Abstract

We computationally investigate moth-eye anti-reflective nanostructures imprinted on the endfaces of As2S3 chalcogenide optical fibers. With a goal of maximizing the transmission through the endfaces, we investigate the effect of changing the parameters of the structure, including the height, width, period, shape, and angle-of-incidence. Using these results, we design two different moth-eye structures that can theoretically achieve almost 99.9% average transmisison through an As2S3 surface.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Irradiance enhancement and increased laser damage threshold in As2S3 moth-eye antireflective structures

R. Joseph Weiblen, Catalin M. Florea, Lynda E. Busse, L. Brandon Shaw, Curtis R. Menyuk, Ishwar D. Aggarwal, and Jasbinder S. Sanghera
Opt. Lett. 40(20) 4799-4802 (2015)

Reduced Fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces

Jasbinder Sanghera, Catalin Florea, Lynda Busse, Brandon Shaw, Fritz Miklos, and Ishwar Aggarwal
Opt. Express 18(25) 26760-26768 (2010)

Full-spectrum light management by pseudo-disordered moth-eye structures for thin film solar cells

Xiaojun Liu, Yun Da, and Yimin Xuan
Opt. Express 25(16) A824-A839 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Lord Rayleigh, “On reflection of vibrations at the confines of two media between which the transition is gradual,” Proc. London Math. Soc. S1–11, 51–56 (1879).
    [Crossref]
  2. C. G. Bernhard and W. H. Miller, “A corneal nipple pattern in insect compound eyes,” Acta Physiol. Scand. 56, 385–386 (1962).
    [Crossref] [PubMed]
  3. D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273, 661–667 (2006).
    [Crossref] [PubMed]
  4. S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Materials Sci. Eng Rev. 69, 1–35 (2010).
    [Crossref]
  5. J. Kulakofsky, W. Lewis, M. Robertson, T. Moore, and G. Krishnan, ”Designing high-power components for optical telecommunications,” Proc. SPIE 4679, 198 (2002).
    [Crossref]
  6. S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photovolt: Res. Appl. 18, 195–203 (2010).
    [Crossref]
  7. Y. Ou, D. Corell, C. Dam-Hansen, P. Petersen, and H. Ou, ”Antireflective sub-wavelength structures for improvement of the extraction efficiency and color rendering index of monolithic white light-emitting diode,” Opt. Express 19, A166–A172 (2011).
    [Crossref] [PubMed]
  8. D. S. Hobbs, B. D. MacLeod, and J. R. Riccobono, “Update on the development of high performance anti-reflecting surface relief micro-structures,” Proc. SPIE 6545, 65450Y (2007).
    [Crossref]
  9. T. Hoshino, M. Itoh, and T. Yatagai, “Antireflective grating in the resonance domain for displays,” Appl. Opt. 46, 648–656 (2007).
    [Crossref] [PubMed]
  10. J. Sanghera, C. Florea, L. Busse, L. B. Shaw, F. Miklos, and I. Aggarwal, “Reduced Fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces,” Opt. Express 18, 26760–26768 (2010).
    [Crossref] [PubMed]
  11. N. H. Finkel, B. G. Prevo, O. D. Velev, and L. He, “Ordered silicon nanocavity arrays in surface-assisted desorption/ionization mass spectrometry,” Anal. Chem. 77, 1088–1095 (2005).
    [Crossref] [PubMed]
  12. S.Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14, 4129–4133 (1996).
    [Crossref]
  13. M. Kowalczyk, J. Haberko, and P. Wasylczyk, “Microstructured gradient-index antireflective coating fabricated on a fiber tip with direct laser writing,” Opt. Express 22, 12545–12550 (2014).
    [Crossref] [PubMed]
  14. B. D. MacLeod, D. S. Hobbs, and E. Sabatino, “Moldable AR microstructures for improved laser transmission and damage resistance in CIRCM fiber optic beam delivery systems,” Proc. SPIE 8016, 80160Q (2011).
    [Crossref]
  15. R. J. Weiblen, C. Florea, A. Docherty, C. R. Menyuk, L. B. Shaw, J. Sanghera, L. Busse, and I. Aggarwal, “Optimizing motheye antireflective structures for maximum coupling through As2S3 optical fibers,” in IEEE Photonics Conference (IEEE, 2012), paper ThP3.
  16. K. Han and C.-H. Chang, “Numerical modeling of sub-wavelength anti-reflective structures for solar module applications,” Nanomaterials 4, 87–128 (2014).
    [Crossref]
  17. J. Yamauchi, M. Mita, S. Aoki, and H. Nakano, “Analysis of antireflection coatings using the FD-TD method with the PML absorbing boundary condition,” IEEE Photonics Technol. Lett. 8, 239–241 (1996).
    [Crossref]
  18. Z. Y. Yang, D. Q. Zhu, M. Zhao, and M. C. Cao, “The study of a nano-porous optical film with the finite difference time domain method,” J. Opt. A: Pure Appl. Opt. 6, 564–568 (2004).
    [Crossref]
  19. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981).
    [Crossref]
  20. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).
    [Crossref]
  21. D. S. Hobbs, B. D. MacLeod, E. Sabatino, T. M. Hartnett, and R. L. Gentilman, “Laser damage resistant anti-reflection microstructures in Raytheon ceramic YAG, sapphire, ALON, and quartz,” Proc. SPIE 8016, 80160T (2011).
    [Crossref]
  22. D. S. Hobbs, “Laser damage threshold measurements of anti-reflection microstructures operating in the near UV and mid-IR,” Proc. SPIE 7842, 78421Z (2010).
    [Crossref]
  23. C. Florea, L. Busse, S. Bayyab, B. Shaw, I. Aggarwal, and J. Sanghera, “Anti-reflective surface structures in spinel ceramic windows,” in The 10th Pacific Rim Conference on Ceramic and Glass Technology (2013), paper S10-014.
  24. L. Busse, C. Florea, L. B. Shaw, S. Bayya, G. Villalobos, I. Aggarwal, and J. Sanghera, “Anti-reflective surface structures for high energy laser applications,” in Annual Directed Energy Symposium (2013), paper 13-Symp-053.
  25. R. J. Weiblen, C. Florea, L. Busse, L. B. Shaw, C. R. Menyuk, I. Aggarwal, and J. Sanghera, “Irradiance enhancment and increased laser damage threshold in As2S3 moth-eye antireflective structures,” Opt. Lett. 40, 4799–4802 (2015).
    [Crossref] [PubMed]
  26. R. J. Weiblen, C. Florea, C. R. Menyuk, I. Aggarwal, L. Busse, L. B. Shaw, and J. Sanghera, “Ideal cusp-like motheye antireflective structures for chalcogenide optical fibers,” in IEEE Photonics Conference (2015), paper WI1.4.
  27. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Comm. 181, 687–702 (2010)
    [Crossref]
  28. D. Raguin and G. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt. 32, 1154–1167 (1993).
    [Crossref] [PubMed]
  29. M. Steel, T. White, C. M. de Sterke, R. McPhedran, and L. Botten, “Symmetry and degeneracy in microstructured optical fibers,” Opt. Lett. 26, 488–490 (2001).
    [Crossref]
  30. W. H. Southwell, “Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces,” J. Opt. Soc. Am. A 8, 549–553 (1991).
    [Crossref]

2015 (1)

2014 (2)

M. Kowalczyk, J. Haberko, and P. Wasylczyk, “Microstructured gradient-index antireflective coating fabricated on a fiber tip with direct laser writing,” Opt. Express 22, 12545–12550 (2014).
[Crossref] [PubMed]

K. Han and C.-H. Chang, “Numerical modeling of sub-wavelength anti-reflective structures for solar module applications,” Nanomaterials 4, 87–128 (2014).
[Crossref]

2011 (3)

B. D. MacLeod, D. S. Hobbs, and E. Sabatino, “Moldable AR microstructures for improved laser transmission and damage resistance in CIRCM fiber optic beam delivery systems,” Proc. SPIE 8016, 80160Q (2011).
[Crossref]

D. S. Hobbs, B. D. MacLeod, E. Sabatino, T. M. Hartnett, and R. L. Gentilman, “Laser damage resistant anti-reflection microstructures in Raytheon ceramic YAG, sapphire, ALON, and quartz,” Proc. SPIE 8016, 80160T (2011).
[Crossref]

Y. Ou, D. Corell, C. Dam-Hansen, P. Petersen, and H. Ou, ”Antireflective sub-wavelength structures for improvement of the extraction efficiency and color rendering index of monolithic white light-emitting diode,” Opt. Express 19, A166–A172 (2011).
[Crossref] [PubMed]

2010 (5)

J. Sanghera, C. Florea, L. Busse, L. B. Shaw, F. Miklos, and I. Aggarwal, “Reduced Fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces,” Opt. Express 18, 26760–26768 (2010).
[Crossref] [PubMed]

D. S. Hobbs, “Laser damage threshold measurements of anti-reflection microstructures operating in the near UV and mid-IR,” Proc. SPIE 7842, 78421Z (2010).
[Crossref]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Comm. 181, 687–702 (2010)
[Crossref]

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Materials Sci. Eng Rev. 69, 1–35 (2010).
[Crossref]

S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photovolt: Res. Appl. 18, 195–203 (2010).
[Crossref]

2007 (2)

D. S. Hobbs, B. D. MacLeod, and J. R. Riccobono, “Update on the development of high performance anti-reflecting surface relief micro-structures,” Proc. SPIE 6545, 65450Y (2007).
[Crossref]

T. Hoshino, M. Itoh, and T. Yatagai, “Antireflective grating in the resonance domain for displays,” Appl. Opt. 46, 648–656 (2007).
[Crossref] [PubMed]

2006 (1)

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273, 661–667 (2006).
[Crossref] [PubMed]

2005 (1)

N. H. Finkel, B. G. Prevo, O. D. Velev, and L. He, “Ordered silicon nanocavity arrays in surface-assisted desorption/ionization mass spectrometry,” Anal. Chem. 77, 1088–1095 (2005).
[Crossref] [PubMed]

2004 (1)

Z. Y. Yang, D. Q. Zhu, M. Zhao, and M. C. Cao, “The study of a nano-porous optical film with the finite difference time domain method,” J. Opt. A: Pure Appl. Opt. 6, 564–568 (2004).
[Crossref]

2002 (1)

J. Kulakofsky, W. Lewis, M. Robertson, T. Moore, and G. Krishnan, ”Designing high-power components for optical telecommunications,” Proc. SPIE 4679, 198 (2002).
[Crossref]

2001 (1)

1997 (1)

1996 (2)

J. Yamauchi, M. Mita, S. Aoki, and H. Nakano, “Analysis of antireflection coatings using the FD-TD method with the PML absorbing boundary condition,” IEEE Photonics Technol. Lett. 8, 239–241 (1996).
[Crossref]

S.Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14, 4129–4133 (1996).
[Crossref]

1993 (1)

1991 (1)

1981 (1)

1962 (1)

C. G. Bernhard and W. H. Miller, “A corneal nipple pattern in insect compound eyes,” Acta Physiol. Scand. 56, 385–386 (1962).
[Crossref] [PubMed]

1879 (1)

Lord Rayleigh, “On reflection of vibrations at the confines of two media between which the transition is gradual,” Proc. London Math. Soc. S1–11, 51–56 (1879).
[Crossref]

Aggarwal, I.

R. J. Weiblen, C. Florea, L. Busse, L. B. Shaw, C. R. Menyuk, I. Aggarwal, and J. Sanghera, “Irradiance enhancment and increased laser damage threshold in As2S3 moth-eye antireflective structures,” Opt. Lett. 40, 4799–4802 (2015).
[Crossref] [PubMed]

J. Sanghera, C. Florea, L. Busse, L. B. Shaw, F. Miklos, and I. Aggarwal, “Reduced Fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces,” Opt. Express 18, 26760–26768 (2010).
[Crossref] [PubMed]

R. J. Weiblen, C. Florea, C. R. Menyuk, I. Aggarwal, L. Busse, L. B. Shaw, and J. Sanghera, “Ideal cusp-like motheye antireflective structures for chalcogenide optical fibers,” in IEEE Photonics Conference (2015), paper WI1.4.

R. J. Weiblen, C. Florea, A. Docherty, C. R. Menyuk, L. B. Shaw, J. Sanghera, L. Busse, and I. Aggarwal, “Optimizing motheye antireflective structures for maximum coupling through As2S3 optical fibers,” in IEEE Photonics Conference (IEEE, 2012), paper ThP3.

C. Florea, L. Busse, S. Bayyab, B. Shaw, I. Aggarwal, and J. Sanghera, “Anti-reflective surface structures in spinel ceramic windows,” in The 10th Pacific Rim Conference on Ceramic and Glass Technology (2013), paper S10-014.

L. Busse, C. Florea, L. B. Shaw, S. Bayya, G. Villalobos, I. Aggarwal, and J. Sanghera, “Anti-reflective surface structures for high energy laser applications,” in Annual Directed Energy Symposium (2013), paper 13-Symp-053.

Aoki, S.

J. Yamauchi, M. Mita, S. Aoki, and H. Nakano, “Analysis of antireflection coatings using the FD-TD method with the PML absorbing boundary condition,” IEEE Photonics Technol. Lett. 8, 239–241 (1996).
[Crossref]

Arikawa, K.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273, 661–667 (2006).
[Crossref] [PubMed]

Bagnall, D. M.

S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photovolt: Res. Appl. 18, 195–203 (2010).
[Crossref]

Bayya, S.

L. Busse, C. Florea, L. B. Shaw, S. Bayya, G. Villalobos, I. Aggarwal, and J. Sanghera, “Anti-reflective surface structures for high energy laser applications,” in Annual Directed Energy Symposium (2013), paper 13-Symp-053.

Bayyab, S.

C. Florea, L. Busse, S. Bayyab, B. Shaw, I. Aggarwal, and J. Sanghera, “Anti-reflective surface structures in spinel ceramic windows,” in The 10th Pacific Rim Conference on Ceramic and Glass Technology (2013), paper S10-014.

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Comm. 181, 687–702 (2010)
[Crossref]

Bernhard, C. G.

C. G. Bernhard and W. H. Miller, “A corneal nipple pattern in insect compound eyes,” Acta Physiol. Scand. 56, 385–386 (1962).
[Crossref] [PubMed]

Boden, S. A.

S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photovolt: Res. Appl. 18, 195–203 (2010).
[Crossref]

Botten, L.

Busse, L.

R. J. Weiblen, C. Florea, L. Busse, L. B. Shaw, C. R. Menyuk, I. Aggarwal, and J. Sanghera, “Irradiance enhancment and increased laser damage threshold in As2S3 moth-eye antireflective structures,” Opt. Lett. 40, 4799–4802 (2015).
[Crossref] [PubMed]

J. Sanghera, C. Florea, L. Busse, L. B. Shaw, F. Miklos, and I. Aggarwal, “Reduced Fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces,” Opt. Express 18, 26760–26768 (2010).
[Crossref] [PubMed]

R. J. Weiblen, C. Florea, C. R. Menyuk, I. Aggarwal, L. Busse, L. B. Shaw, and J. Sanghera, “Ideal cusp-like motheye antireflective structures for chalcogenide optical fibers,” in IEEE Photonics Conference (2015), paper WI1.4.

C. Florea, L. Busse, S. Bayyab, B. Shaw, I. Aggarwal, and J. Sanghera, “Anti-reflective surface structures in spinel ceramic windows,” in The 10th Pacific Rim Conference on Ceramic and Glass Technology (2013), paper S10-014.

L. Busse, C. Florea, L. B. Shaw, S. Bayya, G. Villalobos, I. Aggarwal, and J. Sanghera, “Anti-reflective surface structures for high energy laser applications,” in Annual Directed Energy Symposium (2013), paper 13-Symp-053.

R. J. Weiblen, C. Florea, A. Docherty, C. R. Menyuk, L. B. Shaw, J. Sanghera, L. Busse, and I. Aggarwal, “Optimizing motheye antireflective structures for maximum coupling through As2S3 optical fibers,” in IEEE Photonics Conference (IEEE, 2012), paper ThP3.

Cao, M. C.

Z. Y. Yang, D. Q. Zhu, M. Zhao, and M. C. Cao, “The study of a nano-porous optical film with the finite difference time domain method,” J. Opt. A: Pure Appl. Opt. 6, 564–568 (2004).
[Crossref]

Chang, C.-H.

K. Han and C.-H. Chang, “Numerical modeling of sub-wavelength anti-reflective structures for solar module applications,” Nanomaterials 4, 87–128 (2014).
[Crossref]

Chattopadhyay, S.

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Materials Sci. Eng Rev. 69, 1–35 (2010).
[Crossref]

Chen, K. H.

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Materials Sci. Eng Rev. 69, 1–35 (2010).
[Crossref]

Chen, L. C.

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Materials Sci. Eng Rev. 69, 1–35 (2010).
[Crossref]

Chou, S.Y.

S.Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14, 4129–4133 (1996).
[Crossref]

Corell, D.

Dam-Hansen, C.

de Sterke, C. M.

Docherty, A.

R. J. Weiblen, C. Florea, A. Docherty, C. R. Menyuk, L. B. Shaw, J. Sanghera, L. Busse, and I. Aggarwal, “Optimizing motheye antireflective structures for maximum coupling through As2S3 optical fibers,” in IEEE Photonics Conference (IEEE, 2012), paper ThP3.

Finkel, N. H.

N. H. Finkel, B. G. Prevo, O. D. Velev, and L. He, “Ordered silicon nanocavity arrays in surface-assisted desorption/ionization mass spectrometry,” Anal. Chem. 77, 1088–1095 (2005).
[Crossref] [PubMed]

Florea, C.

R. J. Weiblen, C. Florea, L. Busse, L. B. Shaw, C. R. Menyuk, I. Aggarwal, and J. Sanghera, “Irradiance enhancment and increased laser damage threshold in As2S3 moth-eye antireflective structures,” Opt. Lett. 40, 4799–4802 (2015).
[Crossref] [PubMed]

J. Sanghera, C. Florea, L. Busse, L. B. Shaw, F. Miklos, and I. Aggarwal, “Reduced Fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces,” Opt. Express 18, 26760–26768 (2010).
[Crossref] [PubMed]

R. J. Weiblen, C. Florea, A. Docherty, C. R. Menyuk, L. B. Shaw, J. Sanghera, L. Busse, and I. Aggarwal, “Optimizing motheye antireflective structures for maximum coupling through As2S3 optical fibers,” in IEEE Photonics Conference (IEEE, 2012), paper ThP3.

L. Busse, C. Florea, L. B. Shaw, S. Bayya, G. Villalobos, I. Aggarwal, and J. Sanghera, “Anti-reflective surface structures for high energy laser applications,” in Annual Directed Energy Symposium (2013), paper 13-Symp-053.

R. J. Weiblen, C. Florea, C. R. Menyuk, I. Aggarwal, L. Busse, L. B. Shaw, and J. Sanghera, “Ideal cusp-like motheye antireflective structures for chalcogenide optical fibers,” in IEEE Photonics Conference (2015), paper WI1.4.

C. Florea, L. Busse, S. Bayyab, B. Shaw, I. Aggarwal, and J. Sanghera, “Anti-reflective surface structures in spinel ceramic windows,” in The 10th Pacific Rim Conference on Ceramic and Glass Technology (2013), paper S10-014.

Foletti, S.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273, 661–667 (2006).
[Crossref] [PubMed]

Ganguly, A.

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Materials Sci. Eng Rev. 69, 1–35 (2010).
[Crossref]

Gaylord, T. K.

Gentilman, R. L.

D. S. Hobbs, B. D. MacLeod, E. Sabatino, T. M. Hartnett, and R. L. Gentilman, “Laser damage resistant anti-reflection microstructures in Raytheon ceramic YAG, sapphire, ALON, and quartz,” Proc. SPIE 8016, 80160T (2011).
[Crossref]

Haberko, J.

Han, K.

K. Han and C.-H. Chang, “Numerical modeling of sub-wavelength anti-reflective structures for solar module applications,” Nanomaterials 4, 87–128 (2014).
[Crossref]

Hartnett, T. M.

D. S. Hobbs, B. D. MacLeod, E. Sabatino, T. M. Hartnett, and R. L. Gentilman, “Laser damage resistant anti-reflection microstructures in Raytheon ceramic YAG, sapphire, ALON, and quartz,” Proc. SPIE 8016, 80160T (2011).
[Crossref]

He, L.

N. H. Finkel, B. G. Prevo, O. D. Velev, and L. He, “Ordered silicon nanocavity arrays in surface-assisted desorption/ionization mass spectrometry,” Anal. Chem. 77, 1088–1095 (2005).
[Crossref] [PubMed]

Hobbs, D. S.

B. D. MacLeod, D. S. Hobbs, and E. Sabatino, “Moldable AR microstructures for improved laser transmission and damage resistance in CIRCM fiber optic beam delivery systems,” Proc. SPIE 8016, 80160Q (2011).
[Crossref]

D. S. Hobbs, B. D. MacLeod, E. Sabatino, T. M. Hartnett, and R. L. Gentilman, “Laser damage resistant anti-reflection microstructures in Raytheon ceramic YAG, sapphire, ALON, and quartz,” Proc. SPIE 8016, 80160T (2011).
[Crossref]

D. S. Hobbs, “Laser damage threshold measurements of anti-reflection microstructures operating in the near UV and mid-IR,” Proc. SPIE 7842, 78421Z (2010).
[Crossref]

D. S. Hobbs, B. D. MacLeod, and J. R. Riccobono, “Update on the development of high performance anti-reflecting surface relief micro-structures,” Proc. SPIE 6545, 65450Y (2007).
[Crossref]

Hoshino, T.

Huang, Y. F.

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Materials Sci. Eng Rev. 69, 1–35 (2010).
[Crossref]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Comm. 181, 687–702 (2010)
[Crossref]

Itoh, M.

Jen, Y. J.

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Materials Sci. Eng Rev. 69, 1–35 (2010).
[Crossref]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Comm. 181, 687–702 (2010)
[Crossref]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Comm. 181, 687–702 (2010)
[Crossref]

Kowalczyk, M.

Krauss, P. R.

S.Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14, 4129–4133 (1996).
[Crossref]

Krishnan, G.

J. Kulakofsky, W. Lewis, M. Robertson, T. Moore, and G. Krishnan, ”Designing high-power components for optical telecommunications,” Proc. SPIE 4679, 198 (2002).
[Crossref]

Kulakofsky, J.

J. Kulakofsky, W. Lewis, M. Robertson, T. Moore, and G. Krishnan, ”Designing high-power components for optical telecommunications,” Proc. SPIE 4679, 198 (2002).
[Crossref]

Lewis, W.

J. Kulakofsky, W. Lewis, M. Robertson, T. Moore, and G. Krishnan, ”Designing high-power components for optical telecommunications,” Proc. SPIE 4679, 198 (2002).
[Crossref]

Li, L.

MacLeod, B. D.

B. D. MacLeod, D. S. Hobbs, and E. Sabatino, “Moldable AR microstructures for improved laser transmission and damage resistance in CIRCM fiber optic beam delivery systems,” Proc. SPIE 8016, 80160Q (2011).
[Crossref]

D. S. Hobbs, B. D. MacLeod, E. Sabatino, T. M. Hartnett, and R. L. Gentilman, “Laser damage resistant anti-reflection microstructures in Raytheon ceramic YAG, sapphire, ALON, and quartz,” Proc. SPIE 8016, 80160T (2011).
[Crossref]

D. S. Hobbs, B. D. MacLeod, and J. R. Riccobono, “Update on the development of high performance anti-reflecting surface relief micro-structures,” Proc. SPIE 6545, 65450Y (2007).
[Crossref]

McPhedran, R.

Menyuk, C. R.

R. J. Weiblen, C. Florea, L. Busse, L. B. Shaw, C. R. Menyuk, I. Aggarwal, and J. Sanghera, “Irradiance enhancment and increased laser damage threshold in As2S3 moth-eye antireflective structures,” Opt. Lett. 40, 4799–4802 (2015).
[Crossref] [PubMed]

R. J. Weiblen, C. Florea, A. Docherty, C. R. Menyuk, L. B. Shaw, J. Sanghera, L. Busse, and I. Aggarwal, “Optimizing motheye antireflective structures for maximum coupling through As2S3 optical fibers,” in IEEE Photonics Conference (IEEE, 2012), paper ThP3.

R. J. Weiblen, C. Florea, C. R. Menyuk, I. Aggarwal, L. Busse, L. B. Shaw, and J. Sanghera, “Ideal cusp-like motheye antireflective structures for chalcogenide optical fibers,” in IEEE Photonics Conference (2015), paper WI1.4.

Miklos, F.

Miller, W. H.

C. G. Bernhard and W. H. Miller, “A corneal nipple pattern in insect compound eyes,” Acta Physiol. Scand. 56, 385–386 (1962).
[Crossref] [PubMed]

Mita, M.

J. Yamauchi, M. Mita, S. Aoki, and H. Nakano, “Analysis of antireflection coatings using the FD-TD method with the PML absorbing boundary condition,” IEEE Photonics Technol. Lett. 8, 239–241 (1996).
[Crossref]

Moharam, M. G.

Moore, T.

J. Kulakofsky, W. Lewis, M. Robertson, T. Moore, and G. Krishnan, ”Designing high-power components for optical telecommunications,” Proc. SPIE 4679, 198 (2002).
[Crossref]

Morris, G.

Nakano, H.

J. Yamauchi, M. Mita, S. Aoki, and H. Nakano, “Analysis of antireflection coatings using the FD-TD method with the PML absorbing boundary condition,” IEEE Photonics Technol. Lett. 8, 239–241 (1996).
[Crossref]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Comm. 181, 687–702 (2010)
[Crossref]

Ou, H.

Ou, Y.

Palasantzas, G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273, 661–667 (2006).
[Crossref] [PubMed]

Petersen, P.

Prevo, B. G.

N. H. Finkel, B. G. Prevo, O. D. Velev, and L. He, “Ordered silicon nanocavity arrays in surface-assisted desorption/ionization mass spectrometry,” Anal. Chem. 77, 1088–1095 (2005).
[Crossref] [PubMed]

Raguin, D.

Rayleigh, Lord

Lord Rayleigh, “On reflection of vibrations at the confines of two media between which the transition is gradual,” Proc. London Math. Soc. S1–11, 51–56 (1879).
[Crossref]

Renstrom, P. J.

S.Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14, 4129–4133 (1996).
[Crossref]

Riccobono, J. R.

D. S. Hobbs, B. D. MacLeod, and J. R. Riccobono, “Update on the development of high performance anti-reflecting surface relief micro-structures,” Proc. SPIE 6545, 65450Y (2007).
[Crossref]

Robertson, M.

J. Kulakofsky, W. Lewis, M. Robertson, T. Moore, and G. Krishnan, ”Designing high-power components for optical telecommunications,” Proc. SPIE 4679, 198 (2002).
[Crossref]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Comm. 181, 687–702 (2010)
[Crossref]

Sabatino, E.

B. D. MacLeod, D. S. Hobbs, and E. Sabatino, “Moldable AR microstructures for improved laser transmission and damage resistance in CIRCM fiber optic beam delivery systems,” Proc. SPIE 8016, 80160Q (2011).
[Crossref]

D. S. Hobbs, B. D. MacLeod, E. Sabatino, T. M. Hartnett, and R. L. Gentilman, “Laser damage resistant anti-reflection microstructures in Raytheon ceramic YAG, sapphire, ALON, and quartz,” Proc. SPIE 8016, 80160T (2011).
[Crossref]

Sanghera, J.

R. J. Weiblen, C. Florea, L. Busse, L. B. Shaw, C. R. Menyuk, I. Aggarwal, and J. Sanghera, “Irradiance enhancment and increased laser damage threshold in As2S3 moth-eye antireflective structures,” Opt. Lett. 40, 4799–4802 (2015).
[Crossref] [PubMed]

J. Sanghera, C. Florea, L. Busse, L. B. Shaw, F. Miklos, and I. Aggarwal, “Reduced Fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces,” Opt. Express 18, 26760–26768 (2010).
[Crossref] [PubMed]

R. J. Weiblen, C. Florea, C. R. Menyuk, I. Aggarwal, L. Busse, L. B. Shaw, and J. Sanghera, “Ideal cusp-like motheye antireflective structures for chalcogenide optical fibers,” in IEEE Photonics Conference (2015), paper WI1.4.

R. J. Weiblen, C. Florea, A. Docherty, C. R. Menyuk, L. B. Shaw, J. Sanghera, L. Busse, and I. Aggarwal, “Optimizing motheye antireflective structures for maximum coupling through As2S3 optical fibers,” in IEEE Photonics Conference (IEEE, 2012), paper ThP3.

L. Busse, C. Florea, L. B. Shaw, S. Bayya, G. Villalobos, I. Aggarwal, and J. Sanghera, “Anti-reflective surface structures for high energy laser applications,” in Annual Directed Energy Symposium (2013), paper 13-Symp-053.

C. Florea, L. Busse, S. Bayyab, B. Shaw, I. Aggarwal, and J. Sanghera, “Anti-reflective surface structures in spinel ceramic windows,” in The 10th Pacific Rim Conference on Ceramic and Glass Technology (2013), paper S10-014.

Shaw, B.

C. Florea, L. Busse, S. Bayyab, B. Shaw, I. Aggarwal, and J. Sanghera, “Anti-reflective surface structures in spinel ceramic windows,” in The 10th Pacific Rim Conference on Ceramic and Glass Technology (2013), paper S10-014.

Shaw, L. B.

R. J. Weiblen, C. Florea, L. Busse, L. B. Shaw, C. R. Menyuk, I. Aggarwal, and J. Sanghera, “Irradiance enhancment and increased laser damage threshold in As2S3 moth-eye antireflective structures,” Opt. Lett. 40, 4799–4802 (2015).
[Crossref] [PubMed]

J. Sanghera, C. Florea, L. Busse, L. B. Shaw, F. Miklos, and I. Aggarwal, “Reduced Fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces,” Opt. Express 18, 26760–26768 (2010).
[Crossref] [PubMed]

R. J. Weiblen, C. Florea, C. R. Menyuk, I. Aggarwal, L. Busse, L. B. Shaw, and J. Sanghera, “Ideal cusp-like motheye antireflective structures for chalcogenide optical fibers,” in IEEE Photonics Conference (2015), paper WI1.4.

L. Busse, C. Florea, L. B. Shaw, S. Bayya, G. Villalobos, I. Aggarwal, and J. Sanghera, “Anti-reflective surface structures for high energy laser applications,” in Annual Directed Energy Symposium (2013), paper 13-Symp-053.

R. J. Weiblen, C. Florea, A. Docherty, C. R. Menyuk, L. B. Shaw, J. Sanghera, L. Busse, and I. Aggarwal, “Optimizing motheye antireflective structures for maximum coupling through As2S3 optical fibers,” in IEEE Photonics Conference (IEEE, 2012), paper ThP3.

Southwell, W. H.

Stavenga, D. G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273, 661–667 (2006).
[Crossref] [PubMed]

Steel, M.

Velev, O. D.

N. H. Finkel, B. G. Prevo, O. D. Velev, and L. He, “Ordered silicon nanocavity arrays in surface-assisted desorption/ionization mass spectrometry,” Anal. Chem. 77, 1088–1095 (2005).
[Crossref] [PubMed]

Villalobos, G.

L. Busse, C. Florea, L. B. Shaw, S. Bayya, G. Villalobos, I. Aggarwal, and J. Sanghera, “Anti-reflective surface structures for high energy laser applications,” in Annual Directed Energy Symposium (2013), paper 13-Symp-053.

Wasylczyk, P.

Weiblen, R. J.

R. J. Weiblen, C. Florea, L. Busse, L. B. Shaw, C. R. Menyuk, I. Aggarwal, and J. Sanghera, “Irradiance enhancment and increased laser damage threshold in As2S3 moth-eye antireflective structures,” Opt. Lett. 40, 4799–4802 (2015).
[Crossref] [PubMed]

R. J. Weiblen, C. Florea, C. R. Menyuk, I. Aggarwal, L. Busse, L. B. Shaw, and J. Sanghera, “Ideal cusp-like motheye antireflective structures for chalcogenide optical fibers,” in IEEE Photonics Conference (2015), paper WI1.4.

R. J. Weiblen, C. Florea, A. Docherty, C. R. Menyuk, L. B. Shaw, J. Sanghera, L. Busse, and I. Aggarwal, “Optimizing motheye antireflective structures for maximum coupling through As2S3 optical fibers,” in IEEE Photonics Conference (IEEE, 2012), paper ThP3.

White, T.

Yamauchi, J.

J. Yamauchi, M. Mita, S. Aoki, and H. Nakano, “Analysis of antireflection coatings using the FD-TD method with the PML absorbing boundary condition,” IEEE Photonics Technol. Lett. 8, 239–241 (1996).
[Crossref]

Yang, Z. Y.

Z. Y. Yang, D. Q. Zhu, M. Zhao, and M. C. Cao, “The study of a nano-porous optical film with the finite difference time domain method,” J. Opt. A: Pure Appl. Opt. 6, 564–568 (2004).
[Crossref]

Yatagai, T.

Zhao, M.

Z. Y. Yang, D. Q. Zhu, M. Zhao, and M. C. Cao, “The study of a nano-porous optical film with the finite difference time domain method,” J. Opt. A: Pure Appl. Opt. 6, 564–568 (2004).
[Crossref]

Zhu, D. Q.

Z. Y. Yang, D. Q. Zhu, M. Zhao, and M. C. Cao, “The study of a nano-porous optical film with the finite difference time domain method,” J. Opt. A: Pure Appl. Opt. 6, 564–568 (2004).
[Crossref]

Acta Physiol. Scand. (1)

C. G. Bernhard and W. H. Miller, “A corneal nipple pattern in insect compound eyes,” Acta Physiol. Scand. 56, 385–386 (1962).
[Crossref] [PubMed]

Anal. Chem. (1)

N. H. Finkel, B. G. Prevo, O. D. Velev, and L. He, “Ordered silicon nanocavity arrays in surface-assisted desorption/ionization mass spectrometry,” Anal. Chem. 77, 1088–1095 (2005).
[Crossref] [PubMed]

Appl. Opt. (2)

Comp. Phys. Comm. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Comm. 181, 687–702 (2010)
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Yamauchi, M. Mita, S. Aoki, and H. Nakano, “Analysis of antireflection coatings using the FD-TD method with the PML absorbing boundary condition,” IEEE Photonics Technol. Lett. 8, 239–241 (1996).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

Z. Y. Yang, D. Q. Zhu, M. Zhao, and M. C. Cao, “The study of a nano-porous optical film with the finite difference time domain method,” J. Opt. A: Pure Appl. Opt. 6, 564–568 (2004).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

J. Vac. Sci. Technol. B (1)

S.Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14, 4129–4133 (1996).
[Crossref]

Materials Sci. Eng Rev. (1)

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Materials Sci. Eng Rev. 69, 1–35 (2010).
[Crossref]

Nanomaterials (1)

K. Han and C.-H. Chang, “Numerical modeling of sub-wavelength anti-reflective structures for solar module applications,” Nanomaterials 4, 87–128 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Proc. Biol. Sci. (1)

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273, 661–667 (2006).
[Crossref] [PubMed]

Proc. London Math. Soc. (1)

Lord Rayleigh, “On reflection of vibrations at the confines of two media between which the transition is gradual,” Proc. London Math. Soc. S1–11, 51–56 (1879).
[Crossref]

Proc. SPIE (5)

D. S. Hobbs, B. D. MacLeod, and J. R. Riccobono, “Update on the development of high performance anti-reflecting surface relief micro-structures,” Proc. SPIE 6545, 65450Y (2007).
[Crossref]

D. S. Hobbs, B. D. MacLeod, E. Sabatino, T. M. Hartnett, and R. L. Gentilman, “Laser damage resistant anti-reflection microstructures in Raytheon ceramic YAG, sapphire, ALON, and quartz,” Proc. SPIE 8016, 80160T (2011).
[Crossref]

D. S. Hobbs, “Laser damage threshold measurements of anti-reflection microstructures operating in the near UV and mid-IR,” Proc. SPIE 7842, 78421Z (2010).
[Crossref]

J. Kulakofsky, W. Lewis, M. Robertson, T. Moore, and G. Krishnan, ”Designing high-power components for optical telecommunications,” Proc. SPIE 4679, 198 (2002).
[Crossref]

B. D. MacLeod, D. S. Hobbs, and E. Sabatino, “Moldable AR microstructures for improved laser transmission and damage resistance in CIRCM fiber optic beam delivery systems,” Proc. SPIE 8016, 80160Q (2011).
[Crossref]

Prog. Photovolt: Res. Appl. (1)

S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photovolt: Res. Appl. 18, 195–203 (2010).
[Crossref]

Other (4)

R. J. Weiblen, C. Florea, A. Docherty, C. R. Menyuk, L. B. Shaw, J. Sanghera, L. Busse, and I. Aggarwal, “Optimizing motheye antireflective structures for maximum coupling through As2S3 optical fibers,” in IEEE Photonics Conference (IEEE, 2012), paper ThP3.

C. Florea, L. Busse, S. Bayyab, B. Shaw, I. Aggarwal, and J. Sanghera, “Anti-reflective surface structures in spinel ceramic windows,” in The 10th Pacific Rim Conference on Ceramic and Glass Technology (2013), paper S10-014.

L. Busse, C. Florea, L. B. Shaw, S. Bayya, G. Villalobos, I. Aggarwal, and J. Sanghera, “Anti-reflective surface structures for high energy laser applications,” in Annual Directed Energy Symposium (2013), paper 13-Symp-053.

R. J. Weiblen, C. Florea, C. R. Menyuk, I. Aggarwal, L. Busse, L. B. Shaw, and J. Sanghera, “Ideal cusp-like motheye antireflective structures for chalcogenide optical fibers,” in IEEE Photonics Conference (2015), paper WI1.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Schematic view of a moth-eye cone structure: (a) Side cross-section view; (b) top view showing a unit cell; (c) SEM with 1-μm scale-bar.

Fig. 2
Fig. 2

The theoretical transmission spectra of light coupled into and coupled out of the fiber. The experimental transmission spectrum of light coupled out of the fiber is also shown. The Fresnel limit is the transmission spectrum from a plane-wave coupling into or out of a fiber with a flat end-face.

Fig. 3
Fig. 3

(a) Coupling of light into and out of the fiber represented graphically. The ray-optics pictures of light coupling (b) out of the structure, and (c) into the structure.

Fig. 4
Fig. 4

The transmission spectra of light coupled (a) into and (b) out of the fiber as the cone tip diameter w1 varies. The other geometric parameters are w2 = 0.7 μm, h = 0.9 μm, and sx = 0.92 μm. The experimental transmission spectrum of light coupled out of the fiber is shown for comparison (black dashed line).

Fig. 5
Fig. 5

The transmission spectra of light coupled (a) into and (b) out of the fiber versus the cone bottom diameter w2. The other geometric parameters are w1 = 0.2 μm, h = 0.9 μm, and sx = 0.92 μm. The experimental transmission spectrum of light coupled out of the fiber is shown for comparison (black dashed line).

Fig. 6
Fig. 6

The transmission spectra of light coupled (a) into and (b) out of the fiber versus the cone height h. The experimental transmission spectrum of light coupled out of the fiber is shown for comparison (black dashed line).

Fig. 7
Fig. 7

The transmission spectra of light coupled (a) into and (b) out of the fiber versus the cone hexagonal packing spacing sx. The experimental transmission spectrum of light coupled out of the fiber is shown for comparison (black dashed line).

Fig. 8
Fig. 8

The transmission spectra of light coupled (a) into and (b) out of the fiber versus the incidence angle of the input plane-wave, ϕ. The experimental transmission spectrum of light coupled out of the fiber is shown for comparison (black dashed line).

Fig. 9
Fig. 9

Cross-section of (a) a sinusoidal structure, (b) a half-ellipsoid structure, and (c) a truncated pyramid structure. (d) The pyramidal surface from the top, showing the polarization angles used in the simulations.

Fig. 10
Fig. 10

The theoretical transmission spectra through a surface that consists of positive (a) sinusoidal structures and (b) ellipsoid structures, both with w2 = 0.7 μm (thin lines) and w2 = 0.9 μm (thick lines). The Fresnel transmission at around 83% is also shown for reference in both figures.

Fig. 11
Fig. 11

The theoretical transmission spectra for a surface with positive pyramidal structures with w1 = 0.15 μm, with (a) the electric field polarized fixed at ϕ = 0 and the parameters w2 = 0.7 μm (thin lines) and w2 = 0.9 μm (thick lines); (b) the incident electric field polarized at ϕ = 0 (thin lines) and ϕ = 45° (thick lines) and the base width fixed at w2 = 0.9 μm. The Fresnel transmission of 83% is also shown for reference in both figures.

Fig. 12
Fig. 12

Schematic view of a negative structured surface consisting of holes with (a) sinusoidal and (b) half-ellipsoid shapes.

Fig. 13
Fig. 13

The theoretical transmission spectra for output coupling through a negative structure surface consisting of structures with (a) sinusoidal and (b) half-ellipsoid shapes.

Fig. 14
Fig. 14

The theoretical transmission spectra for input coupling through a negative structure surface consisting of structures with (a) sinusoidal and (b) ellipsoid shapes.

Fig. 15
Fig. 15

Cusp-like moth-eye structure feature shapes: (a) Hexagonally-packed negative half-ellipsoid structures; (b) Square-packed positive pyramid structures.

Fig. 16
Fig. 16

Negative half-ellipsoid transmission for depths of 1.2 μm, 1.4 μm, and 1.6 μm, and packing ratios of 0.8, 0.9, and 1.0.

Fig. 17
Fig. 17

Positive pyramid transmission for depths of 1.2 μm, 1.4 μm, 1.6 μm, 2.0 μm, and 3.0 μm. The packing ratio is 1.0.

Tables (1)

Tables Icon

Table 1 Average transmission for each structure type from 2–5 μm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

z ( x , y ) = h [ 1 ( x w 2 / 2 ) 2 ( y w 2 / 2 ) 2 ] 1 / 2 ,
z ( x , y ) = h cos { π w 2 [ ( x w 2 / 2 ) 2 + ( y w 2 / 2 ) 2 ] 1 / 2 } ,

Metrics