Abstract

Systematic errors induced by distortions in the pump pulse of conventional Brillouin distributed fiber sensors are thoroughly investigated. Experimental results, supported by a theoretical analysis, demonstrate that the two probe sidebands in standard Brillouin optical time-domain analyzers provide a non-zero net gain on the pump pulse, inducing severe distortions of the pump when scanning the pump-probe frequency offset, especially at high probe power levels. Compared to the impact of non-local effects reported in the state-of-the-art, measurements here indicate that for probe powers in the mW range (below the onset of amplified spontaneous Brillouin scattering), the obtained gain and loss spectra show two strong side-lobes that lead to significant strain/temperature errors. This phenomenon is not related to the well-known spectral hole burning resulting from pump depletion, but it is strictly related to the temporal and spectral distortions that the pump pulse experiences when scanning the Brillouin gain/loss spectrum. As a solution to this problem, a novel scanning scheme for Brillouin sensing is proposed. The method relies on a fixed frequency separation between the two probe sidebands, so that a flat zero net gain is achieved on the pump pulse when scanning the pump-probe frequency offset. The proposed technique is experimentally validated, demonstrating its ability to completely cancel out non-local effects up to a probe power ultimately limited by the onset of amplified spontaneous Brillouin scattering. The method allows for one order of magnitude improvement in the figure-of-merit of optimized long-range Brillouin distributed fiber sensors, enabling measurements along a 100 km-long sensing fiber with 2 m spatial resolution and with no need of added features for performance enhancement.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Brillouin optical time-domain analyzer based on orthogonally-polarized four-tone probe wave

Xiaobin Hong, Wenqiao Lin, Zhisheng Yang, Sheng Wang, and Jian Wu
Opt. Express 24(18) 21046-21058 (2016)

Non-local effects in dual-probe-sideband Brillouin optical time domain analysis

Alejandro Dominguez-Lopez, Xabier Angulo-Vinuesa, Alexia Lopez-Gil, Sonia Martin-Lopez, and Miguel Gonzalez-Herraez
Opt. Express 23(8) 10341-10352 (2015)

Frequency-comb-based BOTDA sensors for high-spatial-resolution/long-distance sensing

Xin-Hong Jia, Han-Qing Chang, Kai Lin, Cong Xu, and Jia-Gui Wu
Opt. Express 25(6) 6997-7007 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
    [Crossref]
  2. M. Nikles, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
    [Crossref]
  3. E. Geinitz, S. Jetschke, U. Röpke, S. Schröter, R. Willsch, and H. Bartelt, “The influence of pulse amplification on distributed fibre-optic Brillouin sensing and a method to compensate for systematic errors,” Meas. Sci. Technol. 10(2), 112–116 (1999).
    [Crossref]
  4. A. Minardo, R. Bernini, L. Zeni, L. Thevenaz, and F. Briffod, “A re-construction technique for long-range stimulated Brillouin scattering distributed fiber-optic sensors: Experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
    [Crossref]
  5. L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express 21(12), 14017–14035 (2013).
    [Crossref] [PubMed]
  6. M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
    [Crossref] [PubMed]
  7. Z. Yang, X. Hong, J. Wu, H. Guo, and J. Lin, “Theoretical and experimental investigation of an 82-km-long distributed Brillouin fiber sensor based on double sideband modulated probe wave,” Opt. Eng. 51(12), 124402 (2012).
    [Crossref]
  8. A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
    [Crossref]
  9. A. Domínguez-López, X. Angulo-Vinuesa, A. López-Gil, S. Martín-López, and M. González-Herráez, “Non-local effects in dual-probe-sideband Brillouin optical time domain analysis,” Opt. Express 23(8), 10341–10352 (2015).
    [Crossref] [PubMed]
  10. R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photonics J. 7(6), 1–9 (2015).
    [Crossref]
  11. S. Diaz, S. Foaleng Mafang, M. Lopez-Amo, and L. Thevenaz, “A high-performance optical time-domain Brillouin distributed fiber sensor,” IEEE Sens. J. 8(7), 1268–1272 (2008).
    [Crossref]
  12. M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).
    [Crossref] [PubMed]
  13. M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol. 21(9), 094024 (2010).
    [Crossref]
  14. S. Martin-Lopez, M. Alcon-Camas, F. Rodriguez, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. Gonzalez-Herraez, “Brillouin optical time-domain analysis assisted by second-order Raman amplification,” Opt. Express 18(18), 18769–18778 (2010).
    [Crossref] [PubMed]
  15. F. Rodriguez-Barrios, S. Martin-Lopez, A. Carrasco-Sanz, P. Corredera, J. D. Ania-Castanon, L. Thévenaz, and M. Gonzalez-Herraez, “Distributed Brillouin fiber sensor assisted by first-order Raman amplification,” J. Lightwave Technol. 28(15), 2162–2172 (2010).
    [Crossref]
  16. M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying Brillouin distributed fibre sensors using image processing,” Proc. SPIE 9634, 96342D (2015).
  17. M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
    [Crossref] [PubMed]
  18. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Simplex-coded BOTDA sensor over 120 km SMF with 1 m spatial resolution assisted by optimized bidirectional Raman amplification,” IEEE Photonics Technol. Lett. 24(20), 1823–1826 (2012).
    [Crossref]
  19. M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, S.-H. Chin, J. D. Ania-Castanon, P. Corredera, E. Rochat, M. Gonzalez-Herraez, and L. Thévenaz, “Extending the real remoteness of long-range Brillouin optical time-domain fiber analyzers,” J. Lightwave Technol. 32(1), 152–162 (2014).
    [Crossref]
  20. J. Urricelqui, M. A. Soto, and L. Thévenaz, “Sources of noise in Brillouin optical time-domain analyzers,” Proc. SPIE 9634, 96342D (2015).

2016 (1)

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
[Crossref] [PubMed]

2015 (4)

A. Domínguez-López, X. Angulo-Vinuesa, A. López-Gil, S. Martín-López, and M. González-Herráez, “Non-local effects in dual-probe-sideband Brillouin optical time domain analysis,” Opt. Express 23(8), 10341–10352 (2015).
[Crossref] [PubMed]

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photonics J. 7(6), 1–9 (2015).
[Crossref]

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying Brillouin distributed fibre sensors using image processing,” Proc. SPIE 9634, 96342D (2015).

J. Urricelqui, M. A. Soto, and L. Thévenaz, “Sources of noise in Brillouin optical time-domain analyzers,” Proc. SPIE 9634, 96342D (2015).

2014 (1)

2013 (2)

2012 (2)

Z. Yang, X. Hong, J. Wu, H. Guo, and J. Lin, “Theoretical and experimental investigation of an 82-km-long distributed Brillouin fiber sensor based on double sideband modulated probe wave,” Opt. Eng. 51(12), 124402 (2012).
[Crossref]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Simplex-coded BOTDA sensor over 120 km SMF with 1 m spatial resolution assisted by optimized bidirectional Raman amplification,” IEEE Photonics Technol. Lett. 24(20), 1823–1826 (2012).
[Crossref]

2010 (4)

2009 (1)

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[Crossref]

2008 (1)

S. Diaz, S. Foaleng Mafang, M. Lopez-Amo, and L. Thevenaz, “A high-performance optical time-domain Brillouin distributed fiber sensor,” IEEE Sens. J. 8(7), 1268–1272 (2008).
[Crossref]

2005 (1)

A. Minardo, R. Bernini, L. Zeni, L. Thevenaz, and F. Briffod, “A re-construction technique for long-range stimulated Brillouin scattering distributed fiber-optic sensors: Experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
[Crossref]

1999 (1)

E. Geinitz, S. Jetschke, U. Röpke, S. Schröter, R. Willsch, and H. Bartelt, “The influence of pulse amplification on distributed fibre-optic Brillouin sensing and a method to compensate for systematic errors,” Meas. Sci. Technol. 10(2), 112–116 (1999).
[Crossref]

1997 (1)

M. Nikles, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

1995 (1)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Alcon-Camas, M.

Angulo-Vinuesa, X.

Ania-Castanon, J. D.

Ania-Castañon, J. D.

Bartelt, H.

E. Geinitz, S. Jetschke, U. Röpke, S. Schröter, R. Willsch, and H. Bartelt, “The influence of pulse amplification on distributed fibre-optic Brillouin sensing and a method to compensate for systematic errors,” Meas. Sci. Technol. 10(2), 112–116 (1999).
[Crossref]

Bernini, R.

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[Crossref]

A. Minardo, R. Bernini, L. Zeni, L. Thevenaz, and F. Briffod, “A re-construction technique for long-range stimulated Brillouin scattering distributed fiber-optic sensors: Experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
[Crossref]

Bolognini, G.

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Simplex-coded BOTDA sensor over 120 km SMF with 1 m spatial resolution assisted by optimized bidirectional Raman amplification,” IEEE Photonics Technol. Lett. 24(20), 1823–1826 (2012).
[Crossref]

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).
[Crossref] [PubMed]

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol. 21(9), 094024 (2010).
[Crossref]

Briffod, F.

A. Minardo, R. Bernini, L. Zeni, L. Thevenaz, and F. Briffod, “A re-construction technique for long-range stimulated Brillouin scattering distributed fiber-optic sensors: Experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
[Crossref]

Carrasco-Sanz, A.

Chin, S.-H.

Corredera, P.

Di Pasquale, F.

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Simplex-coded BOTDA sensor over 120 km SMF with 1 m spatial resolution assisted by optimized bidirectional Raman amplification,” IEEE Photonics Technol. Lett. 24(20), 1823–1826 (2012).
[Crossref]

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol. 21(9), 094024 (2010).
[Crossref]

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).
[Crossref] [PubMed]

Diaz, S.

S. Diaz, S. Foaleng Mafang, M. Lopez-Amo, and L. Thevenaz, “A high-performance optical time-domain Brillouin distributed fiber sensor,” IEEE Sens. J. 8(7), 1268–1272 (2008).
[Crossref]

Domínguez-López, A.

Foaleng Mafang, S.

S. Diaz, S. Foaleng Mafang, M. Lopez-Amo, and L. Thevenaz, “A high-performance optical time-domain Brillouin distributed fiber sensor,” IEEE Sens. J. 8(7), 1268–1272 (2008).
[Crossref]

Geinitz, E.

E. Geinitz, S. Jetschke, U. Röpke, S. Schröter, R. Willsch, and H. Bartelt, “The influence of pulse amplification on distributed fibre-optic Brillouin sensing and a method to compensate for systematic errors,” Meas. Sci. Technol. 10(2), 112–116 (1999).
[Crossref]

Gonzalez-Herraez, M.

González-Herráez, M.

Guo, H.

Z. Yang, X. Hong, J. Wu, H. Guo, and J. Lin, “Theoretical and experimental investigation of an 82-km-long distributed Brillouin fiber sensor based on double sideband modulated probe wave,” Opt. Eng. 51(12), 124402 (2012).
[Crossref]

Hong, X.

Z. Yang, X. Hong, J. Wu, H. Guo, and J. Lin, “Theoretical and experimental investigation of an 82-km-long distributed Brillouin fiber sensor based on double sideband modulated probe wave,” Opt. Eng. 51(12), 124402 (2012).
[Crossref]

Horiguchi, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Jetschke, S.

E. Geinitz, S. Jetschke, U. Röpke, S. Schröter, R. Willsch, and H. Bartelt, “The influence of pulse amplification on distributed fibre-optic Brillouin sensing and a method to compensate for systematic errors,” Meas. Sci. Technol. 10(2), 112–116 (1999).
[Crossref]

Koyamada, Y.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Kurashima, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Lin, J.

L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express 21(12), 14017–14035 (2013).
[Crossref] [PubMed]

Z. Yang, X. Hong, J. Wu, H. Guo, and J. Lin, “Theoretical and experimental investigation of an 82-km-long distributed Brillouin fiber sensor based on double sideband modulated probe wave,” Opt. Eng. 51(12), 124402 (2012).
[Crossref]

Loayssa, A.

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photonics J. 7(6), 1–9 (2015).
[Crossref]

Lopez-Amo, M.

S. Diaz, S. Foaleng Mafang, M. Lopez-Amo, and L. Thevenaz, “A high-performance optical time-domain Brillouin distributed fiber sensor,” IEEE Sens. J. 8(7), 1268–1272 (2008).
[Crossref]

López-Gil, A.

López-Higuera, J. M.

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photonics J. 7(6), 1–9 (2015).
[Crossref]

Mafang, S. F.

Martin-Lopez, S.

Martín-López, S.

Minardo, A.

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[Crossref]

A. Minardo, R. Bernini, L. Zeni, L. Thevenaz, and F. Briffod, “A re-construction technique for long-range stimulated Brillouin scattering distributed fiber-optic sensors: Experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
[Crossref]

Mirapeix, J.

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photonics J. 7(6), 1–9 (2015).
[Crossref]

Nikles, M.

M. Nikles, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Ramírez, J. A.

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
[Crossref] [PubMed]

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying Brillouin distributed fibre sensors using image processing,” Proc. SPIE 9634, 96342D (2015).

Robert, P. A.

M. Nikles, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Rochat, E.

Rodriguez, F.

Rodriguez-Barrios, F.

Röpke, U.

E. Geinitz, S. Jetschke, U. Röpke, S. Schröter, R. Willsch, and H. Bartelt, “The influence of pulse amplification on distributed fibre-optic Brillouin sensing and a method to compensate for systematic errors,” Meas. Sci. Technol. 10(2), 112–116 (1999).
[Crossref]

Ruiz-Lombera, R.

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photonics J. 7(6), 1–9 (2015).
[Crossref]

Sagues, M.

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photonics J. 7(6), 1–9 (2015).
[Crossref]

Schröter, S.

E. Geinitz, S. Jetschke, U. Röpke, S. Schröter, R. Willsch, and H. Bartelt, “The influence of pulse amplification on distributed fibre-optic Brillouin sensing and a method to compensate for systematic errors,” Meas. Sci. Technol. 10(2), 112–116 (1999).
[Crossref]

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Soto, M. A.

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
[Crossref] [PubMed]

J. Urricelqui, M. A. Soto, and L. Thévenaz, “Sources of noise in Brillouin optical time-domain analyzers,” Proc. SPIE 9634, 96342D (2015).

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying Brillouin distributed fibre sensors using image processing,” Proc. SPIE 9634, 96342D (2015).

M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, S.-H. Chin, J. D. Ania-Castanon, P. Corredera, E. Rochat, M. Gonzalez-Herraez, and L. Thévenaz, “Extending the real remoteness of long-range Brillouin optical time-domain fiber analyzers,” J. Lightwave Technol. 32(1), 152–162 (2014).
[Crossref]

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
[Crossref] [PubMed]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Simplex-coded BOTDA sensor over 120 km SMF with 1 m spatial resolution assisted by optimized bidirectional Raman amplification,” IEEE Photonics Technol. Lett. 24(20), 1823–1826 (2012).
[Crossref]

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).
[Crossref] [PubMed]

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol. 21(9), 094024 (2010).
[Crossref]

Tateda, M.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Thevenaz, L.

S. Diaz, S. Foaleng Mafang, M. Lopez-Amo, and L. Thevenaz, “A high-performance optical time-domain Brillouin distributed fiber sensor,” IEEE Sens. J. 8(7), 1268–1272 (2008).
[Crossref]

A. Minardo, R. Bernini, L. Zeni, L. Thevenaz, and F. Briffod, “A re-construction technique for long-range stimulated Brillouin scattering distributed fiber-optic sensors: Experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
[Crossref]

Thévenaz, L.

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
[Crossref] [PubMed]

J. Urricelqui, M. A. Soto, and L. Thévenaz, “Sources of noise in Brillouin optical time-domain analyzers,” Proc. SPIE 9634, 96342D (2015).

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying Brillouin distributed fibre sensors using image processing,” Proc. SPIE 9634, 96342D (2015).

M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, S.-H. Chin, J. D. Ania-Castanon, P. Corredera, E. Rochat, M. Gonzalez-Herraez, and L. Thévenaz, “Extending the real remoteness of long-range Brillouin optical time-domain fiber analyzers,” J. Lightwave Technol. 32(1), 152–162 (2014).
[Crossref]

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
[Crossref] [PubMed]

L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express 21(12), 14017–14035 (2013).
[Crossref] [PubMed]

F. Rodriguez-Barrios, S. Martin-Lopez, A. Carrasco-Sanz, P. Corredera, J. D. Ania-Castanon, L. Thévenaz, and M. Gonzalez-Herraez, “Distributed Brillouin fiber sensor assisted by first-order Raman amplification,” J. Lightwave Technol. 28(15), 2162–2172 (2010).
[Crossref]

S. Martin-Lopez, M. Alcon-Camas, F. Rodriguez, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. Gonzalez-Herraez, “Brillouin optical time-domain analysis assisted by second-order Raman amplification,” Opt. Express 18(18), 18769–18778 (2010).
[Crossref] [PubMed]

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol. 21(9), 094024 (2010).
[Crossref]

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).
[Crossref] [PubMed]

M. Nikles, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Urricelqui, J.

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photonics J. 7(6), 1–9 (2015).
[Crossref]

J. Urricelqui, M. A. Soto, and L. Thévenaz, “Sources of noise in Brillouin optical time-domain analyzers,” Proc. SPIE 9634, 96342D (2015).

Willsch, R.

E. Geinitz, S. Jetschke, U. Röpke, S. Schröter, R. Willsch, and H. Bartelt, “The influence of pulse amplification on distributed fibre-optic Brillouin sensing and a method to compensate for systematic errors,” Meas. Sci. Technol. 10(2), 112–116 (1999).
[Crossref]

Wu, J.

Z. Yang, X. Hong, J. Wu, H. Guo, and J. Lin, “Theoretical and experimental investigation of an 82-km-long distributed Brillouin fiber sensor based on double sideband modulated probe wave,” Opt. Eng. 51(12), 124402 (2012).
[Crossref]

Yang, Z.

Z. Yang, X. Hong, J. Wu, H. Guo, and J. Lin, “Theoretical and experimental investigation of an 82-km-long distributed Brillouin fiber sensor based on double sideband modulated probe wave,” Opt. Eng. 51(12), 124402 (2012).
[Crossref]

Zeni, L.

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[Crossref]

A. Minardo, R. Bernini, L. Zeni, L. Thevenaz, and F. Briffod, “A re-construction technique for long-range stimulated Brillouin scattering distributed fiber-optic sensors: Experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
[Crossref]

IEEE Photonics J. (1)

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photonics J. 7(6), 1–9 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Simplex-coded BOTDA sensor over 120 km SMF with 1 m spatial resolution assisted by optimized bidirectional Raman amplification,” IEEE Photonics Technol. Lett. 24(20), 1823–1826 (2012).
[Crossref]

IEEE Sens. J. (2)

S. Diaz, S. Foaleng Mafang, M. Lopez-Amo, and L. Thevenaz, “A high-performance optical time-domain Brillouin distributed fiber sensor,” IEEE Sens. J. 8(7), 1268–1272 (2008).
[Crossref]

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[Crossref]

J. Lightwave Technol. (4)

Meas. Sci. Technol. (3)

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol. 21(9), 094024 (2010).
[Crossref]

E. Geinitz, S. Jetschke, U. Röpke, S. Schröter, R. Willsch, and H. Bartelt, “The influence of pulse amplification on distributed fibre-optic Brillouin sensing and a method to compensate for systematic errors,” Meas. Sci. Technol. 10(2), 112–116 (1999).
[Crossref]

A. Minardo, R. Bernini, L. Zeni, L. Thevenaz, and F. Briffod, “A re-construction technique for long-range stimulated Brillouin scattering distributed fiber-optic sensors: Experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
[Crossref]

Nat. Commun. (1)

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
[Crossref] [PubMed]

Opt. Eng. (1)

Z. Yang, X. Hong, J. Wu, H. Guo, and J. Lin, “Theoretical and experimental investigation of an 82-km-long distributed Brillouin fiber sensor based on double sideband modulated probe wave,” Opt. Eng. 51(12), 124402 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Proc. SPIE (2)

J. Urricelqui, M. A. Soto, and L. Thévenaz, “Sources of noise in Brillouin optical time-domain analyzers,” Proc. SPIE 9634, 96342D (2015).

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying Brillouin distributed fibre sensors using image processing,” Proc. SPIE 9634, 96342D (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Measured BGS/BLS at the end of a 50 km optical fiber using a conventional BOTDA sensor with 2 m spatial resolution, for different probe power levels: (a) –5 dBm/sideband; (b) –2 dBm/sideband; (c) 1 dBm/sideband; and (d) 4 dBm/sideband. Red curve: BLS; blue curve: BGS. Spectral distortions originate from the asymmetric Brillouin gain and loss process affecting the pump pulse while scanning the pump-probe frequency offset around the BFS.
Fig. 2
Fig. 2 Net Brillouin gain affecting the pump pulse while scanning the pump-probe frequency offset (νoffset) symmetrically around the pulse spectrum in a conventional BOTDA scheme. Grey dotted lines: input pulse spectrum; red dotted lines: Brillouin gain spectrum generated by the upper-frequency probe sideband; blue dotted lines: Brillouin loss spectrum generated by the lower-frequency probe sideband; green solid lines: net Brillouin gain spectrum experienced by the pulse; black solid line: output pulse spectrum after SBS interaction.
Fig. 3
Fig. 3 Illustration of the SBS interaction between a non-symmetric pulse spectrum and the Brillouin gain and loss curves while scanning the pump-probe frequency offset (νoffset) around the BFS, for different probe powers: (a) low-to-medium power regime; (b) high power regime. Dotted lines represent the original undistorted pulse (black), gain (blue) and loss (red) spectra. (i) Individual gain and loss processes at given scanning frequencies, and (ii) spectral shape resulting from the complete measurement process in a conventional BOTDA sensor.
Fig. 4
Fig. 4 Temporal distortion of a 20 ns pump pulse, for different pump-probe positive frequency detuning and using probe powers of (a) –5 dBm/sideband; (b) –2 dBm/sideband; (c) 1 dBm/sideband; and (d) 4 dBm/sideband.
Fig. 5
Fig. 5 Temporal distortion of pump pulses having different widths, for a fixed pump-probe frequency detuning equal to νB + 20 MHz, when using a probe power of (a) –5 dBm/sideband; (b) –2 dBm/sideband; (c) 1 dBm/sideband; and (d) 4 dBm/sideband.
Fig. 6
Fig. 6 Total (integrated) pulse energy obtained from the optical pulses measured at the fiber output (after 50 km distance) and normalized by the undistorted pulse energy. Curves are plotted versus the detuning between the pump-probe frequency offset and the dominant BFS of the fiber, for different pulse widths and a using a probe power equal to (a) –5 dBm/sideband; (b) –2 dBm/sideband; (c) 1 dBm/sideband; and (d) 4 dBm/sideband.
Fig. 7
Fig. 7 Net Brillouin gain affecting the pump pulse while scanning the pump-probe frequency offset (νoffset) symmetrically around the pulse spectrum using the proposed scanning method, which keeps a fixed frequency separation between sidebands. Here νoffset refers to the offset between the pump frequency (νpump) and the probe low sideband frequency (νprobe-LSB) (i.e. νoffset = νpump - νprobe-LSB). Grey dotted lines: input pulse spectrum; red dotted lines: Brillouin gain spectrum generated by the upper-frequency probe sideband; blue dotted lines: Brillouin loss spectrum generated by the lower-frequency probe sideband; green solid lines: net Brillouin gain spectrum experienced by the pulse; black solid line: output pulse spectrum after SBS interaction.
Fig. 8
Fig. 8 Experimental setup implemented to validate the proposed scanning technique. LD: laser diode; EOM: electro-optical modulator; WDM: wavelength division multiplexer; AWG: arbitrary waveform generator; SOA: semiconductor optical amplifier; EDFA: erbium doped-fiber amplifier; RF: radio-frequency generator; VOA: variable optical attenuator; PS: polarization scrambler; FUT: fiber under test.
Fig. 9
Fig. 9 Measured BGS (blue curve) and BLS (red curve) at the end of a 50 km SMF spool using the proposed method with a probe wave of + 5 dBm/sideband.
Fig. 10
Fig. 10 3D maps of the measured (a) Brillouin gain spectrum and (b) Brillouin loss spectrum along a 50 km-long sensing fiber, using the proposed scanning method. Compared to standard BOTDA measurements, the spectra in this case are not distorted at any location along the fiber.
Fig. 11
Fig. 11 Brillouin gain and loss spectra measured at the end of a 25 km-long SMF spool where a hot-spot has been applied. (a) Profiles obtained a few meters before the location of the hot-spot. (b) Profiles obtained in the middle of the hot-spot when immersing the fiber in a hot-water bath.
Fig. 12
Fig. 12 Detection of a 2 m-long hot-spot with the proposed BOTDA scanning method using a probe power of + 8.4 dBm/sideband. (a) Brillouin gain and loss spectra measured at the end of a 25 km-long SMF spool where the hot-spot has been applied (black and orange lines: a few meters before the hot-spot; red and blue lines: at the precise location of the hot-spot). (a: Inset) Output pulses for several probe frequency detuning. (b) BFS profile translated to absolute temperature around the hot-spot position (profile obtained from the measured BGS).
Fig. 13
Fig. 13 (a) BOTDA trace represented in logarithmic scale along a 100 km-long sensing fiber, for a pump-probe frequency offset of 10.856 GHz. (b) Retrieved BFS profile translated to the absolute temperature, measured for a ~5-meter hot-spot located around a 100 km distance.

Metrics