Abstract

We theoretically analyze a method for characterizing propagating surface plasmon polaritons (SPPs) on a thin gold film. The SPPs are excited by few-cycle near-infrared pulses using Kretschmann coupling, and a nanotip is used as a local field sensor. This geometry removes the influence of the incident excitation laser from the near fields, and enhances the plasmon electric field strength. Using finite-difference-time-domain studies we show that the geometry can be used to measure SPP waveforms as a function of propagation distance. The effects of the nanotip shape and material on the field enhancement and plasmonic response are discussed.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mapping surface plasmon polariton propagation via counter-propagating light pulses

Christoph Lemke, Till Leißner, Stephan Jauernik, Alwin Klick, Jacek Fiutowski, Jakob Kjelstrup-Hansen, Horst-Günter Rubahn, and Michael Bauer
Opt. Express 20(12) 12877-12884 (2012)

Nanostructures for surface plasmons

Junxi Zhang and Lide Zhang
Adv. Opt. Photon. 4(2) 157-321 (2012)

Surface plasmon polariton beams from an electrically excited plasmonic crystal

Damien Canneson, Eric Le Moal, Shuiyan Cao, Xavier Quélin, Hervé Dallaporta, Gérald Dujardin, and Elizabeth Boer-Duchemin
Opt. Express 24(23) 26186-26200 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Nie and S. R. Emory, “Probing single molecules ans single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
    [Crossref] [PubMed]
  2. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
    [Crossref]
  3. E. Betzig and R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262(5138), 1422–1425 (1993).
    [Crossref] [PubMed]
  4. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  5. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [Crossref] [PubMed]
  6. N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332(6036), 1407–1410 (2011).
    [Crossref] [PubMed]
  7. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
    [Crossref]
  8. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [Crossref] [PubMed]
  9. A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D. F. Ogletree, P. J. Schuck, and S. Cabrini, “Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography,” Nanotechnology 21(6), 065306 (2010).
    [Crossref] [PubMed]
  10. M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
    [Crossref] [PubMed]
  11. M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D Appl. Phys. 44(28), 283001 (2011).
    [Crossref]
  12. F. Süßmann and M. F. Kling, “Attosecond nanoplasmonic streaking of localized fields near metal nanospheres,” Phys. Rev. B 84(12), 121406 (2011).
    [Crossref]
  13. J. L. West and N. J. Halas, “Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics,” Annu. Rev. Biomed. Eng. 5(1), 285–292 (2003).
    [Crossref] [PubMed]
  14. W. A. Murray and W. L. Barnes, “Plasmonic Materials,” Adv. Mater. 19(22), 3771–3782 (2007).
    [Crossref]
  15. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1), 3–15 (1999).
    [Crossref]
  16. J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
    [Crossref]
  17. G. Herink, D. R. Solli, M. Gulde, and C. Ropers, “Field-driven photoemission from nanostructures quenches the quiver motion,” Nature 483(7388), 190–193 (2012).
    [Crossref] [PubMed]
  18. M. Krüger, M. Schenk, and P. Hommelhoff, “Attosecond control of electrons emitted from a nanoscale metal tip,” Nature 475(7354), 78–81 (2011).
    [Crossref] [PubMed]
  19. B. Piglosiewicz, S. Schmidt, D. J. Park, J. Vogelsang, P. Groß, C. Manzoni, P. Farinello, G. Cerullo, and C. Lienau, “Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures,” Nat. Photonics 8(1), 37–42 (2013).
    [Crossref]
  20. S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Süßmann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, S. Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys. 7(8), 656–662 (2011).
    [Crossref]
  21. F. Krausz and M. I. Stockman, “Attosecond metrology: from electron capture to future signal processing,” Nat. Photonics 8(3), 205–213 (2014).
    [Crossref]
  22. P. Dombi, S. E. Irvine, P. Rácz, M. Lenner, N. Kroó, G. Farkas, A. Mitrofanov, A. Baltuška, T. Fuji, F. Krausz, and A. Y. Elezzabi, “Observation of few-cycle, strong-field phenomena in surface plasmon fields,” Opt. Express 18(23), 24206–24212 (2010).
    [Crossref] [PubMed]
  23. J. Vogelsang, J. Robin, B. J. Nagy, P. Dombi, D. Rosenkranz, M. Schiek, P. Groß, and C. Lienau, “Ultrafast electron emission from a sharp metal nanotaper driven by adiabatic nanofocusing of surface plasmons,” Nano Lett. 15(7), 4685–4691 (2015).
    [Crossref] [PubMed]
  24. T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
    [Crossref] [PubMed]
  25. A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10(7), 2519–2524 (2010).
    [Crossref] [PubMed]
  26. C. Rewitz, T. Keitzl, P. Tuchscherer, J. S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett. 12(1), 45–49 (2012).
    [Crossref] [PubMed]
  27. A. G. Borisov, P. M. Echenique, and A. K. Kazansky, “Attostreaking with metallic nano-objects,” New J. Phys. 14(2), 023036 (2012).
    [Crossref]
  28. F. Kelkensberg, A. F. Koenderink, and M. J. J. Vrakking, “Attosecond streaking in a nano-plasmonic field,” New J. Phys. 14(9), 093034 (2012).
    [Crossref]
  29. J. S. Prell, L. J. Borja, D. M. Neumark, and S. R. Leone, “Simulation of attosecond-resolved imaging of the plasmon electric field in metallic nanoparticles,” Ann. Phys. 525(1), 151–161 (2013).
    [Crossref]
  30. E. Skopalová, D. Y. Lei, T. Witting, C. Arrell, F. Frank, Y. Sonnefraud, S. A. Maier, J. W. G. Tisch, and J. P. Marangos, “Numerical simulation of attosecond nanoplasmonic streaking,” New J. Phys. 13(8), 083003 (2011).
    [Crossref]
  31. M. Lupetti, J. Hengster, T. Uphues, and A. Scrinzi, “Attosecond photoscopy of surface plasmon polaritons,” http://arxiv.org/abs/1401.4290v1 (2014).
  32. B. Förg, J. Schötz, F. Süßmann, M. Förster, M. Krüger, B. Ahn, K. Wintersperger, S. Zherebtsov, A. Guggenmos, V. Pervak, A. Kessell, S. A. Trushin, A. M. Azzeer, M. I. Stockman, D. Kim, F. Krausz, P. Hommelhoff, and M.F. Kling, “Attosecond nanoscale near-field sampling,” http://www.arxiv.org/abs/1508.05611 (2015).
  33. M. I. Stockman, M. F. Kling, U. Kleineberg, and F. Krausz, “Attosecond nanoplasmonic field microscope,” Nat. Photonics 1(9), 539–544 (2007).
    [Crossref]
  34. S. H. Chew, F. Süßmann, C. Späth, A. Wirth, J. Schmidt, S. Zherebtsov, A. Guggenmos, A. Oelsner, N. Weber, J. Kapaldo, A. Gliserin, M. I. Stockman, M. F. Kling, and U. Kleineberg, “Time-of-flight-photoelectron emission microscopy on plasmonic structures using attosecond extreme ultraviolet pulses,” Appl. Phys. Lett. 100(5), 051904 (2012).
    [Crossref]
  35. A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klünder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80(12), 123703 (2009).
    [Crossref] [PubMed]
  36. Y. Gong, A. G. Joly, D. Hu, P. Z. El-Khoury, and W. P. Hess, “Ultrafast imaging of surface plasmons propagating on a gold surface,” Nano Lett. 15(5), 3472–3478 (2015).
    [Crossref] [PubMed]
  37. M. Krüger, S. Thomas, M. Förster, and P. Hommelhoff, “Self-probing of metal nanotips by rescattered electrons reveals the nano-optical near-field,” J. Phys. At. Mol. Opt. Phys. 47(12), 124022 (2014).
    [Crossref]
  38. L. Novotny and B. Hecht, Principles of Nano-Optics (New York: Cambridge University Press, 2006).
  39. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  40. D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (IEEE Press Series, 2000).
  41. A. Taflove, Computational Electromagnetics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  42. S. D. Gedney, Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics (Morgan & Claypool, 2011).
  43. Lumerical Solutions, Inc., http://www.lumerical.com/tcad-products/fdtd/
  44. R. Olmon, B. Slovick, T. Johnson, D. Shelton, S.-H. Oh, G. Boreman, and M. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
    [Crossref]
  45. E. D. Palik, Handbook of Optical Constants of Solids, Vol. 3 (Academic Press, 1998).
  46. S. Thomas, G. Wachter, C. Lemell, J. Burgdörfer, and P. Hommelhoff, “Large optical field enhancement for nanotips with large opening angles,” New J. Phys. 17(6), 063010 (2015).
    [Crossref]
  47. C. Balanis, Antenna Theory: Analysis and Design, 3rd ed. (John Wiley & Sons, 2005).
  48. C. C. Wu, K. L. Ou, and C. L. Tseng, “Fabrication and characterization of well-aligned and ultra-sharp silicon nanotip array,” Nanoscale Res. Lett. 7(1), 120 (2012).
    [Crossref] [PubMed]
  49. G. S. Huang, X. L. Wu, Y. C. Cheng, X. F. Li, S. H. Luo, T. Feng, and P. K. Chu, “Fabrication and field emission property of a Si nanotip array,” Nanotechnology 17(22), 5573–5576 (2006).
    [Crossref] [PubMed]
  50. T. C. Cheng, J. Shieh, W. J. Huang, M. C. Yang, M. H. Cheng, H. M. Lin, and M. N. Chang, “Hydrogen plasma dry etching method for field emission application,” Appl. Phys. Lett. 88(26), 263118 (2006).
    [Crossref]
  51. C. H. Hsu, H. C. Lo, C. F. Chen, C. T. Wu, J. S. Hwang, D. Das, J. Tsai, L. C. Chen, and K. H. Chen, “Generally applicable self-masked dry etching technique for nanotip array fabrication,” Nano Lett. 4(3), 471–475 (2004).
    [Crossref]

2015 (3)

J. Vogelsang, J. Robin, B. J. Nagy, P. Dombi, D. Rosenkranz, M. Schiek, P. Groß, and C. Lienau, “Ultrafast electron emission from a sharp metal nanotaper driven by adiabatic nanofocusing of surface plasmons,” Nano Lett. 15(7), 4685–4691 (2015).
[Crossref] [PubMed]

S. Thomas, G. Wachter, C. Lemell, J. Burgdörfer, and P. Hommelhoff, “Large optical field enhancement for nanotips with large opening angles,” New J. Phys. 17(6), 063010 (2015).
[Crossref]

Y. Gong, A. G. Joly, D. Hu, P. Z. El-Khoury, and W. P. Hess, “Ultrafast imaging of surface plasmons propagating on a gold surface,” Nano Lett. 15(5), 3472–3478 (2015).
[Crossref] [PubMed]

2014 (2)

M. Krüger, S. Thomas, M. Förster, and P. Hommelhoff, “Self-probing of metal nanotips by rescattered electrons reveals the nano-optical near-field,” J. Phys. At. Mol. Opt. Phys. 47(12), 124022 (2014).
[Crossref]

F. Krausz and M. I. Stockman, “Attosecond metrology: from electron capture to future signal processing,” Nat. Photonics 8(3), 205–213 (2014).
[Crossref]

2013 (2)

B. Piglosiewicz, S. Schmidt, D. J. Park, J. Vogelsang, P. Groß, C. Manzoni, P. Farinello, G. Cerullo, and C. Lienau, “Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures,” Nat. Photonics 8(1), 37–42 (2013).
[Crossref]

J. S. Prell, L. J. Borja, D. M. Neumark, and S. R. Leone, “Simulation of attosecond-resolved imaging of the plasmon electric field in metallic nanoparticles,” Ann. Phys. 525(1), 151–161 (2013).
[Crossref]

2012 (7)

S. H. Chew, F. Süßmann, C. Späth, A. Wirth, J. Schmidt, S. Zherebtsov, A. Guggenmos, A. Oelsner, N. Weber, J. Kapaldo, A. Gliserin, M. I. Stockman, M. F. Kling, and U. Kleineberg, “Time-of-flight-photoelectron emission microscopy on plasmonic structures using attosecond extreme ultraviolet pulses,” Appl. Phys. Lett. 100(5), 051904 (2012).
[Crossref]

C. C. Wu, K. L. Ou, and C. L. Tseng, “Fabrication and characterization of well-aligned and ultra-sharp silicon nanotip array,” Nanoscale Res. Lett. 7(1), 120 (2012).
[Crossref] [PubMed]

C. Rewitz, T. Keitzl, P. Tuchscherer, J. S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett. 12(1), 45–49 (2012).
[Crossref] [PubMed]

A. G. Borisov, P. M. Echenique, and A. K. Kazansky, “Attostreaking with metallic nano-objects,” New J. Phys. 14(2), 023036 (2012).
[Crossref]

F. Kelkensberg, A. F. Koenderink, and M. J. J. Vrakking, “Attosecond streaking in a nano-plasmonic field,” New J. Phys. 14(9), 093034 (2012).
[Crossref]

G. Herink, D. R. Solli, M. Gulde, and C. Ropers, “Field-driven photoemission from nanostructures quenches the quiver motion,” Nature 483(7388), 190–193 (2012).
[Crossref] [PubMed]

R. Olmon, B. Slovick, T. Johnson, D. Shelton, S.-H. Oh, G. Boreman, and M. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

2011 (7)

M. Krüger, M. Schenk, and P. Hommelhoff, “Attosecond control of electrons emitted from a nanoscale metal tip,” Nature 475(7354), 78–81 (2011).
[Crossref] [PubMed]

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D Appl. Phys. 44(28), 283001 (2011).
[Crossref]

F. Süßmann and M. F. Kling, “Attosecond nanoplasmonic streaking of localized fields near metal nanospheres,” Phys. Rev. B 84(12), 121406 (2011).
[Crossref]

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332(6036), 1407–1410 (2011).
[Crossref] [PubMed]

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Süßmann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, S. Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys. 7(8), 656–662 (2011).
[Crossref]

E. Skopalová, D. Y. Lei, T. Witting, C. Arrell, F. Frank, Y. Sonnefraud, S. A. Maier, J. W. G. Tisch, and J. P. Marangos, “Numerical simulation of attosecond nanoplasmonic streaking,” New J. Phys. 13(8), 083003 (2011).
[Crossref]

2010 (4)

A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D. F. Ogletree, P. J. Schuck, and S. Cabrini, “Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography,” Nanotechnology 21(6), 065306 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10(7), 2519–2524 (2010).
[Crossref] [PubMed]

P. Dombi, S. E. Irvine, P. Rácz, M. Lenner, N. Kroó, G. Farkas, A. Mitrofanov, A. Baltuška, T. Fuji, F. Krausz, and A. Y. Elezzabi, “Observation of few-cycle, strong-field phenomena in surface plasmon fields,” Opt. Express 18(23), 24206–24212 (2010).
[Crossref] [PubMed]

2009 (2)

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klünder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80(12), 123703 (2009).
[Crossref] [PubMed]

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[Crossref] [PubMed]

2008 (2)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

2007 (3)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

W. A. Murray and W. L. Barnes, “Plasmonic Materials,” Adv. Mater. 19(22), 3771–3782 (2007).
[Crossref]

M. I. Stockman, M. F. Kling, U. Kleineberg, and F. Krausz, “Attosecond nanoplasmonic field microscope,” Nat. Photonics 1(9), 539–544 (2007).
[Crossref]

2006 (3)

G. S. Huang, X. L. Wu, Y. C. Cheng, X. F. Li, S. H. Luo, T. Feng, and P. K. Chu, “Fabrication and field emission property of a Si nanotip array,” Nanotechnology 17(22), 5573–5576 (2006).
[Crossref] [PubMed]

T. C. Cheng, J. Shieh, W. J. Huang, M. C. Yang, M. H. Cheng, H. M. Lin, and M. N. Chang, “Hydrogen plasma dry etching method for field emission application,” Appl. Phys. Lett. 88(26), 263118 (2006).
[Crossref]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

2004 (1)

C. H. Hsu, H. C. Lo, C. F. Chen, C. T. Wu, J. S. Hwang, D. Das, J. Tsai, L. C. Chen, and K. H. Chen, “Generally applicable self-masked dry etching technique for nanotip array fabrication,” Nano Lett. 4(3), 471–475 (2004).
[Crossref]

2003 (2)

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[Crossref]

J. L. West and N. J. Halas, “Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics,” Annu. Rev. Biomed. Eng. 5(1), 285–292 (2003).
[Crossref] [PubMed]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1), 3–15 (1999).
[Crossref]

1997 (1)

S. Nie and S. R. Emory, “Probing single molecules ans single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

1993 (1)

E. Betzig and R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262(5138), 1422–1425 (1993).
[Crossref] [PubMed]

Ahmad, I.

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Süßmann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, S. Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys. 7(8), 656–662 (2011).
[Crossref]

Alivisatos, A. P.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332(6036), 1407–1410 (2011).
[Crossref] [PubMed]

Andersen, J. N.

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klünder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80(12), 123703 (2009).
[Crossref] [PubMed]

Anderson, A.

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10(7), 2519–2524 (2010).
[Crossref] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Antonsson, E.

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Süßmann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, S. Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys. 7(8), 656–662 (2011).
[Crossref]

Anttu, N.

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klünder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80(12), 123703 (2009).
[Crossref] [PubMed]

Arrell, C.

E. Skopalová, D. Y. Lei, T. Witting, C. Arrell, F. Frank, Y. Sonnefraud, S. A. Maier, J. W. G. Tisch, and J. P. Marangos, “Numerical simulation of attosecond nanoplasmonic streaking,” New J. Phys. 13(8), 083003 (2011).
[Crossref]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Baltuška, A.

Barnes, W. L.

W. A. Murray and W. L. Barnes, “Plasmonic Materials,” Adv. Mater. 19(22), 3771–3782 (2007).
[Crossref]

Betzig, E.

E. Betzig and R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262(5138), 1422–1425 (1993).
[Crossref] [PubMed]

Boreman, G.

R. Olmon, B. Slovick, T. Johnson, D. Shelton, S.-H. Oh, G. Boreman, and M. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Borisov, A. G.

A. G. Borisov, P. M. Echenique, and A. K. Kazansky, “Attostreaking with metallic nano-objects,” New J. Phys. 14(2), 023036 (2012).
[Crossref]

Borja, L. J.

J. S. Prell, L. J. Borja, D. M. Neumark, and S. R. Leone, “Simulation of attosecond-resolved imaging of the plasmon electric field in metallic nanoparticles,” Ann. Phys. 525(1), 151–161 (2013).
[Crossref]

Bratschitsch, R.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[Crossref] [PubMed]

Brixner, T.

C. Rewitz, T. Keitzl, P. Tuchscherer, J. S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett. 12(1), 45–49 (2012).
[Crossref] [PubMed]

Burgdörfer, J.

S. Thomas, G. Wachter, C. Lemell, J. Burgdörfer, and P. Hommelhoff, “Large optical field enhancement for nanotips with large opening angles,” New J. Phys. 17(6), 063010 (2015).
[Crossref]

Cabrini, S.

A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D. F. Ogletree, P. J. Schuck, and S. Cabrini, “Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography,” Nanotechnology 21(6), 065306 (2010).
[Crossref] [PubMed]

Cerullo, G.

B. Piglosiewicz, S. Schmidt, D. J. Park, J. Vogelsang, P. Groß, C. Manzoni, P. Farinello, G. Cerullo, and C. Lienau, “Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures,” Nat. Photonics 8(1), 37–42 (2013).
[Crossref]

Chang, M. N.

T. C. Cheng, J. Shieh, W. J. Huang, M. C. Yang, M. H. Cheng, H. M. Lin, and M. N. Chang, “Hydrogen plasma dry etching method for field emission application,” Appl. Phys. Lett. 88(26), 263118 (2006).
[Crossref]

Chen, C. F.

C. H. Hsu, H. C. Lo, C. F. Chen, C. T. Wu, J. S. Hwang, D. Das, J. Tsai, L. C. Chen, and K. H. Chen, “Generally applicable self-masked dry etching technique for nanotip array fabrication,” Nano Lett. 4(3), 471–475 (2004).
[Crossref]

Chen, K. H.

C. H. Hsu, H. C. Lo, C. F. Chen, C. T. Wu, J. S. Hwang, D. Das, J. Tsai, L. C. Chen, and K. H. Chen, “Generally applicable self-masked dry etching technique for nanotip array fabrication,” Nano Lett. 4(3), 471–475 (2004).
[Crossref]

Chen, L. C.

C. H. Hsu, H. C. Lo, C. F. Chen, C. T. Wu, J. S. Hwang, D. Das, J. Tsai, L. C. Chen, and K. H. Chen, “Generally applicable self-masked dry etching technique for nanotip array fabrication,” Nano Lett. 4(3), 471–475 (2004).
[Crossref]

Cheng, M. H.

T. C. Cheng, J. Shieh, W. J. Huang, M. C. Yang, M. H. Cheng, H. M. Lin, and M. N. Chang, “Hydrogen plasma dry etching method for field emission application,” Appl. Phys. Lett. 88(26), 263118 (2006).
[Crossref]

Cheng, T. C.

T. C. Cheng, J. Shieh, W. J. Huang, M. C. Yang, M. H. Cheng, H. M. Lin, and M. N. Chang, “Hydrogen plasma dry etching method for field emission application,” Appl. Phys. Lett. 88(26), 263118 (2006).
[Crossref]

Cheng, Y. C.

G. S. Huang, X. L. Wu, Y. C. Cheng, X. F. Li, S. H. Luo, T. Feng, and P. K. Chu, “Fabrication and field emission property of a Si nanotip array,” Nanotechnology 17(22), 5573–5576 (2006).
[Crossref] [PubMed]

Chew, S. H.

S. H. Chew, F. Süßmann, C. Späth, A. Wirth, J. Schmidt, S. Zherebtsov, A. Guggenmos, A. Oelsner, N. Weber, J. Kapaldo, A. Gliserin, M. I. Stockman, M. F. Kling, and U. Kleineberg, “Time-of-flight-photoelectron emission microscopy on plasmonic structures using attosecond extreme ultraviolet pulses,” Appl. Phys. Lett. 100(5), 051904 (2012).
[Crossref]

Chichester, R. J.

E. Betzig and R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262(5138), 1422–1425 (1993).
[Crossref] [PubMed]

Chu, P. K.

G. S. Huang, X. L. Wu, Y. C. Cheng, X. F. Li, S. H. Luo, T. Feng, and P. K. Chu, “Fabrication and field emission property of a Si nanotip array,” Nanotechnology 17(22), 5573–5576 (2006).
[Crossref] [PubMed]

Cobley, C. M.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Das, D.

C. H. Hsu, H. C. Lo, C. F. Chen, C. T. Wu, J. S. Hwang, D. Das, J. Tsai, L. C. Chen, and K. H. Chen, “Generally applicable self-masked dry etching technique for nanotip array fabrication,” Nano Lett. 4(3), 471–475 (2004).
[Crossref]

Deryckx, K. S.

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10(7), 2519–2524 (2010).
[Crossref] [PubMed]

Dombi, P.

J. Vogelsang, J. Robin, B. J. Nagy, P. Dombi, D. Rosenkranz, M. Schiek, P. Groß, and C. Lienau, “Ultrafast electron emission from a sharp metal nanotaper driven by adiabatic nanofocusing of surface plasmons,” Nano Lett. 15(7), 4685–4691 (2015).
[Crossref] [PubMed]

P. Dombi, S. E. Irvine, P. Rácz, M. Lenner, N. Kroó, G. Farkas, A. Mitrofanov, A. Baltuška, T. Fuji, F. Krausz, and A. Y. Elezzabi, “Observation of few-cycle, strong-field phenomena in surface plasmon fields,” Opt. Express 18(23), 24206–24212 (2010).
[Crossref] [PubMed]

Echenique, P. M.

A. G. Borisov, P. M. Echenique, and A. K. Kazansky, “Attostreaking with metallic nano-objects,” New J. Phys. 14(2), 023036 (2012).
[Crossref]

Elezzabi, A. Y.

El-Khoury, P. Z.

Y. Gong, A. G. Joly, D. Hu, P. Z. El-Khoury, and W. P. Hess, “Ultrafast imaging of surface plasmons propagating on a gold surface,” Nano Lett. 15(5), 3472–3478 (2015).
[Crossref] [PubMed]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules ans single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Farinello, P.

B. Piglosiewicz, S. Schmidt, D. J. Park, J. Vogelsang, P. Groß, C. Manzoni, P. Farinello, G. Cerullo, and C. Lienau, “Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures,” Nat. Photonics 8(1), 37–42 (2013).
[Crossref]

Farkas, G.

Feng, T.

G. S. Huang, X. L. Wu, Y. C. Cheng, X. F. Li, S. H. Luo, T. Feng, and P. K. Chu, “Fabrication and field emission property of a Si nanotip array,” Nanotechnology 17(22), 5573–5576 (2006).
[Crossref] [PubMed]

Fennel, T.

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Süßmann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, S. Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys. 7(8), 656–662 (2011).
[Crossref]

Fordell, T.

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klünder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80(12), 123703 (2009).
[Crossref] [PubMed]

Förster, M.

M. Krüger, S. Thomas, M. Förster, and P. Hommelhoff, “Self-probing of metal nanotips by rescattered electrons reveals the nano-optical near-field,” J. Phys. At. Mol. Opt. Phys. 47(12), 124022 (2014).
[Crossref]

Frank, F.

E. Skopalová, D. Y. Lei, T. Witting, C. Arrell, F. Frank, Y. Sonnefraud, S. A. Maier, J. W. G. Tisch, and J. P. Marangos, “Numerical simulation of attosecond nanoplasmonic streaking,” New J. Phys. 13(8), 083003 (2011).
[Crossref]

Fuji, T.

Garcia, M. A.

M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D Appl. Phys. 44(28), 283001 (2011).
[Crossref]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1), 3–15 (1999).
[Crossref]

Geisler, P.

C. Rewitz, T. Keitzl, P. Tuchscherer, J. S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett. 12(1), 45–49 (2012).
[Crossref] [PubMed]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Giessen, H.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332(6036), 1407–1410 (2011).
[Crossref] [PubMed]

Gliserin, A.

S. H. Chew, F. Süßmann, C. Späth, A. Wirth, J. Schmidt, S. Zherebtsov, A. Guggenmos, A. Oelsner, N. Weber, J. Kapaldo, A. Gliserin, M. I. Stockman, M. F. Kling, and U. Kleineberg, “Time-of-flight-photoelectron emission microscopy on plasmonic structures using attosecond extreme ultraviolet pulses,” Appl. Phys. Lett. 100(5), 051904 (2012).
[Crossref]

Gong, Y.

Y. Gong, A. G. Joly, D. Hu, P. Z. El-Khoury, and W. P. Hess, “Ultrafast imaging of surface plasmons propagating on a gold surface,” Nano Lett. 15(5), 3472–3478 (2015).
[Crossref] [PubMed]

Graf, C.

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Süßmann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, S. Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys. 7(8), 656–662 (2011).
[Crossref]

Groß, P.

J. Vogelsang, J. Robin, B. J. Nagy, P. Dombi, D. Rosenkranz, M. Schiek, P. Groß, and C. Lienau, “Ultrafast electron emission from a sharp metal nanotaper driven by adiabatic nanofocusing of surface plasmons,” Nano Lett. 15(7), 4685–4691 (2015).
[Crossref] [PubMed]

B. Piglosiewicz, S. Schmidt, D. J. Park, J. Vogelsang, P. Groß, C. Manzoni, P. Farinello, G. Cerullo, and C. Lienau, “Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures,” Nat. Photonics 8(1), 37–42 (2013).
[Crossref]

Guggenmos, A.

S. H. Chew, F. Süßmann, C. Späth, A. Wirth, J. Schmidt, S. Zherebtsov, A. Guggenmos, A. Oelsner, N. Weber, J. Kapaldo, A. Gliserin, M. I. Stockman, M. F. Kling, and U. Kleineberg, “Time-of-flight-photoelectron emission microscopy on plasmonic structures using attosecond extreme ultraviolet pulses,” Appl. Phys. Lett. 100(5), 051904 (2012).
[Crossref]

Gulde, M.

G. Herink, D. R. Solli, M. Gulde, and C. Ropers, “Field-driven photoemission from nanostructures quenches the quiver motion,” Nature 483(7388), 190–193 (2012).
[Crossref] [PubMed]

Halas, N. J.

J. L. West and N. J. Halas, “Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics,” Annu. Rev. Biomed. Eng. 5(1), 285–292 (2003).
[Crossref] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Hanke, T.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[Crossref] [PubMed]

Harteneck, B.

A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D. F. Ogletree, P. J. Schuck, and S. Cabrini, “Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography,” Nanotechnology 21(6), 065306 (2010).
[Crossref] [PubMed]

Hecht, B.

C. Rewitz, T. Keitzl, P. Tuchscherer, J. S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett. 12(1), 45–49 (2012).
[Crossref] [PubMed]

Hentschel, M.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332(6036), 1407–1410 (2011).
[Crossref] [PubMed]

Herink, G.

G. Herink, D. R. Solli, M. Gulde, and C. Ropers, “Field-driven photoemission from nanostructures quenches the quiver motion,” Nature 483(7388), 190–193 (2012).
[Crossref] [PubMed]

Herrwerth, O.

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Süßmann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, S. Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys. 7(8), 656–662 (2011).
[Crossref]

Hess, W. P.

Y. Gong, A. G. Joly, D. Hu, P. Z. El-Khoury, and W. P. Hess, “Ultrafast imaging of surface plasmons propagating on a gold surface,” Nano Lett. 15(5), 3472–3478 (2015).
[Crossref] [PubMed]

Hilner, E.

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klünder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80(12), 123703 (2009).
[Crossref] [PubMed]

Hommelhoff, P.

S. Thomas, G. Wachter, C. Lemell, J. Burgdörfer, and P. Hommelhoff, “Large optical field enhancement for nanotips with large opening angles,” New J. Phys. 17(6), 063010 (2015).
[Crossref]

M. Krüger, S. Thomas, M. Förster, and P. Hommelhoff, “Self-probing of metal nanotips by rescattered electrons reveals the nano-optical near-field,” J. Phys. At. Mol. Opt. Phys. 47(12), 124022 (2014).
[Crossref]

M. Krüger, M. Schenk, and P. Hommelhoff, “Attosecond control of electrons emitted from a nanoscale metal tip,” Nature 475(7354), 78–81 (2011).
[Crossref] [PubMed]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1), 3–15 (1999).
[Crossref]

Hsu, C. H.

C. H. Hsu, H. C. Lo, C. F. Chen, C. T. Wu, J. S. Hwang, D. Das, J. Tsai, L. C. Chen, and K. H. Chen, “Generally applicable self-masked dry etching technique for nanotip array fabrication,” Nano Lett. 4(3), 471–475 (2004).
[Crossref]

Hu, D.

Y. Gong, A. G. Joly, D. Hu, P. Z. El-Khoury, and W. P. Hess, “Ultrafast imaging of surface plasmons propagating on a gold surface,” Nano Lett. 15(5), 3472–3478 (2015).
[Crossref] [PubMed]

Huang, G. S.

G. S. Huang, X. L. Wu, Y. C. Cheng, X. F. Li, S. H. Luo, T. Feng, and P. K. Chu, “Fabrication and field emission property of a Si nanotip array,” Nanotechnology 17(22), 5573–5576 (2006).
[Crossref] [PubMed]

Huang, J. S.

C. Rewitz, T. Keitzl, P. Tuchscherer, J. S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett. 12(1), 45–49 (2012).
[Crossref] [PubMed]

Huang, W. J.

T. C. Cheng, J. Shieh, W. J. Huang, M. C. Yang, M. H. Cheng, H. M. Lin, and M. N. Chang, “Hydrogen plasma dry etching method for field emission application,” Appl. Phys. Lett. 88(26), 263118 (2006).
[Crossref]

Hwang, J. S.

C. H. Hsu, H. C. Lo, C. F. Chen, C. T. Wu, J. S. Hwang, D. Das, J. Tsai, L. C. Chen, and K. H. Chen, “Generally applicable self-masked dry etching technique for nanotip array fabrication,” Nano Lett. 4(3), 471–475 (2004).
[Crossref]

Irvine, S. E.

Johnson, T.

R. Olmon, B. Slovick, T. Johnson, D. Shelton, S.-H. Oh, G. Boreman, and M. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Joly, A. G.

Y. Gong, A. G. Joly, D. Hu, P. Z. El-Khoury, and W. P. Hess, “Ultrafast imaging of surface plasmons propagating on a gold surface,” Nano Lett. 15(5), 3472–3478 (2015).
[Crossref] [PubMed]

Kapaldo, J.

S. H. Chew, F. Süßmann, C. Späth, A. Wirth, J. Schmidt, S. Zherebtsov, A. Guggenmos, A. Oelsner, N. Weber, J. Kapaldo, A. Gliserin, M. I. Stockman, M. F. Kling, and U. Kleineberg, “Time-of-flight-photoelectron emission microscopy on plasmonic structures using attosecond extreme ultraviolet pulses,” Appl. Phys. Lett. 100(5), 051904 (2012).
[Crossref]

Karsch, S.

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Süßmann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, S. Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys. 7(8), 656–662 (2011).
[Crossref]

Kazansky, A. K.

A. G. Borisov, P. M. Echenique, and A. K. Kazansky, “Attostreaking with metallic nano-objects,” New J. Phys. 14(2), 023036 (2012).
[Crossref]

Keitzl, T.

C. Rewitz, T. Keitzl, P. Tuchscherer, J. S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett. 12(1), 45–49 (2012).
[Crossref] [PubMed]

Kelkensberg, F.

F. Kelkensberg, A. F. Koenderink, and M. J. J. Vrakking, “Attosecond streaking in a nano-plasmonic field,” New J. Phys. 14(9), 093034 (2012).
[Crossref]

Kleineberg, U.

S. H. Chew, F. Süßmann, C. Späth, A. Wirth, J. Schmidt, S. Zherebtsov, A. Guggenmos, A. Oelsner, N. Weber, J. Kapaldo, A. Gliserin, M. I. Stockman, M. F. Kling, and U. Kleineberg, “Time-of-flight-photoelectron emission microscopy on plasmonic structures using attosecond extreme ultraviolet pulses,” Appl. Phys. Lett. 100(5), 051904 (2012).
[Crossref]

M. I. Stockman, M. F. Kling, U. Kleineberg, and F. Krausz, “Attosecond nanoplasmonic field microscope,” Nat. Photonics 1(9), 539–544 (2007).
[Crossref]

Kling, M. F.

S. H. Chew, F. Süßmann, C. Späth, A. Wirth, J. Schmidt, S. Zherebtsov, A. Guggenmos, A. Oelsner, N. Weber, J. Kapaldo, A. Gliserin, M. I. Stockman, M. F. Kling, and U. Kleineberg, “Time-of-flight-photoelectron emission microscopy on plasmonic structures using attosecond extreme ultraviolet pulses,” Appl. Phys. Lett. 100(5), 051904 (2012).
[Crossref]

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Süßmann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, S. Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys. 7(8), 656–662 (2011).
[Crossref]

F. Süßmann and M. F. Kling, “Attosecond nanoplasmonic streaking of localized fields near metal nanospheres,” Phys. Rev. B 84(12), 121406 (2011).
[Crossref]

M. I. Stockman, M. F. Kling, U. Kleineberg, and F. Krausz, “Attosecond nanoplasmonic field microscope,” Nat. Photonics 1(9), 539–544 (2007).
[Crossref]

Klünder, K.

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klünder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80(12), 123703 (2009).
[Crossref] [PubMed]

Koenderink, A. F.

F. Kelkensberg, A. F. Koenderink, and M. J. J. Vrakking, “Attosecond streaking in a nano-plasmonic field,” New J. Phys. 14(9), 093034 (2012).
[Crossref]

Krauss, G.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[Crossref] [PubMed]

Krausz, F.

F. Krausz and M. I. Stockman, “Attosecond metrology: from electron capture to future signal processing,” Nat. Photonics 8(3), 205–213 (2014).
[Crossref]

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Süßmann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, S. Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys. 7(8), 656–662 (2011).
[Crossref]

P. Dombi, S. E. Irvine, P. Rácz, M. Lenner, N. Kroó, G. Farkas, A. Mitrofanov, A. Baltuška, T. Fuji, F. Krausz, and A. Y. Elezzabi, “Observation of few-cycle, strong-field phenomena in surface plasmon fields,” Opt. Express 18(23), 24206–24212 (2010).
[Crossref] [PubMed]

M. I. Stockman, M. F. Kling, U. Kleineberg, and F. Krausz, “Attosecond nanoplasmonic field microscope,” Nat. Photonics 1(9), 539–544 (2007).
[Crossref]

Kroó, N.

Krüger, M.

M. Krüger, S. Thomas, M. Förster, and P. Hommelhoff, “Self-probing of metal nanotips by rescattered electrons reveals the nano-optical near-field,” J. Phys. At. Mol. Opt. Phys. 47(12), 124022 (2014).
[Crossref]

M. Krüger, M. Schenk, and P. Hommelhoff, “Attosecond control of electrons emitted from a nanoscale metal tip,” Nature 475(7354), 78–81 (2011).
[Crossref] [PubMed]

L’Huillier, A.

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klünder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80(12), 123703 (2009).
[Crossref] [PubMed]

Langer, B.

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Süßmann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, S. Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys. 7(8), 656–662 (2011).
[Crossref]

Lei, D. Y.

E. Skopalová, D. Y. Lei, T. Witting, C. Arrell, F. Frank, Y. Sonnefraud, S. A. Maier, J. W. G. Tisch, and J. P. Marangos, “Numerical simulation of attosecond nanoplasmonic streaking,” New J. Phys. 13(8), 083003 (2011).
[Crossref]

Leitenstorfer, A.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[Crossref] [PubMed]

Lemell, C.

S. Thomas, G. Wachter, C. Lemell, J. Burgdörfer, and P. Hommelhoff, “Large optical field enhancement for nanotips with large opening angles,” New J. Phys. 17(6), 063010 (2015).
[Crossref]

Lenner, M.

Leone, S. R.

J. S. Prell, L. J. Borja, D. M. Neumark, and S. R. Leone, “Simulation of attosecond-resolved imaging of the plasmon electric field in metallic nanoparticles,” Ann. Phys. 525(1), 151–161 (2013).
[Crossref]

Li, W.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Li, X. F.

G. S. Huang, X. L. Wu, Y. C. Cheng, X. F. Li, S. H. Luo, T. Feng, and P. K. Chu, “Fabrication and field emission property of a Si nanotip array,” Nanotechnology 17(22), 5573–5576 (2006).
[Crossref] [PubMed]

Lienau, C.

J. Vogelsang, J. Robin, B. J. Nagy, P. Dombi, D. Rosenkranz, M. Schiek, P. Groß, and C. Lienau, “Ultrafast electron emission from a sharp metal nanotaper driven by adiabatic nanofocusing of surface plasmons,” Nano Lett. 15(7), 4685–4691 (2015).
[Crossref] [PubMed]

B. Piglosiewicz, S. Schmidt, D. J. Park, J. Vogelsang, P. Groß, C. Manzoni, P. Farinello, G. Cerullo, and C. Lienau, “Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures,” Nat. Photonics 8(1), 37–42 (2013).
[Crossref]

Lin, H. M.

T. C. Cheng, J. Shieh, W. J. Huang, M. C. Yang, M. H. Cheng, H. M. Lin, and M. N. Chang, “Hydrogen plasma dry etching method for field emission application,” Appl. Phys. Lett. 88(26), 263118 (2006).
[Crossref]

Liu, N.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332(6036), 1407–1410 (2011).
[Crossref] [PubMed]

Lo, H. C.

C. H. Hsu, H. C. Lo, C. F. Chen, C. T. Wu, J. S. Hwang, D. Das, J. Tsai, L. C. Chen, and K. H. Chen, “Generally applicable self-masked dry etching technique for nanotip array fabrication,” Nano Lett. 4(3), 471–475 (2004).
[Crossref]

Lundgren, E.

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klünder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80(12), 123703 (2009).
[Crossref] [PubMed]

Luo, G.

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klünder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80(12), 123703 (2009).
[Crossref] [PubMed]

Luo, S. H.

G. S. Huang, X. L. Wu, Y. C. Cheng, X. F. Li, S. H. Luo, T. Feng, and P. K. Chu, “Fabrication and field emission property of a Si nanotip array,” Nanotechnology 17(22), 5573–5576 (2006).
[Crossref] [PubMed]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Maier, S. A.

E. Skopalová, D. Y. Lei, T. Witting, C. Arrell, F. Frank, Y. Sonnefraud, S. A. Maier, J. W. G. Tisch, and J. P. Marangos, “Numerical simulation of attosecond nanoplasmonic streaking,” New J. Phys. 13(8), 083003 (2011).
[Crossref]

Manzoni, C.

B. Piglosiewicz, S. Schmidt, D. J. Park, J. Vogelsang, P. Groß, C. Manzoni, P. Farinello, G. Cerullo, and C. Lienau, “Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures,” Nat. Photonics 8(1), 37–42 (2013).
[Crossref]

Marangos, J. P.

E. Skopalová, D. Y. Lei, T. Witting, C. Arrell, F. Frank, Y. Sonnefraud, S. A. Maier, J. W. G. Tisch, and J. P. Marangos, “Numerical simulation of attosecond nanoplasmonic streaking,” New J. Phys. 13(8), 083003 (2011).
[Crossref]

Mauritsson, J.

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klünder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80(12), 123703 (2009).
[Crossref] [PubMed]

Mikkelsen, A.

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klünder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80(12), 123703 (2009).
[Crossref] [PubMed]

Mitrofanov, A.

Mock, J. J.

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[Crossref]

Moran, C. H.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Murray, W. A.

W. A. Murray and W. L. Barnes, “Plasmonic Materials,” Adv. Mater. 19(22), 3771–3782 (2007).
[Crossref]

Nagy, B. J.

J. Vogelsang, J. Robin, B. J. Nagy, P. Dombi, D. Rosenkranz, M. Schiek, P. Groß, and C. Lienau, “Ultrafast electron emission from a sharp metal nanotaper driven by adiabatic nanofocusing of surface plasmons,” Nano Lett. 15(7), 4685–4691 (2015).
[Crossref] [PubMed]

Neumark, D. M.

J. S. Prell, L. J. Borja, D. M. Neumark, and S. R. Leone, “Simulation of attosecond-resolved imaging of the plasmon electric field in metallic nanoparticles,” Ann. Phys. 525(1), 151–161 (2013).
[Crossref]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules ans single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Oelsner, A.

S. H. Chew, F. Süßmann, C. Späth, A. Wirth, J. Schmidt, S. Zherebtsov, A. Guggenmos, A. Oelsner, N. Weber, J. Kapaldo, A. Gliserin, M. I. Stockman, M. F. Kling, and U. Kleineberg, “Time-of-flight-photoelectron emission microscopy on plasmonic structures using attosecond extreme ultraviolet pulses,” Appl. Phys. Lett. 100(5), 051904 (2012).
[Crossref]

Ogletree, D. F.

A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D. F. Ogletree, P. J. Schuck, and S. Cabrini, “Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography,” Nanotechnology 21(6), 065306 (2010).
[Crossref] [PubMed]

Oh, S.-H.

R. Olmon, B. Slovick, T. Johnson, D. Shelton, S.-H. Oh, G. Boreman, and M. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Olmon, R.

R. Olmon, B. Slovick, T. Johnson, D. Shelton, S.-H. Oh, G. Boreman, and M. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Ou, K. L.

C. C. Wu, K. L. Ou, and C. L. Tseng, “Fabrication and characterization of well-aligned and ultra-sharp silicon nanotip array,” Nanoscale Res. Lett. 7(1), 120 (2012).
[Crossref] [PubMed]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Park, D. J.

B. Piglosiewicz, S. Schmidt, D. J. Park, J. Vogelsang, P. Groß, C. Manzoni, P. Farinello, G. Cerullo, and C. Lienau, “Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures,” Nat. Photonics 8(1), 37–42 (2013).
[Crossref]

Peltz, C.

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Süßmann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, S. Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys. 7(8), 656–662 (2011).
[Crossref]

Pervak, V.

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Süßmann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, S. Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys. 7(8), 656–662 (2011).
[Crossref]

Piglosiewicz, B.

B. Piglosiewicz, S. Schmidt, D. J. Park, J. Vogelsang, P. Groß, C. Manzoni, P. Farinello, G. Cerullo, and C. Lienau, “Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures,” Nat. Photonics 8(1), 37–42 (2013).
[Crossref]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Plenge, J.

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Süßmann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, S. Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys. 7(8), 656–662 (2011).
[Crossref]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Prell, J. S.

J. S. Prell, L. J. Borja, D. M. Neumark, and S. R. Leone, “Simulation of attosecond-resolved imaging of the plasmon electric field in metallic nanoparticles,” Ann. Phys. 525(1), 151–161 (2013).
[Crossref]

Qin, D.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Rácz, P.

Raschke, M.

R. Olmon, B. Slovick, T. Johnson, D. Shelton, S.-H. Oh, G. Boreman, and M. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Raschke, M. B.

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10(7), 2519–2524 (2010).
[Crossref] [PubMed]

Razinskas, G.

C. Rewitz, T. Keitzl, P. Tuchscherer, J. S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett. 12(1), 45–49 (2012).
[Crossref] [PubMed]

Rewitz, C.

C. Rewitz, T. Keitzl, P. Tuchscherer, J. S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett. 12(1), 45–49 (2012).
[Crossref] [PubMed]

Robin, J.

J. Vogelsang, J. Robin, B. J. Nagy, P. Dombi, D. Rosenkranz, M. Schiek, P. Groß, and C. Lienau, “Ultrafast electron emission from a sharp metal nanotaper driven by adiabatic nanofocusing of surface plasmons,” Nano Lett. 15(7), 4685–4691 (2015).
[Crossref] [PubMed]

Ropers, C.

G. Herink, D. R. Solli, M. Gulde, and C. Ropers, “Field-driven photoemission from nanostructures quenches the quiver motion,” Nature 483(7388), 190–193 (2012).
[Crossref] [PubMed]

Rosenkranz, D.

J. Vogelsang, J. Robin, B. J. Nagy, P. Dombi, D. Rosenkranz, M. Schiek, P. Groß, and C. Lienau, “Ultrafast electron emission from a sharp metal nanotaper driven by adiabatic nanofocusing of surface plasmons,” Nano Lett. 15(7), 4685–4691 (2015).
[Crossref] [PubMed]

Rühl, E.

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Süßmann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, S. Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys. 7(8), 656–662 (2011).
[Crossref]

Rycenga, M.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Schenk, M.

M. Krüger, M. Schenk, and P. Hommelhoff, “Attosecond control of electrons emitted from a nanoscale metal tip,” Nature 475(7354), 78–81 (2011).
[Crossref] [PubMed]

Schiek, M.

J. Vogelsang, J. Robin, B. J. Nagy, P. Dombi, D. Rosenkranz, M. Schiek, P. Groß, and C. Lienau, “Ultrafast electron emission from a sharp metal nanotaper driven by adiabatic nanofocusing of surface plasmons,” Nano Lett. 15(7), 4685–4691 (2015).
[Crossref] [PubMed]

Schmidt, J.

S. H. Chew, F. Süßmann, C. Späth, A. Wirth, J. Schmidt, S. Zherebtsov, A. Guggenmos, A. Oelsner, N. Weber, J. Kapaldo, A. Gliserin, M. I. Stockman, M. F. Kling, and U. Kleineberg, “Time-of-flight-photoelectron emission microscopy on plasmonic structures using attosecond extreme ultraviolet pulses,” Appl. Phys. Lett. 100(5), 051904 (2012).
[Crossref]

Schmidt, M.

A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D. F. Ogletree, P. J. Schuck, and S. Cabrini, “Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography,” Nanotechnology 21(6), 065306 (2010).
[Crossref] [PubMed]

Schmidt, S.

B. Piglosiewicz, S. Schmidt, D. J. Park, J. Vogelsang, P. Groß, C. Manzoni, P. Farinello, G. Cerullo, and C. Lienau, “Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures,” Nat. Photonics 8(1), 37–42 (2013).
[Crossref]

Schuck, P. J.

A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D. F. Ogletree, P. J. Schuck, and S. Cabrini, “Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography,” Nanotechnology 21(6), 065306 (2010).
[Crossref] [PubMed]

Schultz, S.

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[Crossref]

Schwartzberg, A.

A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D. F. Ogletree, P. J. Schuck, and S. Cabrini, “Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography,” Nanotechnology 21(6), 065306 (2010).
[Crossref] [PubMed]

Schwenke, J.

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klünder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80(12), 123703 (2009).
[Crossref] [PubMed]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Shalaev, V. M.

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

Shelton, D.

R. Olmon, B. Slovick, T. Johnson, D. Shelton, S.-H. Oh, G. Boreman, and M. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Shieh, J.

T. C. Cheng, J. Shieh, W. J. Huang, M. C. Yang, M. H. Cheng, H. M. Lin, and M. N. Chang, “Hydrogen plasma dry etching method for field emission application,” Appl. Phys. Lett. 88(26), 263118 (2006).
[Crossref]

Skopalová, E.

E. Skopalová, D. Y. Lei, T. Witting, C. Arrell, F. Frank, Y. Sonnefraud, S. A. Maier, J. W. G. Tisch, and J. P. Marangos, “Numerical simulation of attosecond nanoplasmonic streaking,” New J. Phys. 13(8), 083003 (2011).
[Crossref]

Slovick, B.

R. Olmon, B. Slovick, T. Johnson, D. Shelton, S.-H. Oh, G. Boreman, and M. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Smith, D. R.

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[Crossref]

Solli, D. R.

G. Herink, D. R. Solli, M. Gulde, and C. Ropers, “Field-driven photoemission from nanostructures quenches the quiver motion,” Nature 483(7388), 190–193 (2012).
[Crossref] [PubMed]

Sonnefraud, Y.

E. Skopalová, D. Y. Lei, T. Witting, C. Arrell, F. Frank, Y. Sonnefraud, S. A. Maier, J. W. G. Tisch, and J. P. Marangos, “Numerical simulation of attosecond nanoplasmonic streaking,” New J. Phys. 13(8), 083003 (2011).
[Crossref]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Späth, C.

S. H. Chew, F. Süßmann, C. Späth, A. Wirth, J. Schmidt, S. Zherebtsov, A. Guggenmos, A. Oelsner, N. Weber, J. Kapaldo, A. Gliserin, M. I. Stockman, M. F. Kling, and U. Kleineberg, “Time-of-flight-photoelectron emission microscopy on plasmonic structures using attosecond extreme ultraviolet pulses,” Appl. Phys. Lett. 100(5), 051904 (2012).
[Crossref]

Steinmeyer, G.

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10(7), 2519–2524 (2010).
[Crossref] [PubMed]

Stockman, M. I.

F. Krausz and M. I. Stockman, “Attosecond metrology: from electron capture to future signal processing,” Nat. Photonics 8(3), 205–213 (2014).
[Crossref]

S. H. Chew, F. Süßmann, C. Späth, A. Wirth, J. Schmidt, S. Zherebtsov, A. Guggenmos, A. Oelsner, N. Weber, J. Kapaldo, A. Gliserin, M. I. Stockman, M. F. Kling, and U. Kleineberg, “Time-of-flight-photoelectron emission microscopy on plasmonic structures using attosecond extreme ultraviolet pulses,” Appl. Phys. Lett. 100(5), 051904 (2012).
[Crossref]

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Süßmann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, S. Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys. 7(8), 656–662 (2011).
[Crossref]

M. I. Stockman, M. F. Kling, U. Kleineberg, and F. Krausz, “Attosecond nanoplasmonic field microscope,” Nat. Photonics 1(9), 539–544 (2007).
[Crossref]

Süßmann, F.

S. H. Chew, F. Süßmann, C. Späth, A. Wirth, J. Schmidt, S. Zherebtsov, A. Guggenmos, A. Oelsner, N. Weber, J. Kapaldo, A. Gliserin, M. I. Stockman, M. F. Kling, and U. Kleineberg, “Time-of-flight-photoelectron emission microscopy on plasmonic structures using attosecond extreme ultraviolet pulses,” Appl. Phys. Lett. 100(5), 051904 (2012).
[Crossref]

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Süßmann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, S. Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys. 7(8), 656–662 (2011).
[Crossref]

F. Süßmann and M. F. Kling, “Attosecond nanoplasmonic streaking of localized fields near metal nanospheres,” Phys. Rev. B 84(12), 121406 (2011).
[Crossref]

Thomas, S.

S. Thomas, G. Wachter, C. Lemell, J. Burgdörfer, and P. Hommelhoff, “Large optical field enhancement for nanotips with large opening angles,” New J. Phys. 17(6), 063010 (2015).
[Crossref]

M. Krüger, S. Thomas, M. Förster, and P. Hommelhoff, “Self-probing of metal nanotips by rescattered electrons reveals the nano-optical near-field,” J. Phys. At. Mol. Opt. Phys. 47(12), 124022 (2014).
[Crossref]

Tisch, J. W. G.

E. Skopalová, D. Y. Lei, T. Witting, C. Arrell, F. Frank, Y. Sonnefraud, S. A. Maier, J. W. G. Tisch, and J. P. Marangos, “Numerical simulation of attosecond nanoplasmonic streaking,” New J. Phys. 13(8), 083003 (2011).
[Crossref]

Träutlein, D.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[Crossref] [PubMed]

Trushin, S. A.

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Süßmann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, S. Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys. 7(8), 656–662 (2011).
[Crossref]

Tsai, J.

C. H. Hsu, H. C. Lo, C. F. Chen, C. T. Wu, J. S. Hwang, D. Das, J. Tsai, L. C. Chen, and K. H. Chen, “Generally applicable self-masked dry etching technique for nanotip array fabrication,” Nano Lett. 4(3), 471–475 (2004).
[Crossref]

Tseng, C. L.

C. C. Wu, K. L. Ou, and C. L. Tseng, “Fabrication and characterization of well-aligned and ultra-sharp silicon nanotip array,” Nanoscale Res. Lett. 7(1), 120 (2012).
[Crossref] [PubMed]

Tuchscherer, P.

C. Rewitz, T. Keitzl, P. Tuchscherer, J. S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett. 12(1), 45–49 (2012).
[Crossref] [PubMed]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Vogelsang, J.

J. Vogelsang, J. Robin, B. J. Nagy, P. Dombi, D. Rosenkranz, M. Schiek, P. Groß, and C. Lienau, “Ultrafast electron emission from a sharp metal nanotaper driven by adiabatic nanofocusing of surface plasmons,” Nano Lett. 15(7), 4685–4691 (2015).
[Crossref] [PubMed]

B. Piglosiewicz, S. Schmidt, D. J. Park, J. Vogelsang, P. Groß, C. Manzoni, P. Farinello, G. Cerullo, and C. Lienau, “Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures,” Nat. Photonics 8(1), 37–42 (2013).
[Crossref]

Vrakking, M. J. J.

F. Kelkensberg, A. F. Koenderink, and M. J. J. Vrakking, “Attosecond streaking in a nano-plasmonic field,” New J. Phys. 14(9), 093034 (2012).
[Crossref]

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Süßmann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, S. Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys. 7(8), 656–662 (2011).
[Crossref]

Wachter, G.

S. Thomas, G. Wachter, C. Lemell, J. Burgdörfer, and P. Hommelhoff, “Large optical field enhancement for nanotips with large opening angles,” New J. Phys. 17(6), 063010 (2015).
[Crossref]

Weber, N.

S. H. Chew, F. Süßmann, C. Späth, A. Wirth, J. Schmidt, S. Zherebtsov, A. Guggenmos, A. Oelsner, N. Weber, J. Kapaldo, A. Gliserin, M. I. Stockman, M. F. Kling, and U. Kleineberg, “Time-of-flight-photoelectron emission microscopy on plasmonic structures using attosecond extreme ultraviolet pulses,” Appl. Phys. Lett. 100(5), 051904 (2012).
[Crossref]

Weber-Bargioni, A.

A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D. F. Ogletree, P. J. Schuck, and S. Cabrini, “Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography,” Nanotechnology 21(6), 065306 (2010).
[Crossref] [PubMed]

Weiss, T.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332(6036), 1407–1410 (2011).
[Crossref] [PubMed]

West, J. L.

J. L. West and N. J. Halas, “Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics,” Annu. Rev. Biomed. Eng. 5(1), 285–292 (2003).
[Crossref] [PubMed]

Wild, B.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[Crossref] [PubMed]

Wirth, A.

S. H. Chew, F. Süßmann, C. Späth, A. Wirth, J. Schmidt, S. Zherebtsov, A. Guggenmos, A. Oelsner, N. Weber, J. Kapaldo, A. Gliserin, M. I. Stockman, M. F. Kling, and U. Kleineberg, “Time-of-flight-photoelectron emission microscopy on plasmonic structures using attosecond extreme ultraviolet pulses,” Appl. Phys. Lett. 100(5), 051904 (2012).
[Crossref]

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Süßmann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, S. Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys. 7(8), 656–662 (2011).
[Crossref]

Witting, T.

E. Skopalová, D. Y. Lei, T. Witting, C. Arrell, F. Frank, Y. Sonnefraud, S. A. Maier, J. W. G. Tisch, and J. P. Marangos, “Numerical simulation of attosecond nanoplasmonic streaking,” New J. Phys. 13(8), 083003 (2011).
[Crossref]

Wu, C. C.

C. C. Wu, K. L. Ou, and C. L. Tseng, “Fabrication and characterization of well-aligned and ultra-sharp silicon nanotip array,” Nanoscale Res. Lett. 7(1), 120 (2012).
[Crossref] [PubMed]

Wu, C. T.

C. H. Hsu, H. C. Lo, C. F. Chen, C. T. Wu, J. S. Hwang, D. Das, J. Tsai, L. C. Chen, and K. H. Chen, “Generally applicable self-masked dry etching technique for nanotip array fabrication,” Nano Lett. 4(3), 471–475 (2004).
[Crossref]

Wu, X. L.

G. S. Huang, X. L. Wu, Y. C. Cheng, X. F. Li, S. H. Luo, T. Feng, and P. K. Chu, “Fabrication and field emission property of a Si nanotip array,” Nanotechnology 17(22), 5573–5576 (2006).
[Crossref] [PubMed]

Xia, Y.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Xu, H. Q.

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klünder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80(12), 123703 (2009).
[Crossref] [PubMed]

Xu, X. G.

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10(7), 2519–2524 (2010).
[Crossref] [PubMed]

Yang, M. C.

T. C. Cheng, J. Shieh, W. J. Huang, M. C. Yang, M. H. Cheng, H. M. Lin, and M. N. Chang, “Hydrogen plasma dry etching method for field emission application,” Appl. Phys. Lett. 88(26), 263118 (2006).
[Crossref]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1), 3–15 (1999).
[Crossref]

Zakharov, A. A.

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klünder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80(12), 123703 (2009).
[Crossref] [PubMed]

Zeng, J.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Zhang, Q.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Zhang, X.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Zherebtsov, S.

S. H. Chew, F. Süßmann, C. Späth, A. Wirth, J. Schmidt, S. Zherebtsov, A. Guggenmos, A. Oelsner, N. Weber, J. Kapaldo, A. Gliserin, M. I. Stockman, M. F. Kling, and U. Kleineberg, “Time-of-flight-photoelectron emission microscopy on plasmonic structures using attosecond extreme ultraviolet pulses,” Appl. Phys. Lett. 100(5), 051904 (2012).
[Crossref]

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Süßmann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, S. Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys. 7(8), 656–662 (2011).
[Crossref]

Znakovskaya, I.

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Süßmann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, S. Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys. 7(8), 656–662 (2011).
[Crossref]

Adv. Mater. (1)

W. A. Murray and W. L. Barnes, “Plasmonic Materials,” Adv. Mater. 19(22), 3771–3782 (2007).
[Crossref]

Ann. Phys. (1)

J. S. Prell, L. J. Borja, D. M. Neumark, and S. R. Leone, “Simulation of attosecond-resolved imaging of the plasmon electric field in metallic nanoparticles,” Ann. Phys. 525(1), 151–161 (2013).
[Crossref]

Annu. Rev. Biomed. Eng. (1)

J. L. West and N. J. Halas, “Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics,” Annu. Rev. Biomed. Eng. 5(1), 285–292 (2003).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

S. H. Chew, F. Süßmann, C. Späth, A. Wirth, J. Schmidt, S. Zherebtsov, A. Guggenmos, A. Oelsner, N. Weber, J. Kapaldo, A. Gliserin, M. I. Stockman, M. F. Kling, and U. Kleineberg, “Time-of-flight-photoelectron emission microscopy on plasmonic structures using attosecond extreme ultraviolet pulses,” Appl. Phys. Lett. 100(5), 051904 (2012).
[Crossref]

T. C. Cheng, J. Shieh, W. J. Huang, M. C. Yang, M. H. Cheng, H. M. Lin, and M. N. Chang, “Hydrogen plasma dry etching method for field emission application,” Appl. Phys. Lett. 88(26), 263118 (2006).
[Crossref]

Chem. Rev. (1)

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

J. Phys. At. Mol. Opt. Phys. (1)

M. Krüger, S. Thomas, M. Förster, and P. Hommelhoff, “Self-probing of metal nanotips by rescattered electrons reveals the nano-optical near-field,” J. Phys. At. Mol. Opt. Phys. 47(12), 124022 (2014).
[Crossref]

J. Phys. D Appl. Phys. (1)

M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D Appl. Phys. 44(28), 283001 (2011).
[Crossref]

Nano Lett. (6)

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[Crossref]

Y. Gong, A. G. Joly, D. Hu, P. Z. El-Khoury, and W. P. Hess, “Ultrafast imaging of surface plasmons propagating on a gold surface,” Nano Lett. 15(5), 3472–3478 (2015).
[Crossref] [PubMed]

J. Vogelsang, J. Robin, B. J. Nagy, P. Dombi, D. Rosenkranz, M. Schiek, P. Groß, and C. Lienau, “Ultrafast electron emission from a sharp metal nanotaper driven by adiabatic nanofocusing of surface plasmons,” Nano Lett. 15(7), 4685–4691 (2015).
[Crossref] [PubMed]

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10(7), 2519–2524 (2010).
[Crossref] [PubMed]

C. Rewitz, T. Keitzl, P. Tuchscherer, J. S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett. 12(1), 45–49 (2012).
[Crossref] [PubMed]

C. H. Hsu, H. C. Lo, C. F. Chen, C. T. Wu, J. S. Hwang, D. Das, J. Tsai, L. C. Chen, and K. H. Chen, “Generally applicable self-masked dry etching technique for nanotip array fabrication,” Nano Lett. 4(3), 471–475 (2004).
[Crossref]

Nanoscale Res. Lett. (1)

C. C. Wu, K. L. Ou, and C. L. Tseng, “Fabrication and characterization of well-aligned and ultra-sharp silicon nanotip array,” Nanoscale Res. Lett. 7(1), 120 (2012).
[Crossref] [PubMed]

Nanotechnology (2)

G. S. Huang, X. L. Wu, Y. C. Cheng, X. F. Li, S. H. Luo, T. Feng, and P. K. Chu, “Fabrication and field emission property of a Si nanotip array,” Nanotechnology 17(22), 5573–5576 (2006).
[Crossref] [PubMed]

A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D. F. Ogletree, P. J. Schuck, and S. Cabrini, “Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography,” Nanotechnology 21(6), 065306 (2010).
[Crossref] [PubMed]

Nat. Mater. (2)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Nat. Photonics (5)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

B. Piglosiewicz, S. Schmidt, D. J. Park, J. Vogelsang, P. Groß, C. Manzoni, P. Farinello, G. Cerullo, and C. Lienau, “Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures,” Nat. Photonics 8(1), 37–42 (2013).
[Crossref]

F. Krausz and M. I. Stockman, “Attosecond metrology: from electron capture to future signal processing,” Nat. Photonics 8(3), 205–213 (2014).
[Crossref]

M. I. Stockman, M. F. Kling, U. Kleineberg, and F. Krausz, “Attosecond nanoplasmonic field microscope,” Nat. Photonics 1(9), 539–544 (2007).
[Crossref]

Nat. Phys. (1)

S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Süßmann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, S. Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys. 7(8), 656–662 (2011).
[Crossref]

Nature (2)

G. Herink, D. R. Solli, M. Gulde, and C. Ropers, “Field-driven photoemission from nanostructures quenches the quiver motion,” Nature 483(7388), 190–193 (2012).
[Crossref] [PubMed]

M. Krüger, M. Schenk, and P. Hommelhoff, “Attosecond control of electrons emitted from a nanoscale metal tip,” Nature 475(7354), 78–81 (2011).
[Crossref] [PubMed]

New J. Phys. (4)

E. Skopalová, D. Y. Lei, T. Witting, C. Arrell, F. Frank, Y. Sonnefraud, S. A. Maier, J. W. G. Tisch, and J. P. Marangos, “Numerical simulation of attosecond nanoplasmonic streaking,” New J. Phys. 13(8), 083003 (2011).
[Crossref]

A. G. Borisov, P. M. Echenique, and A. K. Kazansky, “Attostreaking with metallic nano-objects,” New J. Phys. 14(2), 023036 (2012).
[Crossref]

F. Kelkensberg, A. F. Koenderink, and M. J. J. Vrakking, “Attosecond streaking in a nano-plasmonic field,” New J. Phys. 14(9), 093034 (2012).
[Crossref]

S. Thomas, G. Wachter, C. Lemell, J. Burgdörfer, and P. Hommelhoff, “Large optical field enhancement for nanotips with large opening angles,” New J. Phys. 17(6), 063010 (2015).
[Crossref]

Opt. Express (1)

Phys. Rev. B (2)

R. Olmon, B. Slovick, T. Johnson, D. Shelton, S.-H. Oh, G. Boreman, and M. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

F. Süßmann and M. F. Kling, “Attosecond nanoplasmonic streaking of localized fields near metal nanospheres,” Phys. Rev. B 84(12), 121406 (2011).
[Crossref]

Phys. Rev. Lett. (1)

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klünder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80(12), 123703 (2009).
[Crossref] [PubMed]

Science (4)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

S. Nie and S. R. Emory, “Probing single molecules ans single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

E. Betzig and R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262(5138), 1422–1425 (1993).
[Crossref] [PubMed]

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332(6036), 1407–1410 (2011).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1), 3–15 (1999).
[Crossref]

Other (10)

M. Lupetti, J. Hengster, T. Uphues, and A. Scrinzi, “Attosecond photoscopy of surface plasmon polaritons,” http://arxiv.org/abs/1401.4290v1 (2014).

B. Förg, J. Schötz, F. Süßmann, M. Förster, M. Krüger, B. Ahn, K. Wintersperger, S. Zherebtsov, A. Guggenmos, V. Pervak, A. Kessell, S. A. Trushin, A. M. Azzeer, M. I. Stockman, D. Kim, F. Krausz, P. Hommelhoff, and M.F. Kling, “Attosecond nanoscale near-field sampling,” http://www.arxiv.org/abs/1508.05611 (2015).

E. D. Palik, Handbook of Optical Constants of Solids, Vol. 3 (Academic Press, 1998).

C. Balanis, Antenna Theory: Analysis and Design, 3rd ed. (John Wiley & Sons, 2005).

L. Novotny and B. Hecht, Principles of Nano-Optics (New York: Cambridge University Press, 2006).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (IEEE Press Series, 2000).

A. Taflove, Computational Electromagnetics: The Finite-Difference Time-Domain Method (Artech House, 2005).

S. D. Gedney, Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics (Morgan & Claypool, 2011).

Lumerical Solutions, Inc., http://www.lumerical.com/tcad-products/fdtd/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

A linearly polarized, few-cycle NIR laser pulse is launched to a 50 nm gold film on a SiO2 right-angle prism at an angle of incidence of 45 degree in order to induce propagating surface plasmon polaritons. (a) Scheme for locally confined fields at the end of a metal nanotip excited by propagating surface plasmons. The inset shows the near-field distribution near the metal film. (b) The configuration of light-SPP coupling and induced dipole coupling on a nanotip. The quantity plotted shows a maximum instantaneous field enhancement. (c) Field distribution at the nanotip apex. The inset shows the maximum of the time-integrated electric field component along the tip axis.

Fig. 2
Fig. 2

Decaying behavior of the propagating SPPs on the gold surface (a) and their field waveform along the surface at different positions (b), and the height at a fixed position on the surface (c). All the colored dots in (b) and (c) indicate the relevant positions on the surface in (a). The tip on the surface is at a distance of 1.4 um from the center of the excitation laser pulse as indicated in (c).

Fig. 3
Fig. 3

(a) Optimal shape of a conical gold nanotip. The inset shows the schematics of the nanotip. The quantity plotted shows a maximum instantaneous field enhancement. (b) Comparison of the time-dependent plasmonic field profile between SPP & LSP in resonant condition at the apex of the conical gold nanotip. The height, H, of 300 nm, the bottom diameter, D, of 200 nm and a radius of curvature, R, of 10 nm were chosen for the nanotip. The plasmonic field enhancement at a point of 1 nm above the tip and the gold surface, respectively, (with respect to a normalized laser field) is calculated via FDTD simulations. The inset in (b) shows the temporal profile of the driving laser pulse. The laser field has been normalized to 1.

Fig. 4
Fig. 4

Comparison of the temporal profile and the plasmonic field enhancement between the LSP for a Si nanotip with H = 450 nm, D = 200 nm and R = 10 nm (green line) and the SPP without a nanotip (blue line) at a field monitor point, 1 nm above the tip and gold surface, respectively.

Fig. 5
Fig. 5

(a) SPP spectral intensity (solid blue), phase (solid red), and fitted phase (dashed red). (b) LSP spectral intensity (solid blue), phase (solid red), and fitted phase (dashed red) for Si nanotip with H = 450 nm, D = 200 nm and R = 10 nm. The fitted linear terms (corresponding to a time delay) have been subtracted in (a) and (b) from the phase and the fitted phase. (c) Normalized SPP (red) and LSP (black) electric fields. The fitted CEPs and linear phases have been subtracted from both the SPP and LSP in (c), and the LSP has been delayed by an additional 0.28 fs.

Tables (1)

Tables Icon

Table 1 Comparison of SPP and LSP central frequency, duration, and fitted spectral phase coefficients for Si nanotip with H = 450 nm, D = 200 nm and R = 10 nm. The errors in the fitted spectral phase coefficients are the 95% confidence intervals of the fit.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k i =( 2π λ )nsinθ,
k p =( 2π λ ) ε 1 ε 2 ε 1 + ε 2 ,

Metrics