Abstract

A highly sensitive magnetic field sensor based on a fiber ring laser has been proposed and experimentally demonstrated. The magnetic field sensor was fabricated by introducing a rotary apparatus modulated by an external magnetic field into the fiber cavity to twist one section of the fiber. Due to the remarkable birefringence change induced into the laser cavity, the beat frequency generated between two polarizations of the laser is sensitive to the variation of applied magnetic field intensity. Experimental results show that the polarization mode beat frequency linearly shifts with the increment of the magnetic field intensity and the sensitivity reaches up to 7.09 KHz/Oe in the range of 0 - 437 Oe. Therefore, it will be a promising candidate for the weak magnetic field applications including military, hazard forecast and biomedical fields.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sensitivity enhancement of Faraday effect based heterodyning fiber laser magnetic field sensor by lowering linear birefringence

Linghao Cheng, Jianlei Han, Long Jin, Zhenzhen Guo, and Bai-Ou Guan
Opt. Express 21(25) 30156-30162 (2013)

Ampere force based magnetic field sensor using dual-polarization fiber laser

Linghao Cheng, Zhenzhen Guo, Jianlei Han, Long Jin, and Bai-Ou Guan
Opt. Express 21(11) 13419-13424 (2013)

Multimode fiber laser for simultaneous measurement of strain and temperature based on beat frequency demodulation

Liang Gao, Lin Chen, Long Huang, and Xiangfei Chen
Opt. Express 20(20) 22517-22522 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. E. Lenz, “A review of magnetic sensors,” in Proceedings of IEEE Conference (IEEE, 1990), pp. 973–989.
  2. S. C. Rashleigh, “Magnetic-field sensing with a single-mode fiber,” Opt. Lett. 6(1), 19–21 (1981).
    [Crossref] [PubMed]
  3. C. L. Tien, C. C. Hwang, H. Chen, W. Liu, and S. Lin, “Magnetic sensor based on side-polished fiber Bragg grating coated with iron film,” IEEE Trans. Magn. 42(10), 3285–3287 (2006).
    [Crossref]
  4. M. Yang, J. Dai, C. Zhou, and D. Jiang, “Optical fiber magnetic field sensors with TbDyFe magnetostrictive thin films as sensing materials,” Opt. Express 17(23), 20777–20782 (2009).
    [Crossref] [PubMed]
  5. Y. Chen, Q. Han, T. Liu, X. Lan, and H. Xiao, “Optical fiber magnetic field sensor based on single-mode-multimode-single-mode structure and magnetic fluid,” Opt. Lett. 38(20), 3999–4001 (2013).
    [Crossref] [PubMed]
  6. M. Deng, C. Huang, D. Liu, W. Jin, and T. Zhu, “All fiber magnetic field sensor with Ferrofluid-filled tapered microstructured optical fiber interferometer,” Opt. Express 23(16), 20668–20674 (2015).
    [Crossref] [PubMed]
  7. A. D. Kersey and D. A. Jackson, “Current sensing utilizing heterodyne detection of the Faraday effect in single-mode optical fiber,” J. Lightwave Technol. 4(6), 640–644 (1986).
    [Crossref]
  8. L. Sun, S. Jiang, and J. R. Marciante, “All-fiber optical magnetic-field sensor based on Faraday rotation in highly terbium-doped fiber,” Opt. Express 18(6), 5407–5412 (2010).
    [Crossref] [PubMed]
  9. G. W. Day, D. N. Payne, A. J. Barlow, and J. J. Ramskov-Hansen, “Faraday rotation in coiled, monomode optical fibers: isolators, filters, and magnetic sensors,” Opt. Lett. 7(5), 238–240 (1982).
    [Crossref] [PubMed]
  10. H. K. Kim, S. K. Kim, H. G. Park, and B. Y. Kim, “Polarimetric fiber laser sensors,” Opt. Lett. 18(4), 317–319 (1993).
    [Crossref] [PubMed]
  11. B. Liu and H. Zhang, “Polarimetric distributed Bragg reflector fiber laser sensor array for simultaneous measurement of transverse load and temperature,” Opt. Fiber Technol. 17(6), 619–625 (2011).
    [Crossref]
  12. A. Frank, K. Bohnert, K. Haroud, H. Brandle, C. V. Poulsen, J. E. Pedersen, and J. Patscheider, “Distributed feedback fiber laser sensor for hydrostatic pressure,” IEEE Photonics Technol. Lett. 15(12), 1758–1760 (2003).
    [Crossref]
  13. J. Gao, H. Wang, X. Guo, and C. G. Lyu, “Directional force measurement technology based on fiber optical laser heterodyning demodulation,” Proc. SPIE 9522, 95220E (2015).
  14. C. Lyu, C. Wu, H.-Y. Tam, C. Lu, and J. Ma, “Polarimetric heterodyning fiber laser sensor for directional acoustic signal measurement,” Opt. Express 21(15), 18273–18280 (2013).
    [Crossref] [PubMed]
  15. L. Cheng, J. Han, Z. Guo, L. Jin, and B. O. Guan, “Faraday-rotation-based miniature magnetic field sensor using polarimetric heterodyning fiber grating laser,” Opt. Lett. 38(5), 688–690 (2013).
    [Crossref] [PubMed]
  16. L. Cheng, J. Han, L. Jin, Z. Guo, and B. O. Guan, “Sensitivity enhancement of Faraday effect based heterodyning fiber laser magnetic field sensor by lowering linear birefringence,” Opt. Express 21(25), 30156–30162 (2013).
    [Crossref] [PubMed]
  17. L. Gao, L. Chen, L. Huang, and X. Chen, “Multimode fiber laser for simultaneous measurement of strain and temperature based on beat frequency demodulation,” Opt. Express 20(20), 22517–22522 (2012).
    [Crossref] [PubMed]
  18. J. Wo, M. Jiang, M. Malnou, Q. Sun, J. Zhang, P. P. Shum, and D. Liu, “Twist sensor based on axial strain insensitive distributed Bragg reflector fiber laser,” Opt. Express 20(3), 2844–2850 (2012).
    [Crossref] [PubMed]
  19. R. Ulrich and A. Simon, “Polarization optics of twisted single-mode fibers,” Appl. Opt. 18(13), 2241–2251 (1979).
    [Crossref] [PubMed]
  20. T. Zhu, S. Huang, L. Shi, W. Huang, M. Liu, and K. Chiang, “Rayleigh backscattering: a method to highly compress laser linewidth,” Chin. Sci. Bull. 59(33), 4631–4636 (2014).
    [Crossref]

2015 (2)

J. Gao, H. Wang, X. Guo, and C. G. Lyu, “Directional force measurement technology based on fiber optical laser heterodyning demodulation,” Proc. SPIE 9522, 95220E (2015).

M. Deng, C. Huang, D. Liu, W. Jin, and T. Zhu, “All fiber magnetic field sensor with Ferrofluid-filled tapered microstructured optical fiber interferometer,” Opt. Express 23(16), 20668–20674 (2015).
[Crossref] [PubMed]

2014 (1)

T. Zhu, S. Huang, L. Shi, W. Huang, M. Liu, and K. Chiang, “Rayleigh backscattering: a method to highly compress laser linewidth,” Chin. Sci. Bull. 59(33), 4631–4636 (2014).
[Crossref]

2013 (4)

2012 (2)

2011 (1)

B. Liu and H. Zhang, “Polarimetric distributed Bragg reflector fiber laser sensor array for simultaneous measurement of transverse load and temperature,” Opt. Fiber Technol. 17(6), 619–625 (2011).
[Crossref]

2010 (1)

2009 (1)

2006 (1)

C. L. Tien, C. C. Hwang, H. Chen, W. Liu, and S. Lin, “Magnetic sensor based on side-polished fiber Bragg grating coated with iron film,” IEEE Trans. Magn. 42(10), 3285–3287 (2006).
[Crossref]

2003 (1)

A. Frank, K. Bohnert, K. Haroud, H. Brandle, C. V. Poulsen, J. E. Pedersen, and J. Patscheider, “Distributed feedback fiber laser sensor for hydrostatic pressure,” IEEE Photonics Technol. Lett. 15(12), 1758–1760 (2003).
[Crossref]

1993 (1)

1986 (1)

A. D. Kersey and D. A. Jackson, “Current sensing utilizing heterodyne detection of the Faraday effect in single-mode optical fiber,” J. Lightwave Technol. 4(6), 640–644 (1986).
[Crossref]

1982 (1)

1981 (1)

1979 (1)

Barlow, A. J.

Bohnert, K.

A. Frank, K. Bohnert, K. Haroud, H. Brandle, C. V. Poulsen, J. E. Pedersen, and J. Patscheider, “Distributed feedback fiber laser sensor for hydrostatic pressure,” IEEE Photonics Technol. Lett. 15(12), 1758–1760 (2003).
[Crossref]

Brandle, H.

A. Frank, K. Bohnert, K. Haroud, H. Brandle, C. V. Poulsen, J. E. Pedersen, and J. Patscheider, “Distributed feedback fiber laser sensor for hydrostatic pressure,” IEEE Photonics Technol. Lett. 15(12), 1758–1760 (2003).
[Crossref]

Chen, H.

C. L. Tien, C. C. Hwang, H. Chen, W. Liu, and S. Lin, “Magnetic sensor based on side-polished fiber Bragg grating coated with iron film,” IEEE Trans. Magn. 42(10), 3285–3287 (2006).
[Crossref]

Chen, L.

Chen, X.

Chen, Y.

Cheng, L.

Chiang, K.

T. Zhu, S. Huang, L. Shi, W. Huang, M. Liu, and K. Chiang, “Rayleigh backscattering: a method to highly compress laser linewidth,” Chin. Sci. Bull. 59(33), 4631–4636 (2014).
[Crossref]

Dai, J.

Day, G. W.

Deng, M.

Frank, A.

A. Frank, K. Bohnert, K. Haroud, H. Brandle, C. V. Poulsen, J. E. Pedersen, and J. Patscheider, “Distributed feedback fiber laser sensor for hydrostatic pressure,” IEEE Photonics Technol. Lett. 15(12), 1758–1760 (2003).
[Crossref]

Gao, J.

J. Gao, H. Wang, X. Guo, and C. G. Lyu, “Directional force measurement technology based on fiber optical laser heterodyning demodulation,” Proc. SPIE 9522, 95220E (2015).

Gao, L.

Guan, B. O.

Guo, X.

J. Gao, H. Wang, X. Guo, and C. G. Lyu, “Directional force measurement technology based on fiber optical laser heterodyning demodulation,” Proc. SPIE 9522, 95220E (2015).

Guo, Z.

Han, J.

Han, Q.

Haroud, K.

A. Frank, K. Bohnert, K. Haroud, H. Brandle, C. V. Poulsen, J. E. Pedersen, and J. Patscheider, “Distributed feedback fiber laser sensor for hydrostatic pressure,” IEEE Photonics Technol. Lett. 15(12), 1758–1760 (2003).
[Crossref]

Huang, C.

Huang, L.

Huang, S.

T. Zhu, S. Huang, L. Shi, W. Huang, M. Liu, and K. Chiang, “Rayleigh backscattering: a method to highly compress laser linewidth,” Chin. Sci. Bull. 59(33), 4631–4636 (2014).
[Crossref]

Huang, W.

T. Zhu, S. Huang, L. Shi, W. Huang, M. Liu, and K. Chiang, “Rayleigh backscattering: a method to highly compress laser linewidth,” Chin. Sci. Bull. 59(33), 4631–4636 (2014).
[Crossref]

Hwang, C. C.

C. L. Tien, C. C. Hwang, H. Chen, W. Liu, and S. Lin, “Magnetic sensor based on side-polished fiber Bragg grating coated with iron film,” IEEE Trans. Magn. 42(10), 3285–3287 (2006).
[Crossref]

Jackson, D. A.

A. D. Kersey and D. A. Jackson, “Current sensing utilizing heterodyne detection of the Faraday effect in single-mode optical fiber,” J. Lightwave Technol. 4(6), 640–644 (1986).
[Crossref]

Jiang, D.

Jiang, M.

Jiang, S.

Jin, L.

Jin, W.

Kersey, A. D.

A. D. Kersey and D. A. Jackson, “Current sensing utilizing heterodyne detection of the Faraday effect in single-mode optical fiber,” J. Lightwave Technol. 4(6), 640–644 (1986).
[Crossref]

Kim, B. Y.

Kim, H. K.

Kim, S. K.

Lan, X.

Lenz, J. E.

J. E. Lenz, “A review of magnetic sensors,” in Proceedings of IEEE Conference (IEEE, 1990), pp. 973–989.

Lin, S.

C. L. Tien, C. C. Hwang, H. Chen, W. Liu, and S. Lin, “Magnetic sensor based on side-polished fiber Bragg grating coated with iron film,” IEEE Trans. Magn. 42(10), 3285–3287 (2006).
[Crossref]

Liu, B.

B. Liu and H. Zhang, “Polarimetric distributed Bragg reflector fiber laser sensor array for simultaneous measurement of transverse load and temperature,” Opt. Fiber Technol. 17(6), 619–625 (2011).
[Crossref]

Liu, D.

Liu, M.

T. Zhu, S. Huang, L. Shi, W. Huang, M. Liu, and K. Chiang, “Rayleigh backscattering: a method to highly compress laser linewidth,” Chin. Sci. Bull. 59(33), 4631–4636 (2014).
[Crossref]

Liu, T.

Liu, W.

C. L. Tien, C. C. Hwang, H. Chen, W. Liu, and S. Lin, “Magnetic sensor based on side-polished fiber Bragg grating coated with iron film,” IEEE Trans. Magn. 42(10), 3285–3287 (2006).
[Crossref]

Lu, C.

Lyu, C.

Lyu, C. G.

J. Gao, H. Wang, X. Guo, and C. G. Lyu, “Directional force measurement technology based on fiber optical laser heterodyning demodulation,” Proc. SPIE 9522, 95220E (2015).

Ma, J.

Malnou, M.

Marciante, J. R.

Park, H. G.

Patscheider, J.

A. Frank, K. Bohnert, K. Haroud, H. Brandle, C. V. Poulsen, J. E. Pedersen, and J. Patscheider, “Distributed feedback fiber laser sensor for hydrostatic pressure,” IEEE Photonics Technol. Lett. 15(12), 1758–1760 (2003).
[Crossref]

Payne, D. N.

Pedersen, J. E.

A. Frank, K. Bohnert, K. Haroud, H. Brandle, C. V. Poulsen, J. E. Pedersen, and J. Patscheider, “Distributed feedback fiber laser sensor for hydrostatic pressure,” IEEE Photonics Technol. Lett. 15(12), 1758–1760 (2003).
[Crossref]

Poulsen, C. V.

A. Frank, K. Bohnert, K. Haroud, H. Brandle, C. V. Poulsen, J. E. Pedersen, and J. Patscheider, “Distributed feedback fiber laser sensor for hydrostatic pressure,” IEEE Photonics Technol. Lett. 15(12), 1758–1760 (2003).
[Crossref]

Ramskov-Hansen, J. J.

Rashleigh, S. C.

Shi, L.

T. Zhu, S. Huang, L. Shi, W. Huang, M. Liu, and K. Chiang, “Rayleigh backscattering: a method to highly compress laser linewidth,” Chin. Sci. Bull. 59(33), 4631–4636 (2014).
[Crossref]

Shum, P. P.

Simon, A.

Sun, L.

Sun, Q.

Tam, H.-Y.

Tien, C. L.

C. L. Tien, C. C. Hwang, H. Chen, W. Liu, and S. Lin, “Magnetic sensor based on side-polished fiber Bragg grating coated with iron film,” IEEE Trans. Magn. 42(10), 3285–3287 (2006).
[Crossref]

Ulrich, R.

Wang, H.

J. Gao, H. Wang, X. Guo, and C. G. Lyu, “Directional force measurement technology based on fiber optical laser heterodyning demodulation,” Proc. SPIE 9522, 95220E (2015).

Wo, J.

Wu, C.

Xiao, H.

Yang, M.

Zhang, H.

B. Liu and H. Zhang, “Polarimetric distributed Bragg reflector fiber laser sensor array for simultaneous measurement of transverse load and temperature,” Opt. Fiber Technol. 17(6), 619–625 (2011).
[Crossref]

Zhang, J.

Zhou, C.

Zhu, T.

M. Deng, C. Huang, D. Liu, W. Jin, and T. Zhu, “All fiber magnetic field sensor with Ferrofluid-filled tapered microstructured optical fiber interferometer,” Opt. Express 23(16), 20668–20674 (2015).
[Crossref] [PubMed]

T. Zhu, S. Huang, L. Shi, W. Huang, M. Liu, and K. Chiang, “Rayleigh backscattering: a method to highly compress laser linewidth,” Chin. Sci. Bull. 59(33), 4631–4636 (2014).
[Crossref]

Appl. Opt. (1)

Chin. Sci. Bull. (1)

T. Zhu, S. Huang, L. Shi, W. Huang, M. Liu, and K. Chiang, “Rayleigh backscattering: a method to highly compress laser linewidth,” Chin. Sci. Bull. 59(33), 4631–4636 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. Frank, K. Bohnert, K. Haroud, H. Brandle, C. V. Poulsen, J. E. Pedersen, and J. Patscheider, “Distributed feedback fiber laser sensor for hydrostatic pressure,” IEEE Photonics Technol. Lett. 15(12), 1758–1760 (2003).
[Crossref]

IEEE Trans. Magn. (1)

C. L. Tien, C. C. Hwang, H. Chen, W. Liu, and S. Lin, “Magnetic sensor based on side-polished fiber Bragg grating coated with iron film,” IEEE Trans. Magn. 42(10), 3285–3287 (2006).
[Crossref]

J. Lightwave Technol. (1)

A. D. Kersey and D. A. Jackson, “Current sensing utilizing heterodyne detection of the Faraday effect in single-mode optical fiber,” J. Lightwave Technol. 4(6), 640–644 (1986).
[Crossref]

Opt. Express (7)

C. Lyu, C. Wu, H.-Y. Tam, C. Lu, and J. Ma, “Polarimetric heterodyning fiber laser sensor for directional acoustic signal measurement,” Opt. Express 21(15), 18273–18280 (2013).
[Crossref] [PubMed]

M. Yang, J. Dai, C. Zhou, and D. Jiang, “Optical fiber magnetic field sensors with TbDyFe magnetostrictive thin films as sensing materials,” Opt. Express 17(23), 20777–20782 (2009).
[Crossref] [PubMed]

L. Sun, S. Jiang, and J. R. Marciante, “All-fiber optical magnetic-field sensor based on Faraday rotation in highly terbium-doped fiber,” Opt. Express 18(6), 5407–5412 (2010).
[Crossref] [PubMed]

J. Wo, M. Jiang, M. Malnou, Q. Sun, J. Zhang, P. P. Shum, and D. Liu, “Twist sensor based on axial strain insensitive distributed Bragg reflector fiber laser,” Opt. Express 20(3), 2844–2850 (2012).
[Crossref] [PubMed]

L. Gao, L. Chen, L. Huang, and X. Chen, “Multimode fiber laser for simultaneous measurement of strain and temperature based on beat frequency demodulation,” Opt. Express 20(20), 22517–22522 (2012).
[Crossref] [PubMed]

L. Cheng, J. Han, L. Jin, Z. Guo, and B. O. Guan, “Sensitivity enhancement of Faraday effect based heterodyning fiber laser magnetic field sensor by lowering linear birefringence,” Opt. Express 21(25), 30156–30162 (2013).
[Crossref] [PubMed]

M. Deng, C. Huang, D. Liu, W. Jin, and T. Zhu, “All fiber magnetic field sensor with Ferrofluid-filled tapered microstructured optical fiber interferometer,” Opt. Express 23(16), 20668–20674 (2015).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

B. Liu and H. Zhang, “Polarimetric distributed Bragg reflector fiber laser sensor array for simultaneous measurement of transverse load and temperature,” Opt. Fiber Technol. 17(6), 619–625 (2011).
[Crossref]

Opt. Lett. (5)

Proc. SPIE (1)

J. Gao, H. Wang, X. Guo, and C. G. Lyu, “Directional force measurement technology based on fiber optical laser heterodyning demodulation,” Proc. SPIE 9522, 95220E (2015).

Other (1)

J. E. Lenz, “A review of magnetic sensors,” in Proceedings of IEEE Conference (IEEE, 1990), pp. 973–989.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 The relationship between the PMBF and the twist angle
Fig. 2
Fig. 2 (a) Schematic diagram of the magnetic field sensor based on a fiber laser, (b) Schematic diagram of the fiber rotary apparatus, (c) The relationship between magnetic field intensity and the twist angle
Fig. 3
Fig. 3 (a) Optical spectrum of the fiber ring laser sensor observed by OSA and the LMBF without the polarizer observed by RF spectrum analyzer. (b) The original LMBF and the PMBF
Fig. 4
Fig. 4 (a) Polarization mode beat frequency of the fiber laser versus different magnetic field intensity, (b) The relationship between the polarization mode beat frequency and the applied magnetic field intensity

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ν PMB = ν LMB +Δν= ν LMB ± McB 2 n 2 λ
ν LMB = ν i ν j = ic 2nL jc 2nL =( ij ) c 2nL = Nc 2nL
δB= B 0 sin[ ( ω-α )× L eff ] ω-α

Metrics