Abstract

We present 3.36 µm buried heterostructure distributed-feedback quantum cascade lasers with a power dissipation at threshold below 250 mW and operation temperatures as high as 130 °C. Threshold values below 20 mA at −10 °C in pulsed operation and 30 mA at −20 °C in continuous-wave operation are reported. Optical power above 130 mW and 13 mW are achieved at −20 °C in pulsed and continuous-wave operation, respectively. Continuous-wave operation occurs until 15 °C. We show single-mode emission in pulsed and continuous-wave operation. Single-mode performance is demonstrated in long pulse (5.56 µs) operation. The laser far-field exhibits a single lobe emission with full-width-half-max of 27 ° × 34 °.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Distributed-feedback quantum cascade laser emitting at 3.2 μm

Johanna M. Wolf, Alfredo Bismuto, Mattias Beck, and Jérôme Faist
Opt. Express 22(2) 2111-2118 (2014)

Low-dissipation 7.4-µm single-mode quantum cascade lasers without epitaxial regrowth

Ryan M. Briggs, Clifford Frez, Mathieu Fradet, Siamak Forouhar, Romain Blanchard, Laurent Diehl, and Christian Pflügl
Opt. Express 24(13) 14589-14595 (2016)

High performance, low dissipation quantum cascade lasers across the mid-IR range

Alfredo Bismuto, Stéphane Blaser, Romain Terazzi, Tobias Gresch, and Antoine Muller
Opt. Express 23(5) 5477-5484 (2015)

References

  • View by:
  • |
  • |
  • |

  1. G. Duxbury, N. Langford, M. McCulloch, and S. Wright, “Quantum cascade semiconductor infrared and far-infrared lasers: from trace gas sensing to non-linear optics,” Chem. Soc. Rev. 34, 921–934 (2005).
    [Crossref] [PubMed]
  2. A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Effective utilization of quantum-cascade distributed-feedback lasers in absorption spectroscopy,” Appl. Opt. 39, 4425–4430 (2000).
    [Crossref]
  3. B. Tuzson, K. Zeyer, M. Steinbacher, J. B. McManus, D. D. Nelson, M. S. Zahniser, and L. Emmenegger, “Selective measurements of NO, NO2 and NOy in the free troposphere using quantum cascade laser spectroscopy,” Atmos. Meas. Tech. 6, 927–936 (2013).
    [Crossref]
  4. A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Methane concentration and isotopic composition measurements with a mid-infrared quantum-cascade laser,” Opt. Lett. 24, 1762–1764 (1999).
    [Crossref]
  5. P. Jouy, M. Mangold, B. Tuzson, L. Emmenegger, Y.-C. Chang, L. Hvozdara, H. P. Herzig, P. Wagli, A. Homsy, N. F. de Rooij, A. Wirthmueller, D. Hofstetter, H. Looser, and J. Faist, “Mid-infrared spectroscopy for gases and liquids based on quantum cascade technologies,” Analyst 139, 2039–2046 (2014).
    [Crossref]
  6. J. Faist, Quantum Cascade Laser (Oxford University, 2013).
    [Crossref]
  7. C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80 ° C,” Appl. Phys. Lett. 101, 061104 (2012).
    [Crossref]
  8. W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “High-power room-temperature continuous-wave mid-infrared interband cascade lasers,” Opt. Express 20, 20894–20901 (2012).
    [Crossref] [PubMed]
  9. M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ=3.75 µ m in continuous wave above room temperature,” Appl. Phys. Lett. 92, 191110 (2008).
    [Crossref]
  10. T. Hosoda, G. Belenky, L. Shterengas, G. Kipshidze, and M. V. Kisin, “Continuous-wave room temperature operated 3.0µ m type i GaSb-based lasers with quinternary AlInGaAsSb barriers,” Appl. Phys. Lett. 92, 091106 (2008).
    [Crossref]
  11. T. Hosoda, G. Kipshidze, L. Shterengas, and G. Belenky, “Diode lasers emitting near 3.44 µ m in continuous-wave regime at 300K,” Electron. Lett. 46, 1455–1457 (2010).
    [Crossref]
  12. J. Devenson, O. Cathabard, R. Teissier, and A. N. Baranov, “High temperature operation of λ ≈ 3.3 µ m quantum cascade lasers,” Appl. Phys. Lett. 91, 141106 (2007).
    [Crossref]
  13. D. G. Revin, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, A. B. Krysa, L. R. Wilson, and S. Menzel, “InGaAs/AlAsSb/InP quantum cascade lasers operating at wavelengths close to 3 µ m,” Appl. Phys. Lett. 90, 021108 (2007).
    [Crossref]
  14. M. P. Semtsiv, M. Wienold, S. Dressler, and W. T. Masselink, “Short-wavelength (µ m ≈ 3.05µ m) InP-based strain-compensated quantum-cascade laser,” Appl. Phys. Lett. 90, 051111 (2007).
    [Crossref]
  15. A. Bismuto, M. Beck, and J. Faist, “High power Sb-free quantum cascade laser emitting at 3.3 µ m above 350 K,” Appl. Phys. Lett. 98, 191104 (2011).
    [Crossref]
  16. J. M. Wolf, A. Bismuto, M. Beck, and J. Faist, “Distributed-feedback quantum cascade laser emitting at 3.2 µ m,” Opt. Express 22, 2111–2118 (2014).
    [Crossref]
  17. D. Vaitiekus, D. G. Revin, K. L. Kennedy, S. Y. Zhang, and J. W. Cockburn, “Quantum cascade laser with unilateral grating,” IEEE Photon. Technol. Lett. 24, 2112–2114 (2012).
    [Crossref]
  18. D. Revin, J. Commin, S. Zhang, A. B. Krysa, K. Kennedy, and J. Cockburn, “In P-based midinfrared quantum cascade lasers for wavelengths below 4 µ m,” IEEE J. Sel. Top. Quantum Electron. 17, 1417–1425 (2011).
    [Crossref]
  19. J. P. Commin, D. G. Revin, S. Y. Zhang, A. B. Krysa, K. Kennedy, and J. W. Cockburn, “High peak power 3.3 and 3.5 µ m InGaAs/AlAs(Sb) quantum cascade lasers operating up to 400 K,” Appl. Phys. Lett. 97, 031108 (2010).
    [Crossref]
  20. N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ ≈ 3.4 µ m and λ ≈ 3.55 µ m InP-based quantum cascade lasers,” Appl. Phys. Lett. 100, 212104 (2012).
    [Crossref]
  21. A. Bismuto, S. Riedi, B. Hinkov, M. Beck, and J. Faist, “Sb-free quantum cascade lasers in the 3 µ m spectral range,” Semicond. Sci. Technol. 27, 045013 (2012).
    [Crossref]
  22. N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ ≈ 3–3.2µ m quantum cascade lasers,” Appl. Phys. Lett. 101, 241110 (2012).
    [Crossref]
  23. R. Cendejas, Z. Liu, W. Sánchez-Vaynshteyn, C. Caneau, C. Zah, and C. Gmachl, “Cavity length scaling of quantum cascade lasers for single-mode emission and low heat dissipation, room temperature, continuous wave operation,” IEEE Photonics J. 3, 71–81 (2011).
    [Crossref]
  24. B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1 W,” Electron. Lett. 48, 646–647 (2012).
    [Crossref]
  25. A. Bismuto, S. Blaser, R. Terazzi, T. Gresch, and A. Muller, “High performance, low dissipation quantum cascade lasers across the mid-IR range,” Opt. Express 23, 5477–5484 (2015).
    [Crossref] [PubMed]
  26. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
    [Crossref] [PubMed]
  27. A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96, 141105 (2010).
    [Crossref]
  28. M. Fischer, B. Tuzson, A. Hugi, R. Brönnimann, A. Kunz, S. Blaser, M. Rochat, O. Landry, A. Müller, and L. Emmenegger, “Intermittent operation of QC-lasers for mid-IR spectroscopy with low heat dissipation: tuning characteristics and driving electronics,” Opt. Express 22, 7014–7027 (2014).
    [Crossref] [PubMed]

2015 (1)

2014 (3)

2013 (1)

B. Tuzson, K. Zeyer, M. Steinbacher, J. B. McManus, D. D. Nelson, M. S. Zahniser, and L. Emmenegger, “Selective measurements of NO, NO2 and NOy in the free troposphere using quantum cascade laser spectroscopy,” Atmos. Meas. Tech. 6, 927–936 (2013).
[Crossref]

2012 (7)

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1 W,” Electron. Lett. 48, 646–647 (2012).
[Crossref]

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ ≈ 3.4 µ m and λ ≈ 3.55 µ m InP-based quantum cascade lasers,” Appl. Phys. Lett. 100, 212104 (2012).
[Crossref]

A. Bismuto, S. Riedi, B. Hinkov, M. Beck, and J. Faist, “Sb-free quantum cascade lasers in the 3 µ m spectral range,” Semicond. Sci. Technol. 27, 045013 (2012).
[Crossref]

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ ≈ 3–3.2µ m quantum cascade lasers,” Appl. Phys. Lett. 101, 241110 (2012).
[Crossref]

D. Vaitiekus, D. G. Revin, K. L. Kennedy, S. Y. Zhang, and J. W. Cockburn, “Quantum cascade laser with unilateral grating,” IEEE Photon. Technol. Lett. 24, 2112–2114 (2012).
[Crossref]

W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “High-power room-temperature continuous-wave mid-infrared interband cascade lasers,” Opt. Express 20, 20894–20901 (2012).
[Crossref] [PubMed]

C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80 ° C,” Appl. Phys. Lett. 101, 061104 (2012).
[Crossref]

2011 (3)

D. Revin, J. Commin, S. Zhang, A. B. Krysa, K. Kennedy, and J. Cockburn, “In P-based midinfrared quantum cascade lasers for wavelengths below 4 µ m,” IEEE J. Sel. Top. Quantum Electron. 17, 1417–1425 (2011).
[Crossref]

R. Cendejas, Z. Liu, W. Sánchez-Vaynshteyn, C. Caneau, C. Zah, and C. Gmachl, “Cavity length scaling of quantum cascade lasers for single-mode emission and low heat dissipation, room temperature, continuous wave operation,” IEEE Photonics J. 3, 71–81 (2011).
[Crossref]

A. Bismuto, M. Beck, and J. Faist, “High power Sb-free quantum cascade laser emitting at 3.3 µ m above 350 K,” Appl. Phys. Lett. 98, 191104 (2011).
[Crossref]

2010 (3)

J. P. Commin, D. G. Revin, S. Y. Zhang, A. B. Krysa, K. Kennedy, and J. W. Cockburn, “High peak power 3.3 and 3.5 µ m InGaAs/AlAs(Sb) quantum cascade lasers operating up to 400 K,” Appl. Phys. Lett. 97, 031108 (2010).
[Crossref]

T. Hosoda, G. Kipshidze, L. Shterengas, and G. Belenky, “Diode lasers emitting near 3.44 µ m in continuous-wave regime at 300K,” Electron. Lett. 46, 1455–1457 (2010).
[Crossref]

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96, 141105 (2010).
[Crossref]

2008 (2)

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ=3.75 µ m in continuous wave above room temperature,” Appl. Phys. Lett. 92, 191110 (2008).
[Crossref]

T. Hosoda, G. Belenky, L. Shterengas, G. Kipshidze, and M. V. Kisin, “Continuous-wave room temperature operated 3.0µ m type i GaSb-based lasers with quinternary AlInGaAsSb barriers,” Appl. Phys. Lett. 92, 091106 (2008).
[Crossref]

2007 (3)

J. Devenson, O. Cathabard, R. Teissier, and A. N. Baranov, “High temperature operation of λ ≈ 3.3 µ m quantum cascade lasers,” Appl. Phys. Lett. 91, 141106 (2007).
[Crossref]

D. G. Revin, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, A. B. Krysa, L. R. Wilson, and S. Menzel, “InGaAs/AlAsSb/InP quantum cascade lasers operating at wavelengths close to 3 µ m,” Appl. Phys. Lett. 90, 021108 (2007).
[Crossref]

M. P. Semtsiv, M. Wienold, S. Dressler, and W. T. Masselink, “Short-wavelength (µ m ≈ 3.05µ m) InP-based strain-compensated quantum-cascade laser,” Appl. Phys. Lett. 90, 051111 (2007).
[Crossref]

2005 (1)

G. Duxbury, N. Langford, M. McCulloch, and S. Wright, “Quantum cascade semiconductor infrared and far-infrared lasers: from trace gas sensing to non-linear optics,” Chem. Soc. Rev. 34, 921–934 (2005).
[Crossref] [PubMed]

2002 (1)

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[Crossref] [PubMed]

2000 (1)

1999 (1)

Abell, J.

C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80 ° C,” Appl. Phys. Lett. 101, 061104 (2012).
[Crossref]

W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “High-power room-temperature continuous-wave mid-infrared interband cascade lasers,” Opt. Express 20, 20894–20901 (2012).
[Crossref] [PubMed]

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ=3.75 µ m in continuous wave above room temperature,” Appl. Phys. Lett. 92, 191110 (2008).
[Crossref]

Aellen, T.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[Crossref] [PubMed]

Airey, R. J.

D. G. Revin, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, A. B. Krysa, L. R. Wilson, and S. Menzel, “InGaAs/AlAsSb/InP quantum cascade lasers operating at wavelengths close to 3 µ m,” Appl. Phys. Lett. 90, 021108 (2007).
[Crossref]

Bai, Y.

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ ≈ 3.4 µ m and λ ≈ 3.55 µ m InP-based quantum cascade lasers,” Appl. Phys. Lett. 100, 212104 (2012).
[Crossref]

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ ≈ 3–3.2µ m quantum cascade lasers,” Appl. Phys. Lett. 101, 241110 (2012).
[Crossref]

Baillargeon, J. N.

Bandyopadhyay, N.

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ ≈ 3.4 µ m and λ ≈ 3.55 µ m InP-based quantum cascade lasers,” Appl. Phys. Lett. 100, 212104 (2012).
[Crossref]

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ ≈ 3–3.2µ m quantum cascade lasers,” Appl. Phys. Lett. 101, 241110 (2012).
[Crossref]

Baranov, A. N.

J. Devenson, O. Cathabard, R. Teissier, and A. N. Baranov, “High temperature operation of λ ≈ 3.3 µ m quantum cascade lasers,” Appl. Phys. Lett. 91, 141106 (2007).
[Crossref]

Beck, M.

J. M. Wolf, A. Bismuto, M. Beck, and J. Faist, “Distributed-feedback quantum cascade laser emitting at 3.2 µ m,” Opt. Express 22, 2111–2118 (2014).
[Crossref]

A. Bismuto, S. Riedi, B. Hinkov, M. Beck, and J. Faist, “Sb-free quantum cascade lasers in the 3 µ m spectral range,” Semicond. Sci. Technol. 27, 045013 (2012).
[Crossref]

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1 W,” Electron. Lett. 48, 646–647 (2012).
[Crossref]

A. Bismuto, M. Beck, and J. Faist, “High power Sb-free quantum cascade laser emitting at 3.3 µ m above 350 K,” Appl. Phys. Lett. 98, 191104 (2011).
[Crossref]

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96, 141105 (2010).
[Crossref]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[Crossref] [PubMed]

Belenky, G.

T. Hosoda, G. Kipshidze, L. Shterengas, and G. Belenky, “Diode lasers emitting near 3.44 µ m in continuous-wave regime at 300K,” Electron. Lett. 46, 1455–1457 (2010).
[Crossref]

T. Hosoda, G. Belenky, L. Shterengas, G. Kipshidze, and M. V. Kisin, “Continuous-wave room temperature operated 3.0µ m type i GaSb-based lasers with quinternary AlInGaAsSb barriers,” Appl. Phys. Lett. 92, 091106 (2008).
[Crossref]

Bewley, W. W.

C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80 ° C,” Appl. Phys. Lett. 101, 061104 (2012).
[Crossref]

W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “High-power room-temperature continuous-wave mid-infrared interband cascade lasers,” Opt. Express 20, 20894–20901 (2012).
[Crossref] [PubMed]

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ=3.75 µ m in continuous wave above room temperature,” Appl. Phys. Lett. 92, 191110 (2008).
[Crossref]

Bismuto, A.

A. Bismuto, S. Blaser, R. Terazzi, T. Gresch, and A. Muller, “High performance, low dissipation quantum cascade lasers across the mid-IR range,” Opt. Express 23, 5477–5484 (2015).
[Crossref] [PubMed]

J. M. Wolf, A. Bismuto, M. Beck, and J. Faist, “Distributed-feedback quantum cascade laser emitting at 3.2 µ m,” Opt. Express 22, 2111–2118 (2014).
[Crossref]

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1 W,” Electron. Lett. 48, 646–647 (2012).
[Crossref]

A. Bismuto, S. Riedi, B. Hinkov, M. Beck, and J. Faist, “Sb-free quantum cascade lasers in the 3 µ m spectral range,” Semicond. Sci. Technol. 27, 045013 (2012).
[Crossref]

A. Bismuto, M. Beck, and J. Faist, “High power Sb-free quantum cascade laser emitting at 3.3 µ m above 350 K,” Appl. Phys. Lett. 98, 191104 (2011).
[Crossref]

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96, 141105 (2010).
[Crossref]

Blaser, S.

Bonetti, Y.

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1 W,” Electron. Lett. 48, 646–647 (2012).
[Crossref]

Brönnimann, R.

Caneau, C.

R. Cendejas, Z. Liu, W. Sánchez-Vaynshteyn, C. Caneau, C. Zah, and C. Gmachl, “Cavity length scaling of quantum cascade lasers for single-mode emission and low heat dissipation, room temperature, continuous wave operation,” IEEE Photonics J. 3, 71–81 (2011).
[Crossref]

Canedy, C. L.

W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “High-power room-temperature continuous-wave mid-infrared interband cascade lasers,” Opt. Express 20, 20894–20901 (2012).
[Crossref] [PubMed]

C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80 ° C,” Appl. Phys. Lett. 101, 061104 (2012).
[Crossref]

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ=3.75 µ m in continuous wave above room temperature,” Appl. Phys. Lett. 92, 191110 (2008).
[Crossref]

Capasso, F.

Cathabard, O.

J. Devenson, O. Cathabard, R. Teissier, and A. N. Baranov, “High temperature operation of λ ≈ 3.3 µ m quantum cascade lasers,” Appl. Phys. Lett. 91, 141106 (2007).
[Crossref]

Cendejas, R.

R. Cendejas, Z. Liu, W. Sánchez-Vaynshteyn, C. Caneau, C. Zah, and C. Gmachl, “Cavity length scaling of quantum cascade lasers for single-mode emission and low heat dissipation, room temperature, continuous wave operation,” IEEE Photonics J. 3, 71–81 (2011).
[Crossref]

Chang, Y.-C.

P. Jouy, M. Mangold, B. Tuzson, L. Emmenegger, Y.-C. Chang, L. Hvozdara, H. P. Herzig, P. Wagli, A. Homsy, N. F. de Rooij, A. Wirthmueller, D. Hofstetter, H. Looser, and J. Faist, “Mid-infrared spectroscopy for gases and liquids based on quantum cascade technologies,” Analyst 139, 2039–2046 (2014).
[Crossref]

Cho, A. Y.

Cockburn, J.

D. Revin, J. Commin, S. Zhang, A. B. Krysa, K. Kennedy, and J. Cockburn, “In P-based midinfrared quantum cascade lasers for wavelengths below 4 µ m,” IEEE J. Sel. Top. Quantum Electron. 17, 1417–1425 (2011).
[Crossref]

Cockburn, J. W.

D. Vaitiekus, D. G. Revin, K. L. Kennedy, S. Y. Zhang, and J. W. Cockburn, “Quantum cascade laser with unilateral grating,” IEEE Photon. Technol. Lett. 24, 2112–2114 (2012).
[Crossref]

J. P. Commin, D. G. Revin, S. Y. Zhang, A. B. Krysa, K. Kennedy, and J. W. Cockburn, “High peak power 3.3 and 3.5 µ m InGaAs/AlAs(Sb) quantum cascade lasers operating up to 400 K,” Appl. Phys. Lett. 97, 031108 (2010).
[Crossref]

D. G. Revin, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, A. B. Krysa, L. R. Wilson, and S. Menzel, “InGaAs/AlAsSb/InP quantum cascade lasers operating at wavelengths close to 3 µ m,” Appl. Phys. Lett. 90, 021108 (2007).
[Crossref]

Commin, J.

D. Revin, J. Commin, S. Zhang, A. B. Krysa, K. Kennedy, and J. Cockburn, “In P-based midinfrared quantum cascade lasers for wavelengths below 4 µ m,” IEEE J. Sel. Top. Quantum Electron. 17, 1417–1425 (2011).
[Crossref]

Commin, J. P.

J. P. Commin, D. G. Revin, S. Y. Zhang, A. B. Krysa, K. Kennedy, and J. W. Cockburn, “High peak power 3.3 and 3.5 µ m InGaAs/AlAs(Sb) quantum cascade lasers operating up to 400 K,” Appl. Phys. Lett. 97, 031108 (2010).
[Crossref]

Curl, R. F.

de Rooij, N. F.

P. Jouy, M. Mangold, B. Tuzson, L. Emmenegger, Y.-C. Chang, L. Hvozdara, H. P. Herzig, P. Wagli, A. Homsy, N. F. de Rooij, A. Wirthmueller, D. Hofstetter, H. Looser, and J. Faist, “Mid-infrared spectroscopy for gases and liquids based on quantum cascade technologies,” Analyst 139, 2039–2046 (2014).
[Crossref]

Devenson, J.

J. Devenson, O. Cathabard, R. Teissier, and A. N. Baranov, “High temperature operation of λ ≈ 3.3 µ m quantum cascade lasers,” Appl. Phys. Lett. 91, 141106 (2007).
[Crossref]

Dressler, S.

M. P. Semtsiv, M. Wienold, S. Dressler, and W. T. Masselink, “Short-wavelength (µ m ≈ 3.05µ m) InP-based strain-compensated quantum-cascade laser,” Appl. Phys. Lett. 90, 051111 (2007).
[Crossref]

Duxbury, G.

G. Duxbury, N. Langford, M. McCulloch, and S. Wright, “Quantum cascade semiconductor infrared and far-infrared lasers: from trace gas sensing to non-linear optics,” Chem. Soc. Rev. 34, 921–934 (2005).
[Crossref] [PubMed]

Emmenegger, L.

M. Fischer, B. Tuzson, A. Hugi, R. Brönnimann, A. Kunz, S. Blaser, M. Rochat, O. Landry, A. Müller, and L. Emmenegger, “Intermittent operation of QC-lasers for mid-IR spectroscopy with low heat dissipation: tuning characteristics and driving electronics,” Opt. Express 22, 7014–7027 (2014).
[Crossref] [PubMed]

P. Jouy, M. Mangold, B. Tuzson, L. Emmenegger, Y.-C. Chang, L. Hvozdara, H. P. Herzig, P. Wagli, A. Homsy, N. F. de Rooij, A. Wirthmueller, D. Hofstetter, H. Looser, and J. Faist, “Mid-infrared spectroscopy for gases and liquids based on quantum cascade technologies,” Analyst 139, 2039–2046 (2014).
[Crossref]

B. Tuzson, K. Zeyer, M. Steinbacher, J. B. McManus, D. D. Nelson, M. S. Zahniser, and L. Emmenegger, “Selective measurements of NO, NO2 and NOy in the free troposphere using quantum cascade laser spectroscopy,” Atmos. Meas. Tech. 6, 927–936 (2013).
[Crossref]

Faist, J.

J. M. Wolf, A. Bismuto, M. Beck, and J. Faist, “Distributed-feedback quantum cascade laser emitting at 3.2 µ m,” Opt. Express 22, 2111–2118 (2014).
[Crossref]

P. Jouy, M. Mangold, B. Tuzson, L. Emmenegger, Y.-C. Chang, L. Hvozdara, H. P. Herzig, P. Wagli, A. Homsy, N. F. de Rooij, A. Wirthmueller, D. Hofstetter, H. Looser, and J. Faist, “Mid-infrared spectroscopy for gases and liquids based on quantum cascade technologies,” Analyst 139, 2039–2046 (2014).
[Crossref]

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1 W,” Electron. Lett. 48, 646–647 (2012).
[Crossref]

A. Bismuto, S. Riedi, B. Hinkov, M. Beck, and J. Faist, “Sb-free quantum cascade lasers in the 3 µ m spectral range,” Semicond. Sci. Technol. 27, 045013 (2012).
[Crossref]

A. Bismuto, M. Beck, and J. Faist, “High power Sb-free quantum cascade laser emitting at 3.3 µ m above 350 K,” Appl. Phys. Lett. 98, 191104 (2011).
[Crossref]

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96, 141105 (2010).
[Crossref]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[Crossref] [PubMed]

J. Faist, Quantum Cascade Laser (Oxford University, 2013).
[Crossref]

Fischer, M.

Gini, E.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[Crossref] [PubMed]

Gmachl, C.

Gresch, T.

Herzig, H. P.

P. Jouy, M. Mangold, B. Tuzson, L. Emmenegger, Y.-C. Chang, L. Hvozdara, H. P. Herzig, P. Wagli, A. Homsy, N. F. de Rooij, A. Wirthmueller, D. Hofstetter, H. Looser, and J. Faist, “Mid-infrared spectroscopy for gases and liquids based on quantum cascade technologies,” Analyst 139, 2039–2046 (2014).
[Crossref]

Hinkov, B.

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1 W,” Electron. Lett. 48, 646–647 (2012).
[Crossref]

A. Bismuto, S. Riedi, B. Hinkov, M. Beck, and J. Faist, “Sb-free quantum cascade lasers in the 3 µ m spectral range,” Semicond. Sci. Technol. 27, 045013 (2012).
[Crossref]

Hofstetter, D.

P. Jouy, M. Mangold, B. Tuzson, L. Emmenegger, Y.-C. Chang, L. Hvozdara, H. P. Herzig, P. Wagli, A. Homsy, N. F. de Rooij, A. Wirthmueller, D. Hofstetter, H. Looser, and J. Faist, “Mid-infrared spectroscopy for gases and liquids based on quantum cascade technologies,” Analyst 139, 2039–2046 (2014).
[Crossref]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[Crossref] [PubMed]

Homsy, A.

P. Jouy, M. Mangold, B. Tuzson, L. Emmenegger, Y.-C. Chang, L. Hvozdara, H. P. Herzig, P. Wagli, A. Homsy, N. F. de Rooij, A. Wirthmueller, D. Hofstetter, H. Looser, and J. Faist, “Mid-infrared spectroscopy for gases and liquids based on quantum cascade technologies,” Analyst 139, 2039–2046 (2014).
[Crossref]

Hopkinson, M.

D. G. Revin, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, A. B. Krysa, L. R. Wilson, and S. Menzel, “InGaAs/AlAsSb/InP quantum cascade lasers operating at wavelengths close to 3 µ m,” Appl. Phys. Lett. 90, 021108 (2007).
[Crossref]

Hosoda, T.

T. Hosoda, G. Kipshidze, L. Shterengas, and G. Belenky, “Diode lasers emitting near 3.44 µ m in continuous-wave regime at 300K,” Electron. Lett. 46, 1455–1457 (2010).
[Crossref]

T. Hosoda, G. Belenky, L. Shterengas, G. Kipshidze, and M. V. Kisin, “Continuous-wave room temperature operated 3.0µ m type i GaSb-based lasers with quinternary AlInGaAsSb barriers,” Appl. Phys. Lett. 92, 091106 (2008).
[Crossref]

Hugi, A.

Hutchinson, A. L.

Hvozdara, L.

P. Jouy, M. Mangold, B. Tuzson, L. Emmenegger, Y.-C. Chang, L. Hvozdara, H. P. Herzig, P. Wagli, A. Homsy, N. F. de Rooij, A. Wirthmueller, D. Hofstetter, H. Looser, and J. Faist, “Mid-infrared spectroscopy for gases and liquids based on quantum cascade technologies,” Analyst 139, 2039–2046 (2014).
[Crossref]

Ilegems, M.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[Crossref] [PubMed]

Jouy, P.

P. Jouy, M. Mangold, B. Tuzson, L. Emmenegger, Y.-C. Chang, L. Hvozdara, H. P. Herzig, P. Wagli, A. Homsy, N. F. de Rooij, A. Wirthmueller, D. Hofstetter, H. Looser, and J. Faist, “Mid-infrared spectroscopy for gases and liquids based on quantum cascade technologies,” Analyst 139, 2039–2046 (2014).
[Crossref]

Kennedy, K.

D. Revin, J. Commin, S. Zhang, A. B. Krysa, K. Kennedy, and J. Cockburn, “In P-based midinfrared quantum cascade lasers for wavelengths below 4 µ m,” IEEE J. Sel. Top. Quantum Electron. 17, 1417–1425 (2011).
[Crossref]

J. P. Commin, D. G. Revin, S. Y. Zhang, A. B. Krysa, K. Kennedy, and J. W. Cockburn, “High peak power 3.3 and 3.5 µ m InGaAs/AlAs(Sb) quantum cascade lasers operating up to 400 K,” Appl. Phys. Lett. 97, 031108 (2010).
[Crossref]

Kennedy, K. L.

D. Vaitiekus, D. G. Revin, K. L. Kennedy, S. Y. Zhang, and J. W. Cockburn, “Quantum cascade laser with unilateral grating,” IEEE Photon. Technol. Lett. 24, 2112–2114 (2012).
[Crossref]

Kim, C. S.

W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “High-power room-temperature continuous-wave mid-infrared interband cascade lasers,” Opt. Express 20, 20894–20901 (2012).
[Crossref] [PubMed]

C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80 ° C,” Appl. Phys. Lett. 101, 061104 (2012).
[Crossref]

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ=3.75 µ m in continuous wave above room temperature,” Appl. Phys. Lett. 92, 191110 (2008).
[Crossref]

Kim, M.

W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “High-power room-temperature continuous-wave mid-infrared interband cascade lasers,” Opt. Express 20, 20894–20901 (2012).
[Crossref] [PubMed]

C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80 ° C,” Appl. Phys. Lett. 101, 061104 (2012).
[Crossref]

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ=3.75 µ m in continuous wave above room temperature,” Appl. Phys. Lett. 92, 191110 (2008).
[Crossref]

Kipshidze, G.

T. Hosoda, G. Kipshidze, L. Shterengas, and G. Belenky, “Diode lasers emitting near 3.44 µ m in continuous-wave regime at 300K,” Electron. Lett. 46, 1455–1457 (2010).
[Crossref]

T. Hosoda, G. Belenky, L. Shterengas, G. Kipshidze, and M. V. Kisin, “Continuous-wave room temperature operated 3.0µ m type i GaSb-based lasers with quinternary AlInGaAsSb barriers,” Appl. Phys. Lett. 92, 091106 (2008).
[Crossref]

Kisin, M. V.

T. Hosoda, G. Belenky, L. Shterengas, G. Kipshidze, and M. V. Kisin, “Continuous-wave room temperature operated 3.0µ m type i GaSb-based lasers with quinternary AlInGaAsSb barriers,” Appl. Phys. Lett. 92, 091106 (2008).
[Crossref]

Kosterev, A. A.

Krysa, A. B.

D. Revin, J. Commin, S. Zhang, A. B. Krysa, K. Kennedy, and J. Cockburn, “In P-based midinfrared quantum cascade lasers for wavelengths below 4 µ m,” IEEE J. Sel. Top. Quantum Electron. 17, 1417–1425 (2011).
[Crossref]

J. P. Commin, D. G. Revin, S. Y. Zhang, A. B. Krysa, K. Kennedy, and J. W. Cockburn, “High peak power 3.3 and 3.5 µ m InGaAs/AlAs(Sb) quantum cascade lasers operating up to 400 K,” Appl. Phys. Lett. 97, 031108 (2010).
[Crossref]

D. G. Revin, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, A. B. Krysa, L. R. Wilson, and S. Menzel, “InGaAs/AlAsSb/InP quantum cascade lasers operating at wavelengths close to 3 µ m,” Appl. Phys. Lett. 90, 021108 (2007).
[Crossref]

Kunz, A.

Landry, O.

Langford, N.

G. Duxbury, N. Langford, M. McCulloch, and S. Wright, “Quantum cascade semiconductor infrared and far-infrared lasers: from trace gas sensing to non-linear optics,” Chem. Soc. Rev. 34, 921–934 (2005).
[Crossref] [PubMed]

Lindle, J. R.

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ=3.75 µ m in continuous wave above room temperature,” Appl. Phys. Lett. 92, 191110 (2008).
[Crossref]

Liu, Z.

R. Cendejas, Z. Liu, W. Sánchez-Vaynshteyn, C. Caneau, C. Zah, and C. Gmachl, “Cavity length scaling of quantum cascade lasers for single-mode emission and low heat dissipation, room temperature, continuous wave operation,” IEEE Photonics J. 3, 71–81 (2011).
[Crossref]

Looser, H.

P. Jouy, M. Mangold, B. Tuzson, L. Emmenegger, Y.-C. Chang, L. Hvozdara, H. P. Herzig, P. Wagli, A. Homsy, N. F. de Rooij, A. Wirthmueller, D. Hofstetter, H. Looser, and J. Faist, “Mid-infrared spectroscopy for gases and liquids based on quantum cascade technologies,” Analyst 139, 2039–2046 (2014).
[Crossref]

Mangold, M.

P. Jouy, M. Mangold, B. Tuzson, L. Emmenegger, Y.-C. Chang, L. Hvozdara, H. P. Herzig, P. Wagli, A. Homsy, N. F. de Rooij, A. Wirthmueller, D. Hofstetter, H. Looser, and J. Faist, “Mid-infrared spectroscopy for gases and liquids based on quantum cascade technologies,” Analyst 139, 2039–2046 (2014).
[Crossref]

Masselink, W. T.

M. P. Semtsiv, M. Wienold, S. Dressler, and W. T. Masselink, “Short-wavelength (µ m ≈ 3.05µ m) InP-based strain-compensated quantum-cascade laser,” Appl. Phys. Lett. 90, 051111 (2007).
[Crossref]

McCulloch, M.

G. Duxbury, N. Langford, M. McCulloch, and S. Wright, “Quantum cascade semiconductor infrared and far-infrared lasers: from trace gas sensing to non-linear optics,” Chem. Soc. Rev. 34, 921–934 (2005).
[Crossref] [PubMed]

McManus, J. B.

B. Tuzson, K. Zeyer, M. Steinbacher, J. B. McManus, D. D. Nelson, M. S. Zahniser, and L. Emmenegger, “Selective measurements of NO, NO2 and NOy in the free troposphere using quantum cascade laser spectroscopy,” Atmos. Meas. Tech. 6, 927–936 (2013).
[Crossref]

Melchior, H.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[Crossref] [PubMed]

Menzel, S.

D. G. Revin, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, A. B. Krysa, L. R. Wilson, and S. Menzel, “InGaAs/AlAsSb/InP quantum cascade lasers operating at wavelengths close to 3 µ m,” Appl. Phys. Lett. 90, 021108 (2007).
[Crossref]

Merritt, C. D.

W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “High-power room-temperature continuous-wave mid-infrared interband cascade lasers,” Opt. Express 20, 20894–20901 (2012).
[Crossref] [PubMed]

C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80 ° C,” Appl. Phys. Lett. 101, 061104 (2012).
[Crossref]

Meyer, J. R.

C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80 ° C,” Appl. Phys. Lett. 101, 061104 (2012).
[Crossref]

W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “High-power room-temperature continuous-wave mid-infrared interband cascade lasers,” Opt. Express 20, 20894–20901 (2012).
[Crossref] [PubMed]

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ=3.75 µ m in continuous wave above room temperature,” Appl. Phys. Lett. 92, 191110 (2008).
[Crossref]

Muller, A.

Müller, A.

Nelson, D. D.

B. Tuzson, K. Zeyer, M. Steinbacher, J. B. McManus, D. D. Nelson, M. S. Zahniser, and L. Emmenegger, “Selective measurements of NO, NO2 and NOy in the free troposphere using quantum cascade laser spectroscopy,” Atmos. Meas. Tech. 6, 927–936 (2013).
[Crossref]

Nida, S.

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ ≈ 3–3.2µ m quantum cascade lasers,” Appl. Phys. Lett. 101, 241110 (2012).
[Crossref]

Oesterle, U.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[Crossref] [PubMed]

Razeghi, M.

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ ≈ 3.4 µ m and λ ≈ 3.55 µ m InP-based quantum cascade lasers,” Appl. Phys. Lett. 100, 212104 (2012).
[Crossref]

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ ≈ 3–3.2µ m quantum cascade lasers,” Appl. Phys. Lett. 101, 241110 (2012).
[Crossref]

Revin, D.

D. Revin, J. Commin, S. Zhang, A. B. Krysa, K. Kennedy, and J. Cockburn, “In P-based midinfrared quantum cascade lasers for wavelengths below 4 µ m,” IEEE J. Sel. Top. Quantum Electron. 17, 1417–1425 (2011).
[Crossref]

Revin, D. G.

D. Vaitiekus, D. G. Revin, K. L. Kennedy, S. Y. Zhang, and J. W. Cockburn, “Quantum cascade laser with unilateral grating,” IEEE Photon. Technol. Lett. 24, 2112–2114 (2012).
[Crossref]

J. P. Commin, D. G. Revin, S. Y. Zhang, A. B. Krysa, K. Kennedy, and J. W. Cockburn, “High peak power 3.3 and 3.5 µ m InGaAs/AlAs(Sb) quantum cascade lasers operating up to 400 K,” Appl. Phys. Lett. 97, 031108 (2010).
[Crossref]

D. G. Revin, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, A. B. Krysa, L. R. Wilson, and S. Menzel, “InGaAs/AlAsSb/InP quantum cascade lasers operating at wavelengths close to 3 µ m,” Appl. Phys. Lett. 90, 021108 (2007).
[Crossref]

Riedi, S.

A. Bismuto, S. Riedi, B. Hinkov, M. Beck, and J. Faist, “Sb-free quantum cascade lasers in the 3 µ m spectral range,” Semicond. Sci. Technol. 27, 045013 (2012).
[Crossref]

Rochat, M.

Sánchez-Vaynshteyn, W.

R. Cendejas, Z. Liu, W. Sánchez-Vaynshteyn, C. Caneau, C. Zah, and C. Gmachl, “Cavity length scaling of quantum cascade lasers for single-mode emission and low heat dissipation, room temperature, continuous wave operation,” IEEE Photonics J. 3, 71–81 (2011).
[Crossref]

Semtsiv, M. P.

M. P. Semtsiv, M. Wienold, S. Dressler, and W. T. Masselink, “Short-wavelength (µ m ≈ 3.05µ m) InP-based strain-compensated quantum-cascade laser,” Appl. Phys. Lett. 90, 051111 (2007).
[Crossref]

Shterengas, L.

T. Hosoda, G. Kipshidze, L. Shterengas, and G. Belenky, “Diode lasers emitting near 3.44 µ m in continuous-wave regime at 300K,” Electron. Lett. 46, 1455–1457 (2010).
[Crossref]

T. Hosoda, G. Belenky, L. Shterengas, G. Kipshidze, and M. V. Kisin, “Continuous-wave room temperature operated 3.0µ m type i GaSb-based lasers with quinternary AlInGaAsSb barriers,” Appl. Phys. Lett. 92, 091106 (2008).
[Crossref]

Sivco, D. L.

Slivken, S.

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ ≈ 3.4 µ m and λ ≈ 3.55 µ m InP-based quantum cascade lasers,” Appl. Phys. Lett. 100, 212104 (2012).
[Crossref]

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ ≈ 3–3.2µ m quantum cascade lasers,” Appl. Phys. Lett. 101, 241110 (2012).
[Crossref]

Steer, M. J.

D. G. Revin, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, A. B. Krysa, L. R. Wilson, and S. Menzel, “InGaAs/AlAsSb/InP quantum cascade lasers operating at wavelengths close to 3 µ m,” Appl. Phys. Lett. 90, 021108 (2007).
[Crossref]

Steinbacher, M.

B. Tuzson, K. Zeyer, M. Steinbacher, J. B. McManus, D. D. Nelson, M. S. Zahniser, and L. Emmenegger, “Selective measurements of NO, NO2 and NOy in the free troposphere using quantum cascade laser spectroscopy,” Atmos. Meas. Tech. 6, 927–936 (2013).
[Crossref]

Teissier, R.

J. Devenson, O. Cathabard, R. Teissier, and A. N. Baranov, “High temperature operation of λ ≈ 3.3 µ m quantum cascade lasers,” Appl. Phys. Lett. 91, 141106 (2007).
[Crossref]

Terazzi, R.

A. Bismuto, S. Blaser, R. Terazzi, T. Gresch, and A. Muller, “High performance, low dissipation quantum cascade lasers across the mid-IR range,” Opt. Express 23, 5477–5484 (2015).
[Crossref] [PubMed]

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96, 141105 (2010).
[Crossref]

Tittel, F. K.

Tsao, S.

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ ≈ 3–3.2µ m quantum cascade lasers,” Appl. Phys. Lett. 101, 241110 (2012).
[Crossref]

Tuzson, B.

M. Fischer, B. Tuzson, A. Hugi, R. Brönnimann, A. Kunz, S. Blaser, M. Rochat, O. Landry, A. Müller, and L. Emmenegger, “Intermittent operation of QC-lasers for mid-IR spectroscopy with low heat dissipation: tuning characteristics and driving electronics,” Opt. Express 22, 7014–7027 (2014).
[Crossref] [PubMed]

P. Jouy, M. Mangold, B. Tuzson, L. Emmenegger, Y.-C. Chang, L. Hvozdara, H. P. Herzig, P. Wagli, A. Homsy, N. F. de Rooij, A. Wirthmueller, D. Hofstetter, H. Looser, and J. Faist, “Mid-infrared spectroscopy for gases and liquids based on quantum cascade technologies,” Analyst 139, 2039–2046 (2014).
[Crossref]

B. Tuzson, K. Zeyer, M. Steinbacher, J. B. McManus, D. D. Nelson, M. S. Zahniser, and L. Emmenegger, “Selective measurements of NO, NO2 and NOy in the free troposphere using quantum cascade laser spectroscopy,” Atmos. Meas. Tech. 6, 927–936 (2013).
[Crossref]

Vaitiekus, D.

D. Vaitiekus, D. G. Revin, K. L. Kennedy, S. Y. Zhang, and J. W. Cockburn, “Quantum cascade laser with unilateral grating,” IEEE Photon. Technol. Lett. 24, 2112–2114 (2012).
[Crossref]

Vurgaftman, I.

W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “High-power room-temperature continuous-wave mid-infrared interband cascade lasers,” Opt. Express 20, 20894–20901 (2012).
[Crossref] [PubMed]

C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80 ° C,” Appl. Phys. Lett. 101, 061104 (2012).
[Crossref]

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ=3.75 µ m in continuous wave above room temperature,” Appl. Phys. Lett. 92, 191110 (2008).
[Crossref]

Wagli, P.

P. Jouy, M. Mangold, B. Tuzson, L. Emmenegger, Y.-C. Chang, L. Hvozdara, H. P. Herzig, P. Wagli, A. Homsy, N. F. de Rooij, A. Wirthmueller, D. Hofstetter, H. Looser, and J. Faist, “Mid-infrared spectroscopy for gases and liquids based on quantum cascade technologies,” Analyst 139, 2039–2046 (2014).
[Crossref]

Wienold, M.

M. P. Semtsiv, M. Wienold, S. Dressler, and W. T. Masselink, “Short-wavelength (µ m ≈ 3.05µ m) InP-based strain-compensated quantum-cascade laser,” Appl. Phys. Lett. 90, 051111 (2007).
[Crossref]

Wilson, L. R.

D. G. Revin, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, A. B. Krysa, L. R. Wilson, and S. Menzel, “InGaAs/AlAsSb/InP quantum cascade lasers operating at wavelengths close to 3 µ m,” Appl. Phys. Lett. 90, 021108 (2007).
[Crossref]

Wirthmueller, A.

P. Jouy, M. Mangold, B. Tuzson, L. Emmenegger, Y.-C. Chang, L. Hvozdara, H. P. Herzig, P. Wagli, A. Homsy, N. F. de Rooij, A. Wirthmueller, D. Hofstetter, H. Looser, and J. Faist, “Mid-infrared spectroscopy for gases and liquids based on quantum cascade technologies,” Analyst 139, 2039–2046 (2014).
[Crossref]

Wolf, J. M.

Wright, S.

G. Duxbury, N. Langford, M. McCulloch, and S. Wright, “Quantum cascade semiconductor infrared and far-infrared lasers: from trace gas sensing to non-linear optics,” Chem. Soc. Rev. 34, 921–934 (2005).
[Crossref] [PubMed]

Zah, C.

R. Cendejas, Z. Liu, W. Sánchez-Vaynshteyn, C. Caneau, C. Zah, and C. Gmachl, “Cavity length scaling of quantum cascade lasers for single-mode emission and low heat dissipation, room temperature, continuous wave operation,” IEEE Photonics J. 3, 71–81 (2011).
[Crossref]

Zahniser, M. S.

B. Tuzson, K. Zeyer, M. Steinbacher, J. B. McManus, D. D. Nelson, M. S. Zahniser, and L. Emmenegger, “Selective measurements of NO, NO2 and NOy in the free troposphere using quantum cascade laser spectroscopy,” Atmos. Meas. Tech. 6, 927–936 (2013).
[Crossref]

Zeyer, K.

B. Tuzson, K. Zeyer, M. Steinbacher, J. B. McManus, D. D. Nelson, M. S. Zahniser, and L. Emmenegger, “Selective measurements of NO, NO2 and NOy in the free troposphere using quantum cascade laser spectroscopy,” Atmos. Meas. Tech. 6, 927–936 (2013).
[Crossref]

Zhang, S.

D. Revin, J. Commin, S. Zhang, A. B. Krysa, K. Kennedy, and J. Cockburn, “In P-based midinfrared quantum cascade lasers for wavelengths below 4 µ m,” IEEE J. Sel. Top. Quantum Electron. 17, 1417–1425 (2011).
[Crossref]

Zhang, S. Y.

D. Vaitiekus, D. G. Revin, K. L. Kennedy, S. Y. Zhang, and J. W. Cockburn, “Quantum cascade laser with unilateral grating,” IEEE Photon. Technol. Lett. 24, 2112–2114 (2012).
[Crossref]

J. P. Commin, D. G. Revin, S. Y. Zhang, A. B. Krysa, K. Kennedy, and J. W. Cockburn, “High peak power 3.3 and 3.5 µ m InGaAs/AlAs(Sb) quantum cascade lasers operating up to 400 K,” Appl. Phys. Lett. 97, 031108 (2010).
[Crossref]

Analyst (1)

P. Jouy, M. Mangold, B. Tuzson, L. Emmenegger, Y.-C. Chang, L. Hvozdara, H. P. Herzig, P. Wagli, A. Homsy, N. F. de Rooij, A. Wirthmueller, D. Hofstetter, H. Looser, and J. Faist, “Mid-infrared spectroscopy for gases and liquids based on quantum cascade technologies,” Analyst 139, 2039–2046 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (11)

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96, 141105 (2010).
[Crossref]

C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80 ° C,” Appl. Phys. Lett. 101, 061104 (2012).
[Crossref]

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ=3.75 µ m in continuous wave above room temperature,” Appl. Phys. Lett. 92, 191110 (2008).
[Crossref]

T. Hosoda, G. Belenky, L. Shterengas, G. Kipshidze, and M. V. Kisin, “Continuous-wave room temperature operated 3.0µ m type i GaSb-based lasers with quinternary AlInGaAsSb barriers,” Appl. Phys. Lett. 92, 091106 (2008).
[Crossref]

J. Devenson, O. Cathabard, R. Teissier, and A. N. Baranov, “High temperature operation of λ ≈ 3.3 µ m quantum cascade lasers,” Appl. Phys. Lett. 91, 141106 (2007).
[Crossref]

D. G. Revin, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, A. B. Krysa, L. R. Wilson, and S. Menzel, “InGaAs/AlAsSb/InP quantum cascade lasers operating at wavelengths close to 3 µ m,” Appl. Phys. Lett. 90, 021108 (2007).
[Crossref]

M. P. Semtsiv, M. Wienold, S. Dressler, and W. T. Masselink, “Short-wavelength (µ m ≈ 3.05µ m) InP-based strain-compensated quantum-cascade laser,” Appl. Phys. Lett. 90, 051111 (2007).
[Crossref]

A. Bismuto, M. Beck, and J. Faist, “High power Sb-free quantum cascade laser emitting at 3.3 µ m above 350 K,” Appl. Phys. Lett. 98, 191104 (2011).
[Crossref]

J. P. Commin, D. G. Revin, S. Y. Zhang, A. B. Krysa, K. Kennedy, and J. W. Cockburn, “High peak power 3.3 and 3.5 µ m InGaAs/AlAs(Sb) quantum cascade lasers operating up to 400 K,” Appl. Phys. Lett. 97, 031108 (2010).
[Crossref]

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ ≈ 3.4 µ m and λ ≈ 3.55 µ m InP-based quantum cascade lasers,” Appl. Phys. Lett. 100, 212104 (2012).
[Crossref]

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ ≈ 3–3.2µ m quantum cascade lasers,” Appl. Phys. Lett. 101, 241110 (2012).
[Crossref]

Atmos. Meas. Tech. (1)

B. Tuzson, K. Zeyer, M. Steinbacher, J. B. McManus, D. D. Nelson, M. S. Zahniser, and L. Emmenegger, “Selective measurements of NO, NO2 and NOy in the free troposphere using quantum cascade laser spectroscopy,” Atmos. Meas. Tech. 6, 927–936 (2013).
[Crossref]

Chem. Soc. Rev. (1)

G. Duxbury, N. Langford, M. McCulloch, and S. Wright, “Quantum cascade semiconductor infrared and far-infrared lasers: from trace gas sensing to non-linear optics,” Chem. Soc. Rev. 34, 921–934 (2005).
[Crossref] [PubMed]

Electron. Lett. (2)

T. Hosoda, G. Kipshidze, L. Shterengas, and G. Belenky, “Diode lasers emitting near 3.44 µ m in continuous-wave regime at 300K,” Electron. Lett. 46, 1455–1457 (2010).
[Crossref]

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1 W,” Electron. Lett. 48, 646–647 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. Revin, J. Commin, S. Zhang, A. B. Krysa, K. Kennedy, and J. Cockburn, “In P-based midinfrared quantum cascade lasers for wavelengths below 4 µ m,” IEEE J. Sel. Top. Quantum Electron. 17, 1417–1425 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (1)

D. Vaitiekus, D. G. Revin, K. L. Kennedy, S. Y. Zhang, and J. W. Cockburn, “Quantum cascade laser with unilateral grating,” IEEE Photon. Technol. Lett. 24, 2112–2114 (2012).
[Crossref]

IEEE Photonics J. (1)

R. Cendejas, Z. Liu, W. Sánchez-Vaynshteyn, C. Caneau, C. Zah, and C. Gmachl, “Cavity length scaling of quantum cascade lasers for single-mode emission and low heat dissipation, room temperature, continuous wave operation,” IEEE Photonics J. 3, 71–81 (2011).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Science (1)

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

A. Bismuto, S. Riedi, B. Hinkov, M. Beck, and J. Faist, “Sb-free quantum cascade lasers in the 3 µ m spectral range,” Semicond. Sci. Technol. 27, 045013 (2012).
[Crossref]

Other (1)

J. Faist, Quantum Cascade Laser (Oxford University, 2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) SEM picture of the facet of a device with 4.075 µm width and 1.7 µm height. (b) SEM of a narrower device of 1.35 µm width.

Fig. 2
Fig. 2

Threshold current density as a function of temperature for a Fabry-Perot device. Laser emission was up to 130 °C.

Fig. 3
Fig. 3

Power-current-voltage characteristics of a DFB device for a temperature range of −20 °C to 110 °C in pulsed operation. The dissipation value at −20 °C amounts to 440 mW at a current of 33 mA. The dynamic range of the device at −20 °C amounts to nearly 9:1.

Fig. 4
Fig. 4

Power-current-voltage characteristics in pulsed operation at −10 °C. Dissipation value at threshold is 230 mW for −10 °C.

Fig. 5
Fig. 5

Power-current-voltage characteristics in continuous-wave operation from −20 °C to 15 °C.

Fig. 6
Fig. 6

(a) Spontaneous emission of the active region at 14 V, measured at room-temperature (bold grey line). The device dimensions are 215 × 215 µm. Full-width-half-max of the emission amounts to 410 cm 1. Emission spectra of a single-mode DFB laser around 2970 cm 1 are shown in linear scale. (b) Zoom of the single-mode spectra in dB-scale. Spectra were recorded up to 40 °C in pulsed operation (2%) and continuous wave operation at −20 °C. The device is 750 µm long and 4 µm wide and high-reflectivity coating is applied to both facets.

Fig. 7
Fig. 7

Single-mode long-pulse measurements at 10% dc at a pulse width of 5.56 µs. The measurement was taken at −15 °C. The output power was stable for at least 2 µs and the emission wavelength tuned continuously from 2976 to 2973 cm 1. Top: shows the tuning of the emission wavelength versus time delay (starting from pulse onset). The colorscale gives the signal intensity in arbitrary units. Bottom: Single spectra of the different time slices.

Fig. 8
Fig. 8

(a) Far-field, (b) horizontal cross section and (c) vertical cross section of a 4 mm long laser, (d) SEM picture of the facet. The facet has 1.35 µm width and 1.7 µm height. The laser was operated at −12 °C at 385 mA. The Far-field exhibits a full-width-half-max of 27 ° × 34 °.

Metrics