Abstract

We demonstrate the first 40 Gbit/s single-channel polarization-multiplexed, 5 Gsymbol/s, 16 QAM quantum noise stream cipher (QNSC) transmission over 480 km by incorporating ASE quantum noise from EDFAs as well as the quantum shot noise of the coherent state with multiple photons for the random masking of data. By using a multi-bit encoded scheme and digital coherent transmission techniques, secure optical communication with a record data capacity and transmission distance has been successfully realized. In this system, the signal level received by Eve is hidden by both the amplitude and the phase noise. The highest number of masked signals, 7.5 x 104, was achieved by using a QAM scheme with FEC, which makes it possible to reduce the output power from the transmitter while maintaining an error free condition for Bob. We have newly measured the noise distribution around I and Q encrypted data and shown experimentally with a data size of as large as 225 that the noise has a Gaussian distribution with no correlations. This distribution is suitable for the random masking of data.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
QAM quantum stream cipher using digital coherent optical transmission

Masataka Nakazawa, Masato Yoshida, Toshihiko Hirooka, and Keisuke Kasai
Opt. Express 22(4) 4098-4107 (2014)

Single-channel 48-Gbit/s DP PSK Y-00 quantum stream cipher transmission over 400- and 800-km SSMF

Ken Tanizawa and Fumio Futami
Opt. Express 27(18) 25357-25363 (2019)

Y-00 quantum stream cipher overlay in a coherent 256-Gbit/s polarization multiplexed 16-QAM WDM system

Fumio Futami, Kyle Guan, Jurgen Gripp, Kentaro Kato, Ken Tanizawa, Sethumadhavan Chandrasekhar, and Peter J. Winzer
Opt. Express 25(26) 33338-33349 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, “Secure communication using mesoscopic coherent states,” Phys. Rev. Lett. 90(22), 227901 (2003).
    [Crossref] [PubMed]
  2. E. Corndorf, C. Liang, G. S. Kanter, P. Kumar, and H. P. Yuen, “Quantum noise randomized data encryption for wavelength division multiplexed fiber optic network,” Phys. Rev. A 71(6), 062326 (2005).
    [Crossref]
  3. G. S. Kanter, D. Reilly, and N. Smith, “Practical physical-layer encryption: The marriage of optical noise with traditional cryptography,” IEEE Commun. Mag. 47(11), 74–81 (2009).
    [Crossref]
  4. K. Harasawa, O. Hirota, K. Yamashita, M. Honda, K. Ohhata, S. Akutsu, T. Hosoi, and Y. Doi, “Quantum encryption communication over a 192-km 2.5-Gbit/s line with optical transceivers employing Yuen-2000 protocol based on intensity modulation,” J. Lightwave Technol. 29(3), 316–323 (2011).
    [Crossref]
  5. F. Futami and O. Hirota, “100 Gbit/s (10 x 10 Gbit/s) Y-00 cipher transmission over 120 km for secure optical fiber communication between data centers,” in OECC/ACOFT (2014), paper MO1A–2.
  6. K. Kato and O. Hirota, “Quantum quadrature amplitude modulation system and its applicability to coherent state quantum cryptography,” Proc. SPIE 5893, 589303 (2005).
    [Crossref]
  7. M. Nakazawa, M. Yoshida, T. Hirooka, and K. Kasai, “QAM quantum stream cipher using digital coherent optical transmission,” Opt. Express 22(4), 4098–4107 (2014).
    [Crossref] [PubMed]
  8. C. Paré, A. Villeneuve, P.-A. Bélanger, and N. J. Doran, “Compensating for dispersion and the nonlinear Kerr effect without phase conjugation,” Opt. Lett. 21(7), 459–461 (1996).
    [Crossref] [PubMed]
  9. K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express 3(22), 487–492 (2006).
    [Crossref]
  10. H. Nyquist, “Certain topics in telegraph transmission theory,” Trans. Am. Inst. Electr. Eng. 47(2), 617–644 (1928).
    [Crossref]
  11. K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express 4(3), 77–81 (2007).
    [Crossref]
  12. F. Futami and O. Hirota, “Masking of 4096-level intensity modulation signals by noises for secure communication employing Y-00 cipher protocol,” in ECOC (2011), paper Tu.6.C.4.
  13. O. Hirota, “Practical security analysis of a quantum stream cipher by the Yuen 2000 protocol,” Phys. Rev. A 76(3), 032307 (2007).
    [Crossref]

2014 (1)

2011 (1)

2009 (1)

G. S. Kanter, D. Reilly, and N. Smith, “Practical physical-layer encryption: The marriage of optical noise with traditional cryptography,” IEEE Commun. Mag. 47(11), 74–81 (2009).
[Crossref]

2007 (2)

K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express 4(3), 77–81 (2007).
[Crossref]

O. Hirota, “Practical security analysis of a quantum stream cipher by the Yuen 2000 protocol,” Phys. Rev. A 76(3), 032307 (2007).
[Crossref]

2006 (1)

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express 3(22), 487–492 (2006).
[Crossref]

2005 (2)

K. Kato and O. Hirota, “Quantum quadrature amplitude modulation system and its applicability to coherent state quantum cryptography,” Proc. SPIE 5893, 589303 (2005).
[Crossref]

E. Corndorf, C. Liang, G. S. Kanter, P. Kumar, and H. P. Yuen, “Quantum noise randomized data encryption for wavelength division multiplexed fiber optic network,” Phys. Rev. A 71(6), 062326 (2005).
[Crossref]

2003 (1)

G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, “Secure communication using mesoscopic coherent states,” Phys. Rev. Lett. 90(22), 227901 (2003).
[Crossref] [PubMed]

1996 (1)

1928 (1)

H. Nyquist, “Certain topics in telegraph transmission theory,” Trans. Am. Inst. Electr. Eng. 47(2), 617–644 (1928).
[Crossref]

Akutsu, S.

Barbosa, G. A.

G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, “Secure communication using mesoscopic coherent states,” Phys. Rev. Lett. 90(22), 227901 (2003).
[Crossref] [PubMed]

Bélanger, P.-A.

Corndorf, E.

E. Corndorf, C. Liang, G. S. Kanter, P. Kumar, and H. P. Yuen, “Quantum noise randomized data encryption for wavelength division multiplexed fiber optic network,” Phys. Rev. A 71(6), 062326 (2005).
[Crossref]

G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, “Secure communication using mesoscopic coherent states,” Phys. Rev. Lett. 90(22), 227901 (2003).
[Crossref] [PubMed]

Doi, Y.

Doran, N. J.

Futami, F.

F. Futami and O. Hirota, “Masking of 4096-level intensity modulation signals by noises for secure communication employing Y-00 cipher protocol,” in ECOC (2011), paper Tu.6.C.4.

F. Futami and O. Hirota, “100 Gbit/s (10 x 10 Gbit/s) Y-00 cipher transmission over 120 km for secure optical fiber communication between data centers,” in OECC/ACOFT (2014), paper MO1A–2.

Harasawa, K.

Hirooka, T.

Hirota, O.

K. Harasawa, O. Hirota, K. Yamashita, M. Honda, K. Ohhata, S. Akutsu, T. Hosoi, and Y. Doi, “Quantum encryption communication over a 192-km 2.5-Gbit/s line with optical transceivers employing Yuen-2000 protocol based on intensity modulation,” J. Lightwave Technol. 29(3), 316–323 (2011).
[Crossref]

O. Hirota, “Practical security analysis of a quantum stream cipher by the Yuen 2000 protocol,” Phys. Rev. A 76(3), 032307 (2007).
[Crossref]

K. Kato and O. Hirota, “Quantum quadrature amplitude modulation system and its applicability to coherent state quantum cryptography,” Proc. SPIE 5893, 589303 (2005).
[Crossref]

F. Futami and O. Hirota, “100 Gbit/s (10 x 10 Gbit/s) Y-00 cipher transmission over 120 km for secure optical fiber communication between data centers,” in OECC/ACOFT (2014), paper MO1A–2.

F. Futami and O. Hirota, “Masking of 4096-level intensity modulation signals by noises for secure communication employing Y-00 cipher protocol,” in ECOC (2011), paper Tu.6.C.4.

Honda, M.

Hongo, J.

K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express 4(3), 77–81 (2007).
[Crossref]

Hosoi, T.

Kanter, G. S.

G. S. Kanter, D. Reilly, and N. Smith, “Practical physical-layer encryption: The marriage of optical noise with traditional cryptography,” IEEE Commun. Mag. 47(11), 74–81 (2009).
[Crossref]

E. Corndorf, C. Liang, G. S. Kanter, P. Kumar, and H. P. Yuen, “Quantum noise randomized data encryption for wavelength division multiplexed fiber optic network,” Phys. Rev. A 71(6), 062326 (2005).
[Crossref]

Kasai, K.

M. Nakazawa, M. Yoshida, T. Hirooka, and K. Kasai, “QAM quantum stream cipher using digital coherent optical transmission,” Opt. Express 22(4), 4098–4107 (2014).
[Crossref] [PubMed]

K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express 4(3), 77–81 (2007).
[Crossref]

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express 3(22), 487–492 (2006).
[Crossref]

Kato, K.

K. Kato and O. Hirota, “Quantum quadrature amplitude modulation system and its applicability to coherent state quantum cryptography,” Proc. SPIE 5893, 589303 (2005).
[Crossref]

Kumar, P.

E. Corndorf, C. Liang, G. S. Kanter, P. Kumar, and H. P. Yuen, “Quantum noise randomized data encryption for wavelength division multiplexed fiber optic network,” Phys. Rev. A 71(6), 062326 (2005).
[Crossref]

G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, “Secure communication using mesoscopic coherent states,” Phys. Rev. Lett. 90(22), 227901 (2003).
[Crossref] [PubMed]

Liang, C.

E. Corndorf, C. Liang, G. S. Kanter, P. Kumar, and H. P. Yuen, “Quantum noise randomized data encryption for wavelength division multiplexed fiber optic network,” Phys. Rev. A 71(6), 062326 (2005).
[Crossref]

Nakazawa, M.

M. Nakazawa, M. Yoshida, T. Hirooka, and K. Kasai, “QAM quantum stream cipher using digital coherent optical transmission,” Opt. Express 22(4), 4098–4107 (2014).
[Crossref] [PubMed]

K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express 4(3), 77–81 (2007).
[Crossref]

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express 3(22), 487–492 (2006).
[Crossref]

Nyquist, H.

H. Nyquist, “Certain topics in telegraph transmission theory,” Trans. Am. Inst. Electr. Eng. 47(2), 617–644 (1928).
[Crossref]

Ohhata, K.

Paré, C.

Reilly, D.

G. S. Kanter, D. Reilly, and N. Smith, “Practical physical-layer encryption: The marriage of optical noise with traditional cryptography,” IEEE Commun. Mag. 47(11), 74–81 (2009).
[Crossref]

Smith, N.

G. S. Kanter, D. Reilly, and N. Smith, “Practical physical-layer encryption: The marriage of optical noise with traditional cryptography,” IEEE Commun. Mag. 47(11), 74–81 (2009).
[Crossref]

Suzuki, A.

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express 3(22), 487–492 (2006).
[Crossref]

Villeneuve, A.

Yamashita, K.

Yoshida, M.

M. Nakazawa, M. Yoshida, T. Hirooka, and K. Kasai, “QAM quantum stream cipher using digital coherent optical transmission,” Opt. Express 22(4), 4098–4107 (2014).
[Crossref] [PubMed]

K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express 4(3), 77–81 (2007).
[Crossref]

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express 3(22), 487–492 (2006).
[Crossref]

Yuen, H. P.

E. Corndorf, C. Liang, G. S. Kanter, P. Kumar, and H. P. Yuen, “Quantum noise randomized data encryption for wavelength division multiplexed fiber optic network,” Phys. Rev. A 71(6), 062326 (2005).
[Crossref]

G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, “Secure communication using mesoscopic coherent states,” Phys. Rev. Lett. 90(22), 227901 (2003).
[Crossref] [PubMed]

IEEE Commun. Mag. (1)

G. S. Kanter, D. Reilly, and N. Smith, “Practical physical-layer encryption: The marriage of optical noise with traditional cryptography,” IEEE Commun. Mag. 47(11), 74–81 (2009).
[Crossref]

IEICE Electron. Express (2)

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express 3(22), 487–492 (2006).
[Crossref]

K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express 4(3), 77–81 (2007).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (2)

E. Corndorf, C. Liang, G. S. Kanter, P. Kumar, and H. P. Yuen, “Quantum noise randomized data encryption for wavelength division multiplexed fiber optic network,” Phys. Rev. A 71(6), 062326 (2005).
[Crossref]

O. Hirota, “Practical security analysis of a quantum stream cipher by the Yuen 2000 protocol,” Phys. Rev. A 76(3), 032307 (2007).
[Crossref]

Phys. Rev. Lett. (1)

G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, “Secure communication using mesoscopic coherent states,” Phys. Rev. Lett. 90(22), 227901 (2003).
[Crossref] [PubMed]

Proc. SPIE (1)

K. Kato and O. Hirota, “Quantum quadrature amplitude modulation system and its applicability to coherent state quantum cryptography,” Proc. SPIE 5893, 589303 (2005).
[Crossref]

Trans. Am. Inst. Electr. Eng. (1)

H. Nyquist, “Certain topics in telegraph transmission theory,” Trans. Am. Inst. Electr. Eng. 47(2), 617–644 (1928).
[Crossref]

Other (2)

F. Futami and O. Hirota, “100 Gbit/s (10 x 10 Gbit/s) Y-00 cipher transmission over 120 km for secure optical fiber communication between data centers,” in OECC/ACOFT (2014), paper MO1A–2.

F. Futami and O. Hirota, “Masking of 4096-level intensity modulation signals by noises for secure communication employing Y-00 cipher protocol,” in ECOC (2011), paper Tu.6.C.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Experimental setup for single-channel 40 Gbit/s digital coherent QAM/QNSC transmission over 480 km.
Fig. 2
Fig. 2 Optical spectra of the QAM/QNSC signal before (a) and after (b) 480 km transmission, and electrical spectrum of the demodulated signal at the DSP (c).
Fig. 3
Fig. 3 SSB noise power spectrum of a heterodyne beat note between the LO and the pilot tone for an OPLL after 480 km transmission.
Fig. 4
Fig. 4 Constellation of QAM/QNSC signal after 480 km transmission without (a) and with decryption (b).
Fig. 5
Fig. 5 BER for Bob after 480 km transmission as a function of fiber launched power (Pout = –35 dBm).
Fig. 6
Fig. 6 BER for Bob after 480 km transmission as a function of Pout.
Fig. 7
Fig. 7 Constellation of QAM/QNSC signal under back-to-back condition with decryption (a) and the noise distribution around the I and Q data (b)(c).
Fig. 8
Fig. 8 Autocorrelation coefficients of the noise signals around I and Q data.
Fig. 9
Fig. 9 DFP for Eve under a back-to-back condition as a function of Pout.
Fig. 10
Fig. 10 DFP for Eve under a back-to-back condition as a function of the multiplicity M of an I, Q encrypted signal.
Fig. 11
Fig. 11 NMS of QAM/QNSC ΓQAM as a function of multiplicity M.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

C I (τ)= n ΔI(nT)ΔI(nTτ) n ΔI(nT)ΔI(nT) , C Q (τ)= n ΔQ(nT)ΔQ(nTτ) n ΔQ(nT)ΔQ(nT)
Γ QAM =(2 σ ¯ I /Δ)(2 σ ¯ Q /Δ)

Metrics