Abstract

Ultra-dense spatial-division multiplexing (SDM) is achieved by mode multiplexed technique with multiple cores in a single fiber, namely few-mode multi-core fiber. Using a 9.8-km six-mode nineteen-core fiber, we demonstrate an ultra-dense SDM transmission of 16-channels wavelength-division-multiplexed (WDM) dual-polarization quadrature phase shift keying signals, achieving a record spatial multiplicity of 114. With the help of ultra-dense Super-Nyquist WDM techniques in the 4.5-THz bandwidth of the full C-band, we demonstrate 2.05 Pbit/s transmission over 9.8-km six-mode nineteen-core fibers. In this experiment, the highest aggregate spectral efficiency of 456 bit/s/Hz is achieved.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
110.9-Tbit/s SDM transmission over 6,370 km using a full C-band seven-core EDFA

Koji Igarashi, Koki Takeshima, Takehiro Tsuritani, Hidenori Takahashi, Seiya Sumita, Itsuro Morita, Yukihiro Tsuchida, Masateru Tadakuma, Koichi Maeda, Tsunetoshi Saito, Kengo Watanabe, Katsunori Imamura, Ryuichi Sugizaki, and Masatoshi Suzuki
Opt. Express 21(15) 18053-18060 (2013)

Super-Nyquist-WDM transmission over 7,326-km seven-core fiber with capacity-distance product of 1.03 Exabit/s·km

Koji Igarashi, Takehiro Tsuritani, Itsuro Morita, Yukihiro Tsuchida, Koichi Maeda, Masateru Tadakuma, Tsunetoshi Saito, Kengo Watanabe, Katsunori Imamura, Ryuichi Sugizaki, and Masatoshi Suzuki
Opt. Express 22(2) 1220-1228 (2014)

Mode-multiplexed transmission over conventional graded-index multimode fibers

R. Ryf, N. K. Fontaine, H. Chen, B. Guan, B. Huang, M. Esmaeelpour, A. H. Gnauck, S. Randel, S.J.B. Yoo, A.M.J. Koonen, R. Shubochkin, Y. Sun, and R. Lingle
Opt. Express 23(1) 235-246 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s (370×294-Gb/s) PDM-128QAM-OFDM transmission over 3×55-km SSMF using pilot-based phase noise mitigation,” in Optical Fiber Communication Conference (Optical Society of America, 2011), paper PDPB5.
  2. A. Sano, T. Kobayashi, S. Yamanaka, A. Matsuura, H. Kawakami, Y. Miyamoto, K. Ishihara, and H. Masuda, “102.3-Tb/s (224 x 548-Gb/s) C- and extended L-band all-Raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone,” in Optical Fiber Communication Conference (Optical Society of America, 2012), paper PDP5C.3.
    [Crossref]
  3. R. Kashyap and K. J. Blow, “Observation of catastrophic self-propelled self-focusing in optical fibers,” Electron. Lett. 24(1), 47–49 (1988).
    [Crossref]
  4. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
    [Crossref]
  5. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  6. J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7x97x172-Gb/s SDM/WDM/PDM QPSK transmission through 16.8-km homogeneous multi-core fiber,” in Optical Fiber Communication Conference (Optical Society of America, 2011), paper PDPB6.
  7. B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, F. V. Dimarcello, K. Abedin, P. W. Wisk, D. W. Peckham, and P. Dziedzic, “Space-, wavelength-, polarization-division multiplexed transmission of 56-Tb/s over a 76.8-km seven-core fiber,” in Optical Fiber Communication Conference (Optical Society of America, 2011), paper PDPB7.
  8. J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “19-core fiber transmission of 19x100x172-Gb/s SDM-WDM-PDM-QPSK signals at 305Tb/s,” in Optical Fiber Communication Conference (Optical Society of America, 2012), paper PDP5C.1.
    [Crossref]
  9. H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, and T. Morioka, “1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency,” in European Conference on Optical Communication (ECOC 2012), paper Th.3.C.1.
    [Crossref]
  10. B. J. Puttnam, R. S. Luís, W. Klaus, J. Sakaguchi, J.-M. Delgado Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in European Conference on Optical Communication (ECOC, 2015), paper PDP 3.1.
    [Crossref]
  11. A. Li, A. Al Amin, X. Chen, and W. Shieh, “Reception of mode and polarization multiplexed 107-Gb/s COOFDM signals over a two-mode fiber,” in Optical Fiber Communication Conference (Optical Society of America, 2011), paper PDPB8.
  12. M. Salsi, C. Koebele, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Astruc, L. Provost, F. Cerou, and G. Charlet, “Transmission at 2×100Gb/s, over two modes of 40km-long prototype few-mode fiber, using LCOS-based mode multiplexer and demultiplexer,” in Optical Fiber Communication Conference (Optical Society of America, 2011), paper PDPB9.
  13. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, R.-J. Essiambre, P. J. Winzer, D. W. Peckham, A. McCurdy, and R. Lingle, Jr., “Space-division multiplexing over 10 km of three-mode fiber using coherent 6 × 6 MIMO processing,” in Optical Fiber Communication Conference (Optical Society of America, 2011), paper PDPB10.
  14. R. Ryf, N. K. Fontaine, B. Guan, R.-J. Essiambre, S. Randel, A. H. Gnauck, S. Chandrasekhar, A. Adamiecki, G. Raybon, B. Ercan, R. P. Scott, S. J. Ben Yoo, T. Hayashi, T. Nagashima, and T. Sasaki, “1705-km transmission over coupled-core fibre supporting 6 spatial modes,” in European Conference on Optical Communication (ECOC, 2014), paper PD.3.2.
    [Crossref]
  15. N. K. Fontaine, R. Ryf, H. Chen, A. V. Benitez, B. Guan, R. Scott, B. Ercan, S. J. B. Yoo, L. E. Grüner-Nielsen, Y. Sun, R. Lingle, E. Antonio-Lopez, and R. Amezcua-Correa, L. G.-Nielsen, Y. Sun, and R. Lingle, Jr., “30×30 MIMO transmission over 15 spatial modes,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper Th5C.1.
    [Crossref]
  16. R. Ryf, H. Chen, N. K. Fontaine, A. M. Velazquez-Benitez, J. Antonio-Lopez, C. Jin, B. Huang, M. Bigot-Astruc, D. Molin, F. Achten, P. Sillard, and R. Amezcua-Correa, “10-mode mode-multiplexed transmission over 125-km single-span multimode fiber,” in European Conference on Optical Communication (ECOC, 2015), paper PDP3.3.
    [Crossref]
  17. D. Qian, E. Ip, M.-F. Huang, M.-J. Li, A. Dogariu, S. Zhang, Y. Shao, Y.-K. Huang, Y. Zhang, X. Cheng, Y. Tian, P. Nan Ji, A. Collier, Y. Geng, J. Liñares, C. Montero, V. Moreno, X. Prieto, and T. Wang, “1.05Pb/s transmission with 109b/s/Hz spectral efficiency using hybrid single- and few-mode cores,” in Frontiers in Optics (Optical Society of America, 2012), paper FW6C.
  18. T. Mizuno, T. Kobayashi, H. Takara, A. Sano, H. Kawakami, T. Nakagawa, Y. Miyamoto, Y. Abe, T. Goh, M. Oguma, T. Sakamoto, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, and T. Morioka, “12-core × 3-mode dense space division multiplexed transmission over 40 km employing multi-carrier signals with parallel MIMO equalization,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper Th5B.2.
    [Crossref]
  19. J. Sakaguchi, W. Klaus, J. M. Delgado Mendinueta, B. J. Puttnam, R. S. Luis, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Realizing a 36-core, 3-mode fiber with 108 spatial channels,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper Th5C.2.
    [Crossref]
  20. K. Shibahara, T. Mizuno, H. Takara, A. Sano, H. Kawakami, D. Lee, Y. Miyamoto, H. Ono, M. Oguma, Y. Abe, T. Kobayashi, T. Matsui, R. Fukumoto, Y. Amma, T. Hosokawa, S. Matsuo, K. Saitoh, H. Nasu, and T. Morioka, “Dense SDM (12-core × 3-mode) transmission over 527 km with 33.2-ns mode-dispersion employing low-complexity parallel MIMO frequency-domain equalization,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper Th5C.3.
    [Crossref]
  21. K. Igarashi, D. Souma, Y. Wakayama, K. Takeshima, Y. Kawaguchi, T. Tsuritani, I. Morita, and M. Suzuki, “114 space-division-multiplexed transmission over 9.8-km weakly-coupled-6-mode uncoupled-19-core fibers,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper Th5C.4.
    [Crossref]
  22. D. Soma, K. Igarashi, Y. Wakayama, K. Takeshima, Y. Kawaguchi, N. Yoshikane, T. Tsuritani, I. Morita, and M. Suzuki, “2.05 Peta-bit/s Super-Nyquist-WDM SDM transmission using 9.8-km 6-mode 19-core fiber in full C band,” in European Conference on Optical Communication (ECOC 2015), paper PDP3.2.
    [Crossref]
  23. Y. Tottori, T. Kobayashi, and M. Watanabe, “Low loss optical connection module for seven-core multicore fiber and seven single-mode fibers,” IEEE Photonics Technol. Lett. 24(21), 1926–1928 (2012).
    [Crossref]
  24. G. Labroille, B. Denolle, P. Jian, P. Genevaux, N. Treps, and J.-F. Morizur, “Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion,” Opt. Express 22(13), 15599–15607 (2014).
    [Crossref] [PubMed]
  25. K. Kikuchi, “Clock recovering characteristics of adaptive finite-impulse-response filters in digital coherent optical receivers,” Opt. Express 19(6), 5611–5619 (2011).
    [Crossref] [PubMed]
  26. Y. Mori, C. Zhang, and K. Kikuchi, “Novel configuration of finite-impulse-response filters tolerant to carrier-phase fluctuations in digital coherent optical receivers for higher-order quadrature amplitude modulation signals,” Opt. Express 20(24), 26236–26251 (2012).
    [Crossref] [PubMed]
  27. A. Sierra, S. Randel, P. J. Winzer, R. Ryf, A. H. Gnauck, and R.-J. Essiambre, “On the use of delay-decorrelated I/Q test sequences for QPSK and QAM signals,” IEEE Photonics Technol. Lett. 24(12), 1000–1002 (2012).
    [Crossref]
  28. D. Chang, F. Yu, Z. Xiao, N. Stojanovic, F. N. Hauske, Y. Cai, C. Xie, L. Li, X. Xu, and Q. Xiong, “LDPC convolutional codes using layered decoding algorithm for high-speed coherent optical transmission,” in Optical Fiber Communication Conference (Optical Society of America, 2012), paper OW1H.4.
    [Crossref]
  29. J. Li, E. Tipsuwannakul, T. Eriksson, M. Karlsson, and P. A. Andrekson, “Approaching Nyquist limit in WDM systems by low-complexity receiver-side duobinary shaping,” J. Lightwave Technol. 30(11), 1664–1676 (2012).
    [Crossref]
  30. K. Igarashi, T. Tsuritani, I. Morita, Y. Tsuchida, K. Maeda, M. Tadakuma, T. Saito, K. Watanabe, K. Imamura, R. Sugizaki, and M. Suzuki, “1.03-Exabit/s×km super-Nyquist-WDM transmission over 7,326-km seven-core fiber,” in European Conference on Optical Communication (ECOC 2013), paper PD3.E.3.
  31. J. Zhang, J. Yu, Z. Dong, Z. Jia, H. C. Chien, Y. Cai, C. Ge, S. Shi, Y. Chen, H. Wang, and Y. Xia, “Transmission of 20×440-Gb/s Super-Nyquist-filtered signals over 3600 km based on single-carrier 110-GBaud PDM QPSK with 100-GHz grid,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper Th5B.3.
  32. R. Maruyama, N. Kuwaki, S. Matsuo, and M. Ohashi, “Two mode optical fibers with low and flattened differential modal delay suitable for WDM-MIMO combined system,” Opt. Express 22(12), 14311–14321 (2014).
    [Crossref] [PubMed]

2014 (2)

2013 (1)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

2012 (4)

Y. Tottori, T. Kobayashi, and M. Watanabe, “Low loss optical connection module for seven-core multicore fiber and seven single-mode fibers,” IEEE Photonics Technol. Lett. 24(21), 1926–1928 (2012).
[Crossref]

Y. Mori, C. Zhang, and K. Kikuchi, “Novel configuration of finite-impulse-response filters tolerant to carrier-phase fluctuations in digital coherent optical receivers for higher-order quadrature amplitude modulation signals,” Opt. Express 20(24), 26236–26251 (2012).
[Crossref] [PubMed]

A. Sierra, S. Randel, P. J. Winzer, R. Ryf, A. H. Gnauck, and R.-J. Essiambre, “On the use of delay-decorrelated I/Q test sequences for QPSK and QAM signals,” IEEE Photonics Technol. Lett. 24(12), 1000–1002 (2012).
[Crossref]

J. Li, E. Tipsuwannakul, T. Eriksson, M. Karlsson, and P. A. Andrekson, “Approaching Nyquist limit in WDM systems by low-complexity receiver-side duobinary shaping,” J. Lightwave Technol. 30(11), 1664–1676 (2012).
[Crossref]

2011 (1)

2010 (1)

1988 (1)

R. Kashyap and K. J. Blow, “Observation of catastrophic self-propelled self-focusing in optical fibers,” Electron. Lett. 24(1), 47–49 (1988).
[Crossref]

Andrekson, P. A.

Blow, K. J.

R. Kashyap and K. J. Blow, “Observation of catastrophic self-propelled self-focusing in optical fibers,” Electron. Lett. 24(1), 47–49 (1988).
[Crossref]

Denolle, B.

Eriksson, T.

Essiambre, R.-J.

A. Sierra, S. Randel, P. J. Winzer, R. Ryf, A. H. Gnauck, and R.-J. Essiambre, “On the use of delay-decorrelated I/Q test sequences for QPSK and QAM signals,” IEEE Photonics Technol. Lett. 24(12), 1000–1002 (2012).
[Crossref]

R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
[Crossref]

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Foschini, G. J.

Genevaux, P.

Gnauck, A. H.

A. Sierra, S. Randel, P. J. Winzer, R. Ryf, A. H. Gnauck, and R.-J. Essiambre, “On the use of delay-decorrelated I/Q test sequences for QPSK and QAM signals,” IEEE Photonics Technol. Lett. 24(12), 1000–1002 (2012).
[Crossref]

Goebel, B.

Jian, P.

Karlsson, M.

Kashyap, R.

R. Kashyap and K. J. Blow, “Observation of catastrophic self-propelled self-focusing in optical fibers,” Electron. Lett. 24(1), 47–49 (1988).
[Crossref]

Kikuchi, K.

Kobayashi, T.

Y. Tottori, T. Kobayashi, and M. Watanabe, “Low loss optical connection module for seven-core multicore fiber and seven single-mode fibers,” IEEE Photonics Technol. Lett. 24(21), 1926–1928 (2012).
[Crossref]

Kramer, G.

Kuwaki, N.

Labroille, G.

Li, J.

Maruyama, R.

Matsuo, S.

Mori, Y.

Morizur, J.-F.

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Ohashi, M.

Randel, S.

A. Sierra, S. Randel, P. J. Winzer, R. Ryf, A. H. Gnauck, and R.-J. Essiambre, “On the use of delay-decorrelated I/Q test sequences for QPSK and QAM signals,” IEEE Photonics Technol. Lett. 24(12), 1000–1002 (2012).
[Crossref]

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Ryf, R.

A. Sierra, S. Randel, P. J. Winzer, R. Ryf, A. H. Gnauck, and R.-J. Essiambre, “On the use of delay-decorrelated I/Q test sequences for QPSK and QAM signals,” IEEE Photonics Technol. Lett. 24(12), 1000–1002 (2012).
[Crossref]

Sierra, A.

A. Sierra, S. Randel, P. J. Winzer, R. Ryf, A. H. Gnauck, and R.-J. Essiambre, “On the use of delay-decorrelated I/Q test sequences for QPSK and QAM signals,” IEEE Photonics Technol. Lett. 24(12), 1000–1002 (2012).
[Crossref]

Tipsuwannakul, E.

Tottori, Y.

Y. Tottori, T. Kobayashi, and M. Watanabe, “Low loss optical connection module for seven-core multicore fiber and seven single-mode fibers,” IEEE Photonics Technol. Lett. 24(21), 1926–1928 (2012).
[Crossref]

Treps, N.

Watanabe, M.

Y. Tottori, T. Kobayashi, and M. Watanabe, “Low loss optical connection module for seven-core multicore fiber and seven single-mode fibers,” IEEE Photonics Technol. Lett. 24(21), 1926–1928 (2012).
[Crossref]

Winzer, P. J.

A. Sierra, S. Randel, P. J. Winzer, R. Ryf, A. H. Gnauck, and R.-J. Essiambre, “On the use of delay-decorrelated I/Q test sequences for QPSK and QAM signals,” IEEE Photonics Technol. Lett. 24(12), 1000–1002 (2012).
[Crossref]

R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
[Crossref]

Zhang, C.

Electron. Lett. (1)

R. Kashyap and K. J. Blow, “Observation of catastrophic self-propelled self-focusing in optical fibers,” Electron. Lett. 24(1), 47–49 (1988).
[Crossref]

IEEE Photonics Technol. Lett. (2)

A. Sierra, S. Randel, P. J. Winzer, R. Ryf, A. H. Gnauck, and R.-J. Essiambre, “On the use of delay-decorrelated I/Q test sequences for QPSK and QAM signals,” IEEE Photonics Technol. Lett. 24(12), 1000–1002 (2012).
[Crossref]

Y. Tottori, T. Kobayashi, and M. Watanabe, “Low loss optical connection module for seven-core multicore fiber and seven single-mode fibers,” IEEE Photonics Technol. Lett. 24(21), 1926–1928 (2012).
[Crossref]

J. Lightwave Technol. (2)

Nat. Photonics (1)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Opt. Express (4)

Other (22)

D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s (370×294-Gb/s) PDM-128QAM-OFDM transmission over 3×55-km SSMF using pilot-based phase noise mitigation,” in Optical Fiber Communication Conference (Optical Society of America, 2011), paper PDPB5.

A. Sano, T. Kobayashi, S. Yamanaka, A. Matsuura, H. Kawakami, Y. Miyamoto, K. Ishihara, and H. Masuda, “102.3-Tb/s (224 x 548-Gb/s) C- and extended L-band all-Raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone,” in Optical Fiber Communication Conference (Optical Society of America, 2012), paper PDP5C.3.
[Crossref]

D. Chang, F. Yu, Z. Xiao, N. Stojanovic, F. N. Hauske, Y. Cai, C. Xie, L. Li, X. Xu, and Q. Xiong, “LDPC convolutional codes using layered decoding algorithm for high-speed coherent optical transmission,” in Optical Fiber Communication Conference (Optical Society of America, 2012), paper OW1H.4.
[Crossref]

K. Igarashi, T. Tsuritani, I. Morita, Y. Tsuchida, K. Maeda, M. Tadakuma, T. Saito, K. Watanabe, K. Imamura, R. Sugizaki, and M. Suzuki, “1.03-Exabit/s×km super-Nyquist-WDM transmission over 7,326-km seven-core fiber,” in European Conference on Optical Communication (ECOC 2013), paper PD3.E.3.

J. Zhang, J. Yu, Z. Dong, Z. Jia, H. C. Chien, Y. Cai, C. Ge, S. Shi, Y. Chen, H. Wang, and Y. Xia, “Transmission of 20×440-Gb/s Super-Nyquist-filtered signals over 3600 km based on single-carrier 110-GBaud PDM QPSK with 100-GHz grid,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper Th5B.3.

J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7x97x172-Gb/s SDM/WDM/PDM QPSK transmission through 16.8-km homogeneous multi-core fiber,” in Optical Fiber Communication Conference (Optical Society of America, 2011), paper PDPB6.

B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, F. V. Dimarcello, K. Abedin, P. W. Wisk, D. W. Peckham, and P. Dziedzic, “Space-, wavelength-, polarization-division multiplexed transmission of 56-Tb/s over a 76.8-km seven-core fiber,” in Optical Fiber Communication Conference (Optical Society of America, 2011), paper PDPB7.

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “19-core fiber transmission of 19x100x172-Gb/s SDM-WDM-PDM-QPSK signals at 305Tb/s,” in Optical Fiber Communication Conference (Optical Society of America, 2012), paper PDP5C.1.
[Crossref]

H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, and T. Morioka, “1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency,” in European Conference on Optical Communication (ECOC 2012), paper Th.3.C.1.
[Crossref]

B. J. Puttnam, R. S. Luís, W. Klaus, J. Sakaguchi, J.-M. Delgado Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in European Conference on Optical Communication (ECOC, 2015), paper PDP 3.1.
[Crossref]

A. Li, A. Al Amin, X. Chen, and W. Shieh, “Reception of mode and polarization multiplexed 107-Gb/s COOFDM signals over a two-mode fiber,” in Optical Fiber Communication Conference (Optical Society of America, 2011), paper PDPB8.

M. Salsi, C. Koebele, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Astruc, L. Provost, F. Cerou, and G. Charlet, “Transmission at 2×100Gb/s, over two modes of 40km-long prototype few-mode fiber, using LCOS-based mode multiplexer and demultiplexer,” in Optical Fiber Communication Conference (Optical Society of America, 2011), paper PDPB9.

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, R.-J. Essiambre, P. J. Winzer, D. W. Peckham, A. McCurdy, and R. Lingle, Jr., “Space-division multiplexing over 10 km of three-mode fiber using coherent 6 × 6 MIMO processing,” in Optical Fiber Communication Conference (Optical Society of America, 2011), paper PDPB10.

R. Ryf, N. K. Fontaine, B. Guan, R.-J. Essiambre, S. Randel, A. H. Gnauck, S. Chandrasekhar, A. Adamiecki, G. Raybon, B. Ercan, R. P. Scott, S. J. Ben Yoo, T. Hayashi, T. Nagashima, and T. Sasaki, “1705-km transmission over coupled-core fibre supporting 6 spatial modes,” in European Conference on Optical Communication (ECOC, 2014), paper PD.3.2.
[Crossref]

N. K. Fontaine, R. Ryf, H. Chen, A. V. Benitez, B. Guan, R. Scott, B. Ercan, S. J. B. Yoo, L. E. Grüner-Nielsen, Y. Sun, R. Lingle, E. Antonio-Lopez, and R. Amezcua-Correa, L. G.-Nielsen, Y. Sun, and R. Lingle, Jr., “30×30 MIMO transmission over 15 spatial modes,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper Th5C.1.
[Crossref]

R. Ryf, H. Chen, N. K. Fontaine, A. M. Velazquez-Benitez, J. Antonio-Lopez, C. Jin, B. Huang, M. Bigot-Astruc, D. Molin, F. Achten, P. Sillard, and R. Amezcua-Correa, “10-mode mode-multiplexed transmission over 125-km single-span multimode fiber,” in European Conference on Optical Communication (ECOC, 2015), paper PDP3.3.
[Crossref]

D. Qian, E. Ip, M.-F. Huang, M.-J. Li, A. Dogariu, S. Zhang, Y. Shao, Y.-K. Huang, Y. Zhang, X. Cheng, Y. Tian, P. Nan Ji, A. Collier, Y. Geng, J. Liñares, C. Montero, V. Moreno, X. Prieto, and T. Wang, “1.05Pb/s transmission with 109b/s/Hz spectral efficiency using hybrid single- and few-mode cores,” in Frontiers in Optics (Optical Society of America, 2012), paper FW6C.

T. Mizuno, T. Kobayashi, H. Takara, A. Sano, H. Kawakami, T. Nakagawa, Y. Miyamoto, Y. Abe, T. Goh, M. Oguma, T. Sakamoto, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, and T. Morioka, “12-core × 3-mode dense space division multiplexed transmission over 40 km employing multi-carrier signals with parallel MIMO equalization,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper Th5B.2.
[Crossref]

J. Sakaguchi, W. Klaus, J. M. Delgado Mendinueta, B. J. Puttnam, R. S. Luis, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Realizing a 36-core, 3-mode fiber with 108 spatial channels,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper Th5C.2.
[Crossref]

K. Shibahara, T. Mizuno, H. Takara, A. Sano, H. Kawakami, D. Lee, Y. Miyamoto, H. Ono, M. Oguma, Y. Abe, T. Kobayashi, T. Matsui, R. Fukumoto, Y. Amma, T. Hosokawa, S. Matsuo, K. Saitoh, H. Nasu, and T. Morioka, “Dense SDM (12-core × 3-mode) transmission over 527 km with 33.2-ns mode-dispersion employing low-complexity parallel MIMO frequency-domain equalization,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper Th5C.3.
[Crossref]

K. Igarashi, D. Souma, Y. Wakayama, K. Takeshima, Y. Kawaguchi, T. Tsuritani, I. Morita, and M. Suzuki, “114 space-division-multiplexed transmission over 9.8-km weakly-coupled-6-mode uncoupled-19-core fibers,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper Th5C.4.
[Crossref]

D. Soma, K. Igarashi, Y. Wakayama, K. Takeshima, Y. Kawaguchi, N. Yoshikane, T. Tsuritani, I. Morita, and M. Suzuki, “2.05 Peta-bit/s Super-Nyquist-WDM SDM transmission using 9.8-km 6-mode 19-core fiber in full C band,” in European Conference on Optical Communication (ECOC 2015), paper PDP3.2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (21)

Fig. 1
Fig. 1 The relationship between the fiber capacity and the aggregate spectral efficiency in the transmission experiment reported so far. Open triangles: standard single-mode fibers (SMFs), red open triangles: multi-core fibers (MCFs), blue open triangles: few-mode fibers (FMFs), and red closed circles: few-mode multi-core fibers (FM-MCFs).
Fig. 2
Fig. 2 (a) Configuration, (b) cross-section, and (c) refractive index profile of a fabricated 6-mode 19-core fiber.
Fig. 3
Fig. 3 (a) Configuration and (b) photograph of the fan-in device.
Fig. 4
Fig. 4 The measured loss of 6M-19CF including fan-in and fan-out devices for each mode input. Closed circles: LP01, closed triangles: LP11a, open triangles: LP11b, closed squares: LP21a, open squares: LP21b, and open circles: LP02.
Fig. 5
Fig. 5 (a) Configuration of the experimental setup for measuring core-to-core crosstalk of 6M-19CF. (b) The measured core-to-core crosstalk in the outer core (the core number of 1), the inner core (13), and the center core (19), as a function of the distance between cores normalized by the core pitch.
Fig. 6
Fig. 6 The measured core-to-core crosstalk as a function of core-to-core distance normalized by the core pitch.
Fig. 7
Fig. 7 The experimental setup for 16-channel Nyquist-WDM DP-QPSK signals. IQM: optical IQ modulator, AWG: arbitrary waveform generator, mode MUX: mode multiplexer, mode DMUX: mode demultiplexer, BPD: balanced photodetector, Pol OH: polarization-diversity optical hybrid, and LO: local oscillator.
Fig. 8
Fig. 8 (a) A photograph of the six-mode multiplexer. (b) The measured spatial intensity distribution of LP01, LP11, LP21, and LP02 modes after mode multiplexer.
Fig. 9
Fig. 9 The configuration of heterodyne detection in the experiment. BPF: optical bandpass filter, BPD: balanced photodetector
Fig. 10
Fig. 10 Procedure of digital signal processing in the receiver. MIMO: multi-input multi-output, LMS: least mean square algorithm.
Fig. 11
Fig. 11 Measured averaged bit-error rate (BER) characteristics of (a) single-channel and (b) 16-channel WDM Nyquist-shaped six-mode-multiplexed DP-QPSK signals as a function of averaged OSNR. Dots, closed triangles, and open triangles indicate averaged BERs of six modes with 12 × 12 MIMO, the lower three modes with 6 × 6 MIMO, and the higher three modes with 6 × 6 MIMO, respectively.
Fig. 12
Fig. 12 Squared magnitude of tap coefficients of 12 × 12 MIMO of six-mode-multiplexed signals in back-to-back configuration without 6M-19CF. Solid: x polarization. Red: y polarization.
Fig. 13
Fig. 13 Squared magnitude of tap coefficients of 12 × 12 MIMO of six-mode-multiplexed signals after 6M-19CF transmission. Solid: x polarization. Red: y polarization.
Fig. 14
Fig. 14 Measured BERs of 114SDM/16WDM channels after 9.8-km 6M-19CF transmission.
Fig. 15
Fig. 15 (a) Spectral alignment of Super-Nyquist WDM signals in our experiment. (b) Measured optical spectra of Super-Nyquist WDM channels.
Fig. 16
Fig. 16 Experimental setup for 2.05 Pbit/s SDM transmission. IQM: optical IQ modulator, AWG: arbitrary waveform generator, MZM: Mach-Zehnder modulator, Pol. MUX: polarization multiplexing: WSS: wavelength selective switch, OSA: optical spectrum analyzer, PC: personal computer, six-mode MUX: six-mode multiplexer, mode DMUX: mode demultiplexer, Pol OH: polarization-diversity optical hybrid, BPD: balanced photodetector, and LO: local oscillator.
Fig. 17
Fig. 17 Block diagram of the digital signal processing in the receiver.
Fig. 18
Fig. 18 Measured averaged bit-error rates (BERs) of six-mode-multiplexed duobinary-shaped DP-QPSK signals in the back-to-back configuration without 6M-19CF. Open triangles: single-channel duobinary-shaped signal, closed triangles: Super-Nyquist WDM signals, and open circles: single-channel Nyquist-shaped signals.
Fig. 19
Fig. 19 The tap coefficients of the diagonal components of 12 × 12 MIMO for (a) the lowest, (b) the center, and (c) the highest carrier frequencies of six-mode-multiplexed WDM channels.
Fig. 20
Fig. 20 The measured BERs of six-mode-multiplexed WDM channels in the outer core with the core number of 1, the inner core with the core number 13, and the center core with the core number 19. The insets show the core number in the cross-section of the 6M-19CF and the constellation maps of demodulated signals of six modes for the center carrier frequency in Core 1.
Fig. 21
Fig. 21 The measured BERs of six-mode-multiplexed WDM channels in the remaining 18 cores.

Metrics