathieu, D. Anderson, G. Jones, M. Well, and U. Steiner, “High-resolution nanoimprinting with a robust and reusable polymer mold,” Adv. Funct. Mater. 17(14), 2419–2425 (2007).
[Crossref]

Meyer, H. G.

C. Liguda, G. Bottger, A. Kuligk, R. Blum, M. Eichb, H. Roth, J. Kunert, W. Morgenroth, H. Elsner, and H. G. Meyer, “Polymer photonic crystal slab waveguides,” Appl. Phys. Lett. 78(17), 2434–2436 (2001).
[Crossref]

Molenkamp, L. W.

M. Haffner, A. Heeren, M. Fleischer, D. P. Kern, G. Schmidth, and L. W. Molenkamp, “Simple high resolution nanoimprint lithography,” Microelectron. Eng. 84(5-8), 937–939 (2007).
[Crossref]

Morgenroth, W.

C. Liguda, G. Bottger, A. Kuligk, R. Blum, M. Eichb, H. Roth, J. Kunert, W. Morgenroth, H. Elsner, and H. G. Meyer, “Polymer photonic crystal slab waveguides,” Appl. Phys. Lett. 78(17), 2434–2436 (2001).
[Crossref]

Nagase, M.

H. Namatsu, T. Yamaguchi, M. Nagase, K. Yamazaki, and K. Kurihara, “Nano-patterning of a hydrogen-silsesquioxane resist with reduced linewidth fluctuations,” Microelectron. Eng. 41–42, 331–334 (1998).
[Crossref]

Namatsu, H.

H. Namatsu, T. Yamaguchi, M. Nagase, K. Yamazaki, and K. Kurihara, “Nano-patterning of a hydrogen-silsesquioxane resist with reduced linewidth fluctuations,” Microelectron. Eng. 41–42, 331–334 (1998).
[Crossref]

Norwood, R. A.

R. Himmelhuber, R. A. Norwood, Y. Enami, and N. Peyghambarian, “Sol-gel material-anabled electro-optic polymer modulators,” Sensors (Basel) 15(8), 18239–18255 (2015).
[Crossref] [PubMed]

Offrein, B. J.

Palmer, K. F.

Passaro, V. M.

Passaro, V. M. N.

P. Bettotti, A. Pitanti, E. Rigo, F. De Leonardis, V. M. N. Passaro, and L. Pavesi, “Modeling of slot waveguide sensors based on polymeric materials,” Sensors (Basel) 11(12), 7327–7340 (2011).
[Crossref] [PubMed]

Pavesi, L.

P. Bettotti, A. Pitanti, E. Rigo, F. De Leonardis, V. M. N. Passaro, and L. Pavesi, “Modeling of slot waveguide sensors based on polymeric materials,” Sensors (Basel) 11(12), 7327–7340 (2011).
[Crossref] [PubMed]

Petäjä, J.

Peyghambarian, N.

R. Himmelhuber, R. A. Norwood, Y. Enami, and N. Peyghambarian, “Sol-gel material-anabled electro-optic polymer modulators,” Sensors (Basel) 15(8), 18239–18255 (2015).
[Crossref] [PubMed]

Pitanti, A.

P. Bettotti, A. Pitanti, E. Rigo, F. De Leonardis, V. M. N. Passaro, and L. Pavesi, “Modeling of slot waveguide sensors based on polymeric materials,” Sensors (Basel) 11(12), 7327–7340 (2011).
[Crossref] [PubMed]

Pyayt, A. L.

A. L. Pyayt, “Guiding light in electro-optic polymers,” Polymers (Basel) 3(4), 1591–1599 (2011).
[Crossref]

Ram, R. J.

K. S. Lee, H. L. T. Lee, and R. J. Ram, “Polymer waveguide backplanes for optical sensor interfaces in microfluidics,” Lab Chip 7(11), 1539–1545 (2007).
[Crossref] [PubMed]

Rigo, E.

P. Bettotti, A. Pitanti, E. Rigo, F. De Leonardis, V. M. N. Passaro, and L. Pavesi, “Modeling of slot waveguide sensors based on polymeric materials,” Sensors (Basel) 11(12), 7327–7340 (2011).
[Crossref] [PubMed]

Roth, H.

C. Liguda, G. Bottger, A. Kuligk, R. Blum, M. Eichb, H. Roth, J. Kunert, W. Morgenroth, H. Elsner, and H. G. Meyer, “Polymer photonic crystal slab waveguides,” Appl. Phys. Lett. 78(17), 2434–2436 (2001).
[Crossref]

Saarinen, J.

Saifullah, M.

D. Barbero, M. Saifullah, P. Hoffmann, H. Mathieu, D. Anderson, G. Jones, M. Well, and U. Steiner, “High-resolution nanoimprinting with a robust and reusable polymer mold,” Adv. Funct. Mater. 17(14), 2419–2425 (2007).
[Crossref]

Sánchez, B.

Säynätjoki, A.

Schmidt, B. S.

Schmidth, G.

M. Haffner, A. Heeren, M. Fleischer, D. P. Kern, G. Schmidth, and L. W. Molenkamp, “Simple high resolution nanoimprint lithography,” Microelectron. Eng. 84(5-8), 937–939 (2007).
[Crossref]

Soganci, I. M.

Sohlström, H.

Steiner, U.

D. Barbero, M. Saifullah, P. Hoffmann, H. Mathieu, D. Anderson, G. Jones, M. Well, and U. Steiner, “High-resolution nanoimprinting with a robust and reusable polymer mold,” Adv. Funct. Mater. 17(14), 2419–2425 (2007).
[Crossref]

Stenberg, P.

Tervo, J.

Tervonen, A.

Tu, X.

Vahimaa, P.

Vivien, L.

Well, M.

D. Barbero, M. Saifullah, P. Hoffmann, H. Mathieu, D. Anderson, G. Jones, M. Well, and U. Steiner, “High-resolution nanoimprinting with a robust and reusable polymer mold,” Adv. Funct. Mater. 17(14), 2419–2425 (2007).
[Crossref]

Williams, D.

Xu, Q.

Yamaguchi, T.

H. Namatsu, T. Yamaguchi, M. Nagase, K. Yamazaki, and K. Kurihara, “Nano-patterning of a hydrogen-silsesquioxane resist with reduced linewidth fluctuations,” Microelectron. Eng. 41–42, 331–334 (1998).
[Crossref]

Yamazaki, K.

H. Namatsu, T. Yamaguchi, M. Nagase, K. Yamazaki, and K. Kurihara, “Nano-patterning of a hydrogen-silsesquioxane resist with reduced linewidth fluctuations,” Microelectron. Eng. 41–42, 331–334 (1998).
[Crossref]

Adv. Funct. Mater. (1)

D. Barbero, M. Saifullah, P. Hoffmann, H. Mathieu, D. Anderson, G. Jones, M. Well, and U. Steiner, “High-resolution nanoimprinting with a robust and reusable polymer mold,” Adv. Funct. Mater. 17(14), 2419–2425 (2007).
[Crossref]

Adv. Mater. (2)

L. J. Guo, “Nanoimprinting: Methods and materials requirements,” Adv. Mater. 19(4), 495–513 (2007).
[Crossref]

H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, Processing, and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

C. Liguda, G. Bottger, A. Kuligk, R. Blum, M. Eichb, H. Roth, J. Kunert, W. Morgenroth, H. Elsner, and H. G. Meyer, “Polymer photonic crystal slab waveguides,” Appl. Phys. Lett. 78(17), 2434–2436 (2001).
[Crossref]

J. Opt. Soc. Am. (1)

Lab Chip (1)

K. S. Lee, H. L. T. Lee, and R. J. Ram, “Polymer waveguide backplanes for optical sensor interfaces in microfluidics,” Lab Chip 7(11), 1539–1545 (2007).
[Crossref] [PubMed]

Mater. Today (1)

R. W. Johnson, A. Hultqvist, and S. F. Bent, “A brief review of atomic layer deposition: from fundamentals to applications,” Mater. Today 17(5), 236–246 (2014).
[Crossref]

Microelectron. Eng. (2)

H. Namatsu, T. Yamaguchi, M. Nagase, K. Yamazaki, and K. Kurihara, “Nano-patterning of a hydrogen-silsesquioxane resist with reduced linewidth fluctuations,” Microelectron. Eng. 41–42, 331–334 (1998).
[Crossref]

M. Haffner, A. Heeren, M. Fleischer, D. P. Kern, G. Schmidth, and L. W. Molenkamp, “Simple high resolution nanoimprint lithography,” Microelectron. Eng. 84(5-8), 937–939 (2007).
[Crossref]

Opt. Express (7)

A. Säynätjoki, L. Karvonen, T. Alasaarela, X. Tu, T. Y. Liow, M. Hiltunen, A. Tervonen, G. Q. Lo, and S. Honkanen, “Low-loss silicon slot waveguides and couplers fabricated with optical lithography and atomic layer deposition,” Opt. Express 19(27), 26275–26282 (2011).
[Crossref] [PubMed]

I. M. Soganci, A. La Porta, and B. J. Offrein, “Flip-chip optical couplers with scalable I/O count for silicon photonics,” Opt. Express 21(13), 16075–16085 (2013).
[Crossref] [PubMed]

P. A. Anderson, B. S. Schmidt, and M. Lipson, “High confinement in silicon slot waveguides with sharp bends,” Opt. Express 14(20), 9197–9202 (2006).
[Crossref] [PubMed]

F. Dell’Olio and V. M. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15(8), 4977–4993 (2007).
[Crossref] [PubMed]

L. Vivien, D. Marris-Morini, A. Griol, K. B. Gylfason, D. Hill, J. Lvarez, H. Sohlström, J. Hurtado, D. Bouville, and E. Cassan, “Vertical multiple-slot waveguide ring resonators in silicon nitride,” Opt. Express 16(22), 17237–17242 (2008).
[Crossref] [PubMed]

C. A. Barrios, B. Sánchez, K. B. Gylfason, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Demonstration of slot-waveguide structures on silicon nitride / silicon oxide platform,” Opt. Express 15(11), 6846–6856 (2007).
[Crossref] [PubMed]

M. Hiltunen, J. Hiltunen, P. Stenberg, S. Aikio, L. Kurki, P. Vahimaa, and P. Karioja, “Polymeric slot waveguide interferometer for sensor applications,” Opt. Express 22(6), 7229–7237 (2014).
[Crossref] [PubMed]

Opt. Lett. (2)

Polymers (Basel) (1)

A. L. Pyayt, “Guiding light in electro-optic polymers,” Polymers (Basel) 3(4), 1591–1599 (2011).
[Crossref]

Sensors (Basel) (2)

R. Himmelhuber, R. A. Norwood, Y. Enami, and N. Peyghambarian, “Sol-gel material-anabled electro-optic polymer modulators,” Sensors (Basel) 15(8), 18239–18255 (2015).
[Crossref] [PubMed]

P. Bettotti, A. Pitanti, E. Rigo, F. De Leonardis, V. M. N. Passaro, and L. Pavesi, “Modeling of slot waveguide sensors based on polymeric materials,” Sensors (Basel) 11(12), 7327–7340 (2011).
[Crossref] [PubMed]

Other (3)

Z. Cui, Nanofabrication: Principles, Capabilities and Limits (Springer 2009).

D. R. Lide, CRC Handbook of Chemistry and Physics (CRC, 2005).

X. Fan, Advanced Photonic Structures for Biological and Chemical Detection (Springer, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic view of our Young interferometer with the cross section of the waveguide in the slot waveguide and a tip of the adiabatic strip to slot waveguide coupler.
Fig. 2
Fig. 2 Simulation results of the amplitude of lateral component of the electric field (EX) of the quasi-TE mode in (a) ridge, (b) slot waveguide with a 90 nm of TiO2 layer all over the waveguides, with down etched TiO2 layer in (c) ridge, (d) slot waveguide, and (e) adiabatic strip to slot waveguide coupler.
Fig. 3
Fig. 3 SEM images of a) slot waveguide and b) strip to slot waveguide coupler and c) Y- junction on the Si-HSQ stamp.
Fig. 4
Fig. 4 Schematic illustration of fabrication process starting from replication of working stamp (WS) from Si-HSQ master stamp until fabrication of the final ALD-coated polymer waveguide structure.
Fig. 5
Fig. 5 SEM images of (a) cross section of a polymer slot waveguide, (b) cross section of ALD- coated polymer slot waveguide after down etching of the top TiO2 layer, (c) strip to slot waveguide coupler on polymer, (d) down etched ALD-coated strip to slot waveguide coupler and (e) Y- junction on polymer waveguide, and (f) Y- junction in down etched ALD-coated polymer waveguide.
Fig. 6
Fig. 6 (a) Output intensity profiles of the ALD-coated Young interferometer of the reference arm (right) and the sensing arm, including an 800 µm long slot waveguide section (left), and (b) interference pattern captured after applying water as a cover medium in the sensing window.
Fig. 7
Fig. 7 Measured phase shift after applying an ethanol-water solution with the concentration of a) 0.00178%, b) 0.0167%, and (c) 0. 178%. Red lines are the results after filtering.
Fig. 8
Fig. 8 a) The comparison of the experimental and the theoretical values of phase shift calculated by FMM and Opti FDTD. The theoretical phase shift for the same device with the covered reference arm was calculated by FMM, and b) effective refractive index change of the ALD-coated polymer slot waveguide interferometer against the change in the refractive index of the cover medium. The slope of the linear fitting gives the homogeneous sensitivity S h of the device based on the measured values.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δφ=Δ φ S Δ φ r =2π ( Δ n eff ) total λ L=2π [ ( Δ n eff ) s ( Δ n eff ) r ] λ L.
Δ n c =0.0006×C . Eth

Metrics