Abstract

A high power, frequency-tunable THz source based on intracavity stimulated polariton scattering (SPS) in RbTiOPO4 (RTP) is demonstrated for the first time. Frequency tunable THz output was obtained from 3.10 to 4.15 THz, with a gap at 3.17 to 3.49 THz, arising from the 104 cm−1 A1 mode in RTP. A maximum average output power of 16.2 µW was detected at 3.8 THz. This is the highest average output power ever reported for an intracavity polariton laser.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
THz polariton laser using an intracavity Mg:LiNbO3 crystal with protective Teflon coating

Tiago A. Ortega, Helen M. Pask, David J. Spence, and Andrew J. Lee
Opt. Express 25(4) 3991-3999 (2017)

THz-wave generation via stimulated polariton scattering in KTiOAsO4 crystal

Weitao Wang, Zhenhua Cong, Zhaojun Liu, Xingyu Zhang, Zengguang Qin, Guanqi Tang, Ning Li, Yuangeng Zhang, and Qingming Lu
Opt. Express 22(14) 17092-17098 (2014)

Tunable KTA Stokes laser based on stimulated polariton scattering and its intracavity frequency doubling

Jie Zang, Zhenhua Cong, Xiaohan Chen, Xingyu Zhang, Zengguang Qin, Zhaojun Liu, Jianren Lu, Dong Wu, Qiang Fu, Shiqi Jiang, and Shaojun Zhang
Opt. Express 24(7) 7558-7565 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
    [Crossref]
  2. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosive and drugs,” Mater. Today 11(3), 18–26 (2008).
    [Crossref]
  3. R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
    [Crossref] [PubMed]
  4. S. J. Oh, J. Choi, I. Maeng, J. Y. Park, K. Lee, Y. M. Huh, J. S. Suh, S. Haam, and J. H. Son, “Molecular imaging with terahertz waves,” Opt. Express 19(5), 4009–4016 (2011).
    [Crossref] [PubMed]
  5. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716–1718 (1995).
    [Crossref] [PubMed]
  6. K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using submillimeter-wave radiation,” IEEE Trans. Microw. Theory Tech. 56(12), 2771–2778 (2008).
    [Crossref]
  7. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
    [Crossref] [PubMed]
  8. E. Brundermann, H. Hubers, and M. F. Kimmitt, Terahertz Techniques (Springer, 2012).
  9. K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 35(3), R1–R14 (2002).
    [Crossref]
  10. S. S. Sussman, Tunable Light Scattering from Transverse Optical Modes in Lithium Niobate (Stanford Univ., 1970).
  11. K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
    [Crossref]
  12. K. Kawase, H. Minamide, K. Imai, J. Shikata, and H. Ito, “Injection-seeded terahertz parametric generator with wide tunability,” Appl. Phys. Lett. 80(2), 195–197 (2002).
    [Crossref]
  13. T. Edwards, D. Walsh, M. Spurr, C. Rae, M. Dunn, and P. Browne, “Compact source of continuously and widely-tunable terahertz radiation,” Opt. Express 14(4), 1582–1589 (2006).
    [Crossref] [PubMed]
  14. D. Walsh, S. J. M. Stothard, T. J. Edwards, P. G. Browne, C. F. Rae, and M. H. Dunn, “Injection-seeded intracavity terahertz optical parametric oscillator,” J. Opt. Soc. Am. B 26(6), 1196–1202 (2009).
    [Crossref]
  15. A. J. Lee and H. M. Pask, “Continuous wave, frequency-tunable terahertz laser radiation generated via stimulated polariton scattering,” Opt. Lett. 39(3), 442–445 (2014).
    [Crossref] [PubMed]
  16. W. Wang, X. Zhang, Q. Wang, Z. Cong, X. Chen, Z. Liu, Z. Qin, P. Li, G. Tang, N. Li, C. Wang, Y. Li, and W. Cheng, “Multiple-beam output of a surface-emitted terahertz-wave parametric oscillator by using a slab MgO:LiNbO₃ crystal,” Opt. Lett. 39(4), 754–757 (2014).
    [Crossref] [PubMed]
  17. D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92(14), 141105 (2008).
    [Crossref]
  18. J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MGO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
    [Crossref]
  19. W. Wang, Z. Cong, X. Chen, X. Zhang, Z. Qin, G. Tang, N. Li, C. Wang, and Q. Lu, “Terahertz parametric oscillator based on KTiOPO₄ crystal,” Opt. Lett. 39(13), 3706–3709 (2014).
    [Crossref] [PubMed]
  20. C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108(1), 011007 (2016).
    [Crossref]
  21. W. Wang, Z. Cong, Z. Liu, X. Zhang, Z. Qin, G. Tang, N. Li, Y. Zhang, and Q. Lu, “THz-wave generation via stimulated polariton scattering in KTiOAsO4 crystal,” Opt. Express 22(14), 17092–17098 (2014).
    [Crossref] [PubMed]
  22. Y. Y. Wang, Z. X. Li, J. Q. Li, C. Yan, T. N. Chen, D. G. Xu, W. Shi, H. Feng, and J. Q. Yao, “Energy scaling of a tunable terahertz parametric oscillator with a surface emitted configuration,” Laser Phys. 24(12), 125402 (2014).
    [Crossref]
  23. A. Hildebrand, F. Wagner, J. Natoli, M. Commandre, H. Albrecht, and F. Theodore, “Laser damage investigation in RbTiOPO4 crystals: a study on the anisotropy of the laser induced damage threshold,” Proc. SPIE 6403, 64031W (2006).
    [Crossref]
  24. J. Y. Wang, L. Li, S. Liu, Y. Liu, and J. Wei, “The inelastic light scattering of RbTiOAsO4 single crystal,” Ferroelectrics 132(1), 197–202 (1992).
    [Crossref]
  25. P. Dekker, H. M. Pask, D. J. Spence, and J. A. Piper, “Continuous-wave, intracavity doubled, self-Raman laser operation in Nd:GdVO4 at 586.5 nm,” Opt. Express 15(11), 7038–7046 (2007).
    [Crossref] [PubMed]
  26. K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt. 40(9), 1423–1426 (2001).
    [Crossref] [PubMed]
  27. I. Hosako, N. Sekine, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95(8), 1611–1623 (2007).
    [Crossref]
  28. A. Lee, Y. He, and H. Pask, “Frequency-tunable THz source based on Stimulated Polariton Scattering in Mg:LiNbO3,” IEEE J. Quantum Electron. 49(3), 357–364 (2013).
    [Crossref]
  29. V. Nikolaev, Deputy General Manager, Tydex LLC, 16 Domostroietelnaya str, St. Petersburg, Russia 194292 (personal communication, 2015).

2016 (1)

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108(1), 011007 (2016).
[Crossref]

2014 (5)

2013 (1)

A. Lee, Y. He, and H. Pask, “Frequency-tunable THz source based on Stimulated Polariton Scattering in Mg:LiNbO3,” IEEE J. Quantum Electron. 49(3), 357–364 (2013).
[Crossref]

2011 (1)

2009 (1)

2008 (3)

G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosive and drugs,” Mater. Today 11(3), 18–26 (2008).
[Crossref]

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using submillimeter-wave radiation,” IEEE Trans. Microw. Theory Tech. 56(12), 2771–2778 (2008).
[Crossref]

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92(14), 141105 (2008).
[Crossref]

2007 (2)

I. Hosako, N. Sekine, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[Crossref]

P. Dekker, H. M. Pask, D. J. Spence, and J. A. Piper, “Continuous-wave, intracavity doubled, self-Raman laser operation in Nd:GdVO4 at 586.5 nm,” Opt. Express 15(11), 7038–7046 (2007).
[Crossref] [PubMed]

2006 (2)

T. Edwards, D. Walsh, M. Spurr, C. Rae, M. Dunn, and P. Browne, “Compact source of continuously and widely-tunable terahertz radiation,” Opt. Express 14(4), 1582–1589 (2006).
[Crossref] [PubMed]

A. Hildebrand, F. Wagner, J. Natoli, M. Commandre, H. Albrecht, and F. Theodore, “Laser damage investigation in RbTiOPO4 crystals: a study on the anisotropy of the laser induced damage threshold,” Proc. SPIE 6403, 64031W (2006).
[Crossref]

2004 (1)

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[Crossref]

2003 (1)

2002 (3)

K. Kawase, H. Minamide, K. Imai, J. Shikata, and H. Ito, “Injection-seeded terahertz parametric generator with wide tunability,” Appl. Phys. Lett. 80(2), 195–197 (2002).
[Crossref]

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref] [PubMed]

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 35(3), R1–R14 (2002).
[Crossref]

2001 (1)

2000 (1)

J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MGO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
[Crossref]

1996 (1)

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[Crossref]

1995 (1)

1992 (1)

J. Y. Wang, L. Li, S. Liu, Y. Liu, and J. Wei, “The inelastic light scattering of RbTiOAsO4 single crystal,” Ferroelectrics 132(1), 197–202 (1992).
[Crossref]

Albrecht, H.

A. Hildebrand, F. Wagner, J. Natoli, M. Commandre, H. Albrecht, and F. Theodore, “Laser damage investigation in RbTiOPO4 crystals: a study on the anisotropy of the laser induced damage threshold,” Proc. SPIE 6403, 64031W (2006).
[Crossref]

Arnone, D. D.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref] [PubMed]

Baron, P.

I. Hosako, N. Sekine, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[Crossref]

Browne, P.

Browne, P. G.

D. Walsh, S. J. M. Stothard, T. J. Edwards, P. G. Browne, C. F. Rae, and M. H. Dunn, “Injection-seeded intracavity terahertz optical parametric oscillator,” J. Opt. Soc. Am. B 26(6), 1196–1202 (2009).
[Crossref]

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92(14), 141105 (2008).
[Crossref]

Bryllert, T.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using submillimeter-wave radiation,” IEEE Trans. Microw. Theory Tech. 56(12), 2771–2778 (2008).
[Crossref]

Burnett, A. D.

G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosive and drugs,” Mater. Today 11(3), 18–26 (2008).
[Crossref]

Chattopadhyay, G.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using submillimeter-wave radiation,” IEEE Trans. Microw. Theory Tech. 56(12), 2771–2778 (2008).
[Crossref]

Chen, T. N.

Y. Y. Wang, Z. X. Li, J. Q. Li, C. Yan, T. N. Chen, D. G. Xu, W. Shi, H. Feng, and J. Q. Yao, “Energy scaling of a tunable terahertz parametric oscillator with a surface emitted configuration,” Laser Phys. 24(12), 125402 (2014).
[Crossref]

Chen, X.

Cheng, W.

Choi, J.

Cole, B. E.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref] [PubMed]

Commandre, M.

A. Hildebrand, F. Wagner, J. Natoli, M. Commandre, H. Albrecht, and F. Theodore, “Laser damage investigation in RbTiOPO4 crystals: a study on the anisotropy of the laser induced damage threshold,” Proc. SPIE 6403, 64031W (2006).
[Crossref]

Cong, Z.

Cooper, K. B.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using submillimeter-wave radiation,” IEEE Trans. Microw. Theory Tech. 56(12), 2771–2778 (2008).
[Crossref]

Cunningham, J. E.

G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosive and drugs,” Mater. Today 11(3), 18–26 (2008).
[Crossref]

Davies, G.

G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosive and drugs,” Mater. Today 11(3), 18–26 (2008).
[Crossref]

Dekker, P.

Dengler, R. J.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using submillimeter-wave radiation,” IEEE Trans. Microw. Theory Tech. 56(12), 2771–2778 (2008).
[Crossref]

Duan, P.

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108(1), 011007 (2016).
[Crossref]

Dunn, M.

Dunn, M. H.

D. Walsh, S. J. M. Stothard, T. J. Edwards, P. G. Browne, C. F. Rae, and M. H. Dunn, “Injection-seeded intracavity terahertz optical parametric oscillator,” J. Opt. Soc. Am. B 26(6), 1196–1202 (2009).
[Crossref]

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92(14), 141105 (2008).
[Crossref]

Edwards, T.

Edwards, T. J.

D. Walsh, S. J. M. Stothard, T. J. Edwards, P. G. Browne, C. F. Rae, and M. H. Dunn, “Injection-seeded intracavity terahertz optical parametric oscillator,” J. Opt. Soc. Am. B 26(6), 1196–1202 (2009).
[Crossref]

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92(14), 141105 (2008).
[Crossref]

Fan, W.

G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosive and drugs,” Mater. Today 11(3), 18–26 (2008).
[Crossref]

Feng, H.

Y. Y. Wang, Z. X. Li, J. Q. Li, C. Yan, T. N. Chen, D. G. Xu, W. Shi, H. Feng, and J. Q. Yao, “Energy scaling of a tunable terahertz parametric oscillator with a surface emitted configuration,” Laser Phys. 24(12), 125402 (2014).
[Crossref]

Fukunaga, K.

I. Hosako, N. Sekine, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[Crossref]

Gill, J.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using submillimeter-wave radiation,” IEEE Trans. Microw. Theory Tech. 56(12), 2771–2778 (2008).
[Crossref]

Haam, S.

He, Y.

A. Lee, Y. He, and H. Pask, “Frequency-tunable THz source based on Stimulated Polariton Scattering in Mg:LiNbO3,” IEEE J. Quantum Electron. 49(3), 357–364 (2013).
[Crossref]

Hildebrand, A.

A. Hildebrand, F. Wagner, J. Natoli, M. Commandre, H. Albrecht, and F. Theodore, “Laser damage investigation in RbTiOPO4 crystals: a study on the anisotropy of the laser induced damage threshold,” Proc. SPIE 6403, 64031W (2006).
[Crossref]

Hosako, I.

I. Hosako, N. Sekine, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[Crossref]

Hu, B. B.

Huh, Y. M.

Imai, K.

K. Kawase, H. Minamide, K. Imai, J. Shikata, and H. Ito, “Injection-seeded terahertz parametric generator with wide tunability,” Appl. Phys. Lett. 80(2), 195–197 (2002).
[Crossref]

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt. 40(9), 1423–1426 (2001).
[Crossref] [PubMed]

Inoue, H.

Ito, H.

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 35(3), R1–R14 (2002).
[Crossref]

K. Kawase, H. Minamide, K. Imai, J. Shikata, and H. Ito, “Injection-seeded terahertz parametric generator with wide tunability,” Appl. Phys. Lett. 80(2), 195–197 (2002).
[Crossref]

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt. 40(9), 1423–1426 (2001).
[Crossref] [PubMed]

J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MGO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
[Crossref]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[Crossref]

Karino, K.

J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MGO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
[Crossref]

Kasai, Y.

I. Hosako, N. Sekine, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[Crossref]

Kawase, K.

K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
[Crossref] [PubMed]

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 35(3), R1–R14 (2002).
[Crossref]

K. Kawase, H. Minamide, K. Imai, J. Shikata, and H. Ito, “Injection-seeded terahertz parametric generator with wide tunability,” Appl. Phys. Lett. 80(2), 195–197 (2002).
[Crossref]

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt. 40(9), 1423–1426 (2001).
[Crossref] [PubMed]

J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MGO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
[Crossref]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[Crossref]

Lee, A.

A. Lee, Y. He, and H. Pask, “Frequency-tunable THz source based on Stimulated Polariton Scattering in Mg:LiNbO3,” IEEE J. Quantum Electron. 49(3), 357–364 (2013).
[Crossref]

Lee, A. J.

Lee, C.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using submillimeter-wave radiation,” IEEE Trans. Microw. Theory Tech. 56(12), 2771–2778 (2008).
[Crossref]

Lee, K.

Li, J. Q.

Y. Y. Wang, Z. X. Li, J. Q. Li, C. Yan, T. N. Chen, D. G. Xu, W. Shi, H. Feng, and J. Q. Yao, “Energy scaling of a tunable terahertz parametric oscillator with a surface emitted configuration,” Laser Phys. 24(12), 125402 (2014).
[Crossref]

Li, L.

J. Y. Wang, L. Li, S. Liu, Y. Liu, and J. Wei, “The inelastic light scattering of RbTiOAsO4 single crystal,” Ferroelectrics 132(1), 197–202 (1992).
[Crossref]

Li, N.

Li, P.

Li, Y.

Li, Z. X.

Y. Y. Wang, Z. X. Li, J. Q. Li, C. Yan, T. N. Chen, D. G. Xu, W. Shi, H. Feng, and J. Q. Yao, “Energy scaling of a tunable terahertz parametric oscillator with a surface emitted configuration,” Laser Phys. 24(12), 125402 (2014).
[Crossref]

Linfield, E. H.

G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosive and drugs,” Mater. Today 11(3), 18–26 (2008).
[Crossref]

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref] [PubMed]

Liu, P.

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108(1), 011007 (2016).
[Crossref]

Liu, S.

J. Y. Wang, L. Li, S. Liu, Y. Liu, and J. Wei, “The inelastic light scattering of RbTiOAsO4 single crystal,” Ferroelectrics 132(1), 197–202 (1992).
[Crossref]

Liu, Y.

J. Y. Wang, L. Li, S. Liu, Y. Liu, and J. Wei, “The inelastic light scattering of RbTiOAsO4 single crystal,” Ferroelectrics 132(1), 197–202 (1992).
[Crossref]

Liu, Z.

Llombart, N.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using submillimeter-wave radiation,” IEEE Trans. Microw. Theory Tech. 56(12), 2771–2778 (2008).
[Crossref]

Lu, Q.

Maeng, I.

Mehdi, I.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using submillimeter-wave radiation,” IEEE Trans. Microw. Theory Tech. 56(12), 2771–2778 (2008).
[Crossref]

Mendrok, J.

I. Hosako, N. Sekine, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[Crossref]

Minamide, H.

K. Kawase, H. Minamide, K. Imai, J. Shikata, and H. Ito, “Injection-seeded terahertz parametric generator with wide tunability,” Appl. Phys. Lett. 80(2), 195–197 (2002).
[Crossref]

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt. 40(9), 1423–1426 (2001).
[Crossref] [PubMed]

Natoli, J.

A. Hildebrand, F. Wagner, J. Natoli, M. Commandre, H. Albrecht, and F. Theodore, “Laser damage investigation in RbTiOPO4 crystals: a study on the anisotropy of the laser induced damage threshold,” Proc. SPIE 6403, 64031W (2006).
[Crossref]

Nuss, M. C.

Ochiai, S.

I. Hosako, N. Sekine, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[Crossref]

Ogawa, Y.

Oh, S. J.

Park, J. Y.

Pask, H.

A. Lee, Y. He, and H. Pask, “Frequency-tunable THz source based on Stimulated Polariton Scattering in Mg:LiNbO3,” IEEE J. Quantum Electron. 49(3), 357–364 (2013).
[Crossref]

Pask, H. M.

Pepper, M.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref] [PubMed]

Piper, J. A.

Pye, R. J.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref] [PubMed]

Qin, Z.

Rae, C.

Rae, C. F.

D. Walsh, S. J. M. Stothard, T. J. Edwards, P. G. Browne, C. F. Rae, and M. H. Dunn, “Injection-seeded intracavity terahertz optical parametric oscillator,” J. Opt. Soc. Am. B 26(6), 1196–1202 (2009).
[Crossref]

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92(14), 141105 (2008).
[Crossref]

Sato, M.

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[Crossref]

Schlecht, E.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using submillimeter-wave radiation,” IEEE Trans. Microw. Theory Tech. 56(12), 2771–2778 (2008).
[Crossref]

Sekine, N.

I. Hosako, N. Sekine, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[Crossref]

Seta, T.

I. Hosako, N. Sekine, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[Crossref]

Shi, W.

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108(1), 011007 (2016).
[Crossref]

Y. Y. Wang, Z. X. Li, J. Q. Li, C. Yan, T. N. Chen, D. G. Xu, W. Shi, H. Feng, and J. Q. Yao, “Energy scaling of a tunable terahertz parametric oscillator with a surface emitted configuration,” Laser Phys. 24(12), 125402 (2014).
[Crossref]

Shikata, J.

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 35(3), R1–R14 (2002).
[Crossref]

K. Kawase, H. Minamide, K. Imai, J. Shikata, and H. Ito, “Injection-seeded terahertz parametric generator with wide tunability,” Appl. Phys. Lett. 80(2), 195–197 (2002).
[Crossref]

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt. 40(9), 1423–1426 (2001).
[Crossref] [PubMed]

J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MGO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
[Crossref]

Siegel, P. H.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using submillimeter-wave radiation,” IEEE Trans. Microw. Theory Tech. 56(12), 2771–2778 (2008).
[Crossref]

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[Crossref]

Skalare, A.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using submillimeter-wave radiation,” IEEE Trans. Microw. Theory Tech. 56(12), 2771–2778 (2008).
[Crossref]

Son, J. H.

Spence, D. J.

Spurr, M.

Stothard, D. J. M.

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92(14), 141105 (2008).
[Crossref]

Stothard, S. J. M.

Suh, J. S.

Tang, G.

Taniuchi, T.

J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MGO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
[Crossref]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[Crossref]

Theodore, F.

A. Hildebrand, F. Wagner, J. Natoli, M. Commandre, H. Albrecht, and F. Theodore, “Laser damage investigation in RbTiOPO4 crystals: a study on the anisotropy of the laser induced damage threshold,” Proc. SPIE 6403, 64031W (2006).
[Crossref]

Thomson, C. L.

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92(14), 141105 (2008).
[Crossref]

Wagner, F.

A. Hildebrand, F. Wagner, J. Natoli, M. Commandre, H. Albrecht, and F. Theodore, “Laser damage investigation in RbTiOPO4 crystals: a study on the anisotropy of the laser induced damage threshold,” Proc. SPIE 6403, 64031W (2006).
[Crossref]

Wallace, V. P.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref] [PubMed]

Walsh, D.

Wang, C.

Wang, J. Y.

J. Y. Wang, L. Li, S. Liu, Y. Liu, and J. Wei, “The inelastic light scattering of RbTiOAsO4 single crystal,” Ferroelectrics 132(1), 197–202 (1992).
[Crossref]

Wang, Q.

Wang, W.

Wang, Y.

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108(1), 011007 (2016).
[Crossref]

Wang, Y. Y.

Y. Y. Wang, Z. X. Li, J. Q. Li, C. Yan, T. N. Chen, D. G. Xu, W. Shi, H. Feng, and J. Q. Yao, “Energy scaling of a tunable terahertz parametric oscillator with a surface emitted configuration,” Laser Phys. 24(12), 125402 (2014).
[Crossref]

Watanabe, Y.

Wei, J.

J. Y. Wang, L. Li, S. Liu, Y. Liu, and J. Wei, “The inelastic light scattering of RbTiOAsO4 single crystal,” Ferroelectrics 132(1), 197–202 (1992).
[Crossref]

Woodward, R. M.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref] [PubMed]

Xu, D.

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108(1), 011007 (2016).
[Crossref]

Xu, D. G.

Y. Y. Wang, Z. X. Li, J. Q. Li, C. Yan, T. N. Chen, D. G. Xu, W. Shi, H. Feng, and J. Q. Yao, “Energy scaling of a tunable terahertz parametric oscillator with a surface emitted configuration,” Laser Phys. 24(12), 125402 (2014).
[Crossref]

Xu, W.

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108(1), 011007 (2016).
[Crossref]

Yan, C.

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108(1), 011007 (2016).
[Crossref]

Y. Y. Wang, Z. X. Li, J. Q. Li, C. Yan, T. N. Chen, D. G. Xu, W. Shi, H. Feng, and J. Q. Yao, “Energy scaling of a tunable terahertz parametric oscillator with a surface emitted configuration,” Laser Phys. 24(12), 125402 (2014).
[Crossref]

Yan, D.

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108(1), 011007 (2016).
[Crossref]

Yao, J.

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108(1), 011007 (2016).
[Crossref]

Yao, J. Q.

Y. Y. Wang, Z. X. Li, J. Q. Li, C. Yan, T. N. Chen, D. G. Xu, W. Shi, H. Feng, and J. Q. Yao, “Energy scaling of a tunable terahertz parametric oscillator with a surface emitted configuration,” Laser Phys. 24(12), 125402 (2014).
[Crossref]

Yasuda, H.

I. Hosako, N. Sekine, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[Crossref]

Zhang, X.

Zhang, Y.

Zhong, K.

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108(1), 011007 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[Crossref]

K. Kawase, H. Minamide, K. Imai, J. Shikata, and H. Ito, “Injection-seeded terahertz parametric generator with wide tunability,” Appl. Phys. Lett. 80(2), 195–197 (2002).
[Crossref]

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92(14), 141105 (2008).
[Crossref]

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108(1), 011007 (2016).
[Crossref]

Ferroelectrics (1)

J. Y. Wang, L. Li, S. Liu, Y. Liu, and J. Wei, “The inelastic light scattering of RbTiOAsO4 single crystal,” Ferroelectrics 132(1), 197–202 (1992).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Lee, Y. He, and H. Pask, “Frequency-tunable THz source based on Stimulated Polariton Scattering in Mg:LiNbO3,” IEEE J. Quantum Electron. 49(3), 357–364 (2013).
[Crossref]

IEEE Trans. Microw. Theory Tech. (3)

J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MGO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
[Crossref]

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[Crossref]

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using submillimeter-wave radiation,” IEEE Trans. Microw. Theory Tech. 56(12), 2771–2778 (2008).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 35(3), R1–R14 (2002).
[Crossref]

Laser Phys. (1)

Y. Y. Wang, Z. X. Li, J. Q. Li, C. Yan, T. N. Chen, D. G. Xu, W. Shi, H. Feng, and J. Q. Yao, “Energy scaling of a tunable terahertz parametric oscillator with a surface emitted configuration,” Laser Phys. 24(12), 125402 (2014).
[Crossref]

Mater. Today (1)

G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosive and drugs,” Mater. Today 11(3), 18–26 (2008).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Phys. Med. Biol. (1)

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref] [PubMed]

Proc. IEEE (1)

I. Hosako, N. Sekine, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[Crossref]

Proc. SPIE (1)

A. Hildebrand, F. Wagner, J. Natoli, M. Commandre, H. Albrecht, and F. Theodore, “Laser damage investigation in RbTiOPO4 crystals: a study on the anisotropy of the laser induced damage threshold,” Proc. SPIE 6403, 64031W (2006).
[Crossref]

Other (3)

V. Nikolaev, Deputy General Manager, Tydex LLC, 16 Domostroietelnaya str, St. Petersburg, Russia 194292 (personal communication, 2015).

S. S. Sussman, Tunable Light Scattering from Transverse Optical Modes in Lithium Niobate (Stanford Univ., 1970).

E. Brundermann, H. Hubers, and M. F. Kimmitt, Terahertz Techniques (Springer, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Stokes wavelength output versus external angle in RTP. The absorbing A1 modes that give rise to discontinuities in the Stokes and THz tuning are indicated.

Fig. 3
Fig. 3

Fine angle tuning showing evolution of the Stokes wavelength in the region of RTP absorption features at (a) 104 cm−1, (b) 142 cm−1, (c) 159 and 163 cm−1 and (d) 211 cm−1.

Fig. 4
Fig. 4

Average THz power exiting the silicon prisms as a function of THz frequency.

Fig. 5
Fig. 5

Average output powers measured for fundamental, 1078.5 nm Stokes and 3.80 THz fields as a function of incident diode power.

Fig. 6
Fig. 6

Fundamental field depletion as a function of incident diode power at 3.80 THz output.

Fig. 7
Fig. 7

Temporal profiles of the fundamental field (depleted and undepleted) and Stokes field at 1078.5 nm, for 6 W diode pump power. At this Stokes wavelength, terahertz radiation at 3.8 THz is generated.

Fig. 8
Fig. 8

Stokes field average output power and fundamental field depletion versus Stokes wavelength, at 6 W diode input power. The horizontal dashed line corresponds to the Stokes output power detected when the system is generating output at 3.8 THz.

Fig. 9
Fig. 9

Power output versus propagation distance inside RTP crystal for output at 3.8, 3.98 and 4.10 THz. The corresponding absorption coefficient at each THz frequency were determined with best-fit exponential decay.

Tables (1)

Tables Icon

Table 1 THz Transmission in Detection Opticsa

Metrics