Abstract

Polarization mode coupling (PMC) and related effects from writing fiber Bragg gratings in polarization maintaining fiber (FBGs-in-PMF) are observed experimentally for the first time by optical fiber coherence domain polarimetry (OCDP) using a broadband light source. PMC is another useful aspect of FBG-in-PMF besides Bragg wavelength and its possible potential is evaluated and discussed. A localized and long range temperature measurement based on the PMC and Bragg wavelength is given as an example.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Orthogonal polarization mode coupling for pure twisted polarization maintaining fiber Bragg gratings

Fei Yang, Zujie Fang, Zhengqing Pan, Qing Ye, Haiwen Cai, and Ronghui Qu
Opt. Express 20(27) 28839-28845 (2012)

Reduction of polarization related effects in superimposed fiber Bragg gratings

Victor Garcia-Muñoz, Christophe Caucheteur, Sebastien Bette, Marc Wuilpart, Miguel A. Muriel, and Patrice Mégret
Appl. Opt. 48(9) 1635-1641 (2009)

VCSEL-powered and polarization-maintaining fiber-optic grating vector rotation sensor

Tuan Guo, Fu Liu, Fa Du, Zhaochuan Zhang, Chunjie Li, Bai-Ou Guan, and Jacques Albert
Opt. Express 21(16) 19097-19102 (2013)

References

  • View by:
  • |
  • |
  • |

  1. C. M. Lawrence, D. V. Nelson, E. Udd, and T. Bennett, “A fiber optic sensor for transverse strain measurement,” Exp. Mech. 39(3), 202–209 (1999).
    [Crossref]
  2. C. C. Ye, S. E. Staines, S. W. James, and R. P. Tatam, “A polarization-maintaining fiber Bragg grating interrogation system for multi-axis strain sensing,” Meas. Sci. Technol. 13(9), 1446–1449 (2002).
    [Crossref]
  3. G. H. Chen, L. Y. Liu, H. Z. Jia, J. M. Yu, L. Xu, and W. C. Wang, “Simultaneous strain and temperature measurements with fiber Bragg grating written in novel Hi-Bi optical fiber,” IEEE Photonics Technol. Lett. 16(1), 221–223 (2004).
    [Crossref]
  4. J. F. Botero-Cadavid, J. D. Causado-Buelvas, and P. Torres, “Spectral properties of locally pressed fiber Bragg gratings written in polarization maintaining fibers,” J. Lightwave Technol. 28(9), 1291–1297 (2010).
    [Crossref]
  5. C. L. Zhao, X. F. Yang, C. Lu, N. J. Hong, X. Guo, P. R. Chaudhuri, and X. Y. Dong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230(4–6), 313–317 (2004).
  6. Y. Liu, X. Feng, S. Yuan, G. Kai, and X. Dong, “Simultaneous four-wavelength lasing oscillations in an erbium-doped fiber laser with two high birefringence fiber Bragg gratings,” Opt. Express 12(10), 2056–2061 (2004).
    [Crossref] [PubMed]
  7. C. Spiegelberg, J. H. Geng, Y. D. Hu, Y. Kaneda, S. B. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm,” J. Lightwave Technol. 22(1), 57–62 (2004).
    [Crossref]
  8. D. Innis, Q. Zhong, A. M. Vengserkar, W. A. Reed, S. G. Kosinski, and P. J. Lemaire, “Atomic force microscopy study of uv-induced anisotropy in hydrogen-loaded germanosilicate fibers,” Appl. Phys. Lett. 65(12), 1528–1530 (1994).
    [Crossref]
  9. T. Erdogan and V. Mizrahi, “Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers,” J. Opt. Soc. Am. B 11(10), 2100–2105 (1994).
    [Crossref]
  10. A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Reed, P. J. Lemaire, and S. G. Kosinski, “Birefringence reduction in side-written photoinduced fiber devices by a dual-exposure method,” Opt. Lett. 19(16), 1260–1262 (1994).
    [Crossref] [PubMed]
  11. J. Canning, M. Janos, and M. G. Sceats, “Rayleigh longitudinal profiling of optical resonances within waveguide grating structures using sidescattered light,” Opt. Lett. 21(8), 609–611 (1996).
    [Crossref] [PubMed]
  12. K. Dossou, S. LaRochelle, and M. Fontaine, “Numerical Analysis of the Contribution of the transverse asymmetry in the photo-induced index change profile to the birefringence of optical fiber,” J. Lightwave Technol. 20(8), 1463–1470 (2002).
    [Crossref]
  13. N. Belhadj, S. Larochelle, and K. Dossou, “Form birefringence in UV-exposed photosensitive fibers computed using a higher order finite element method,” Opt. Express 12(8), 1720–1726 (2004).
    [Crossref] [PubMed]
  14. P. S. Russell and D. P. Hand, “Rocking filter formation in photosensitive high birefringence optical fibers,” Electron. Lett. 26(22), 1846–1848 (1990).
    [Crossref]
  15. K. O. Hill, F. Bilodeau, B. Malo, and D. C. Johnson, “Birefringent photosensitivity in monomode optical fiber: application to external writing of rocking filters,” Electron. Lett. 27(17), 1548–1550 (1991).
    [Crossref]
  16. K. S. Lee and J. Y. Cho, “Polarization-mode coupling in birefringent fiber gratings,” J. Opt. Soc. Am. A 19(8), 1621–1631 (2002).
    [Crossref] [PubMed]
  17. G. Statkiewicz-Barabach, A. Anuszkiewicz, W. Urbanczyk, and J. Wojcik, “Sensing characteristics of rocking filter fabricated in microstructured birefringent fiber using fusion arc splicer,” Opt. Express 16(22), 17258–17268 (2008).
    [Crossref] [PubMed]
  18. J. P. Carvalho, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. M. Baptista, O. Frazão, P. Mergo, J. L. Santos, and W. Urbanczyk, “Long period gratings and rocking filters written with a CO2 laser in highly-birefringent boron-doped photonic crystal fibers for sensing applications,” Opt. Commun. 285(3), 264–268 (2012).
    [Crossref]
  19. G. Statkiewicz-Barabach, J. Olszewski, P. Mergo, and W. Urbanczyk, “Higher-order rocking filters induced mechanically in fibers with different birefringence dispersion,” Appl. Opt. 53(7), 1258–1267 (2014).
    [Crossref] [PubMed]
  20. M. S. Müller, H. J. El-Khozondar, T. C. Buck, and A. W. Koch, “Analytical solution of four-mode coupling in shear strain loaded fiber Bragg grating sensors,” Opt. Lett. 34(17), 2622–2624 (2009).
    [Crossref] [PubMed]
  21. F. Yang, Z. Fang, Z. Pan, Q. Ye, H. Cai, and R. Qu, “Orthogonal polarization mode coupling for pure twisted polarization maintaining fiber Bragg gratings,” Opt. Express 20(27), 28839–28845 (2012).
    [Crossref] [PubMed]
  22. K. Takada, J. Noda, and K. Okamoto, “Measurement of spatial distribution of mode coupling in birefringent polarization-maintaining fiber with new detection scheme,” Opt. Lett. 11(10), 680–682 (1986).
    [Crossref] [PubMed]
  23. S. Chen, I. P. Giles, and M. Fahadiroushan, “Quasi-distributed pressure sensor using intensity-type optical coherence domain polarimetry,” Opt. Lett. 16(5), 342–344 (1991).
    [Crossref] [PubMed]
  24. Z. Ding, Z. Meng, X. S. Yao, X. Chen, T. Liu, and M. Qin, “Accurate method for measuring the thermal coefficient of group birefringence of polarization-maintaining fibers,” Opt. Lett. 36(11), 2173–2175 (2011).
    [Crossref] [PubMed]
  25. J. Yang, Y. Yuan, A. Zhou, J. Cai, C. Li, D. Yan, S. Huang, F. Peng, B. Wu, Y. Zhang, Z. Liu, and L. Yuan, “Full evaluation of polarization characteristics of multifunctional integrated optic chip with high accuracy,” J. Lightwave Technol. 32(22), 3641–3650 (2014).
  26. M. A. Davis and A. D. Kersey, “Application of a fiber fourier transform spectrometer to the detection of wavelength-encoded signals from Bragg grating sensors,” J. Lightwave Technol. 13(7), 1289–1295 (1995).
    [Crossref]

2014 (2)

2012 (2)

F. Yang, Z. Fang, Z. Pan, Q. Ye, H. Cai, and R. Qu, “Orthogonal polarization mode coupling for pure twisted polarization maintaining fiber Bragg gratings,” Opt. Express 20(27), 28839–28845 (2012).
[Crossref] [PubMed]

J. P. Carvalho, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. M. Baptista, O. Frazão, P. Mergo, J. L. Santos, and W. Urbanczyk, “Long period gratings and rocking filters written with a CO2 laser in highly-birefringent boron-doped photonic crystal fibers for sensing applications,” Opt. Commun. 285(3), 264–268 (2012).
[Crossref]

2011 (1)

2010 (1)

2009 (1)

2008 (1)

2004 (5)

G. H. Chen, L. Y. Liu, H. Z. Jia, J. M. Yu, L. Xu, and W. C. Wang, “Simultaneous strain and temperature measurements with fiber Bragg grating written in novel Hi-Bi optical fiber,” IEEE Photonics Technol. Lett. 16(1), 221–223 (2004).
[Crossref]

C. L. Zhao, X. F. Yang, C. Lu, N. J. Hong, X. Guo, P. R. Chaudhuri, and X. Y. Dong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230(4–6), 313–317 (2004).

C. Spiegelberg, J. H. Geng, Y. D. Hu, Y. Kaneda, S. B. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm,” J. Lightwave Technol. 22(1), 57–62 (2004).
[Crossref]

N. Belhadj, S. Larochelle, and K. Dossou, “Form birefringence in UV-exposed photosensitive fibers computed using a higher order finite element method,” Opt. Express 12(8), 1720–1726 (2004).
[Crossref] [PubMed]

Y. Liu, X. Feng, S. Yuan, G. Kai, and X. Dong, “Simultaneous four-wavelength lasing oscillations in an erbium-doped fiber laser with two high birefringence fiber Bragg gratings,” Opt. Express 12(10), 2056–2061 (2004).
[Crossref] [PubMed]

2002 (3)

1999 (1)

C. M. Lawrence, D. V. Nelson, E. Udd, and T. Bennett, “A fiber optic sensor for transverse strain measurement,” Exp. Mech. 39(3), 202–209 (1999).
[Crossref]

1996 (1)

1995 (1)

M. A. Davis and A. D. Kersey, “Application of a fiber fourier transform spectrometer to the detection of wavelength-encoded signals from Bragg grating sensors,” J. Lightwave Technol. 13(7), 1289–1295 (1995).
[Crossref]

1994 (3)

1991 (2)

S. Chen, I. P. Giles, and M. Fahadiroushan, “Quasi-distributed pressure sensor using intensity-type optical coherence domain polarimetry,” Opt. Lett. 16(5), 342–344 (1991).
[Crossref] [PubMed]

K. O. Hill, F. Bilodeau, B. Malo, and D. C. Johnson, “Birefringent photosensitivity in monomode optical fiber: application to external writing of rocking filters,” Electron. Lett. 27(17), 1548–1550 (1991).
[Crossref]

1990 (1)

P. S. Russell and D. P. Hand, “Rocking filter formation in photosensitive high birefringence optical fibers,” Electron. Lett. 26(22), 1846–1848 (1990).
[Crossref]

1986 (1)

Anuszkiewicz, A.

J. P. Carvalho, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. M. Baptista, O. Frazão, P. Mergo, J. L. Santos, and W. Urbanczyk, “Long period gratings and rocking filters written with a CO2 laser in highly-birefringent boron-doped photonic crystal fibers for sensing applications,” Opt. Commun. 285(3), 264–268 (2012).
[Crossref]

G. Statkiewicz-Barabach, A. Anuszkiewicz, W. Urbanczyk, and J. Wojcik, “Sensing characteristics of rocking filter fabricated in microstructured birefringent fiber using fusion arc splicer,” Opt. Express 16(22), 17258–17268 (2008).
[Crossref] [PubMed]

Baptista, J. M.

J. P. Carvalho, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. M. Baptista, O. Frazão, P. Mergo, J. L. Santos, and W. Urbanczyk, “Long period gratings and rocking filters written with a CO2 laser in highly-birefringent boron-doped photonic crystal fibers for sensing applications,” Opt. Commun. 285(3), 264–268 (2012).
[Crossref]

Belhadj, N.

Bennett, T.

C. M. Lawrence, D. V. Nelson, E. Udd, and T. Bennett, “A fiber optic sensor for transverse strain measurement,” Exp. Mech. 39(3), 202–209 (1999).
[Crossref]

Bilodeau, F.

K. O. Hill, F. Bilodeau, B. Malo, and D. C. Johnson, “Birefringent photosensitivity in monomode optical fiber: application to external writing of rocking filters,” Electron. Lett. 27(17), 1548–1550 (1991).
[Crossref]

Botero-Cadavid, J. F.

Buck, T. C.

Cai, H.

Cai, J.

Canning, J.

Carvalho, J. P.

J. P. Carvalho, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. M. Baptista, O. Frazão, P. Mergo, J. L. Santos, and W. Urbanczyk, “Long period gratings and rocking filters written with a CO2 laser in highly-birefringent boron-doped photonic crystal fibers for sensing applications,” Opt. Commun. 285(3), 264–268 (2012).
[Crossref]

Causado-Buelvas, J. D.

Chaudhuri, P. R.

C. L. Zhao, X. F. Yang, C. Lu, N. J. Hong, X. Guo, P. R. Chaudhuri, and X. Y. Dong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230(4–6), 313–317 (2004).

Chen, G. H.

G. H. Chen, L. Y. Liu, H. Z. Jia, J. M. Yu, L. Xu, and W. C. Wang, “Simultaneous strain and temperature measurements with fiber Bragg grating written in novel Hi-Bi optical fiber,” IEEE Photonics Technol. Lett. 16(1), 221–223 (2004).
[Crossref]

Chen, S.

Chen, X.

Cho, J. Y.

Davis, M. A.

M. A. Davis and A. D. Kersey, “Application of a fiber fourier transform spectrometer to the detection of wavelength-encoded signals from Bragg grating sensors,” J. Lightwave Technol. 13(7), 1289–1295 (1995).
[Crossref]

Ding, Z.

Dong, X.

Dong, X. Y.

C. L. Zhao, X. F. Yang, C. Lu, N. J. Hong, X. Guo, P. R. Chaudhuri, and X. Y. Dong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230(4–6), 313–317 (2004).

Dossou, K.

El-Khozondar, H. J.

Erdogan, T.

Fahadiroushan, M.

Fang, Z.

Feng, X.

Fontaine, M.

Frazão, O.

J. P. Carvalho, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. M. Baptista, O. Frazão, P. Mergo, J. L. Santos, and W. Urbanczyk, “Long period gratings and rocking filters written with a CO2 laser in highly-birefringent boron-doped photonic crystal fibers for sensing applications,” Opt. Commun. 285(3), 264–268 (2012).
[Crossref]

Geng, J. H.

Giles, I. P.

Guo, X.

C. L. Zhao, X. F. Yang, C. Lu, N. J. Hong, X. Guo, P. R. Chaudhuri, and X. Y. Dong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230(4–6), 313–317 (2004).

Hand, D. P.

P. S. Russell and D. P. Hand, “Rocking filter formation in photosensitive high birefringence optical fibers,” Electron. Lett. 26(22), 1846–1848 (1990).
[Crossref]

Hill, K. O.

K. O. Hill, F. Bilodeau, B. Malo, and D. C. Johnson, “Birefringent photosensitivity in monomode optical fiber: application to external writing of rocking filters,” Electron. Lett. 27(17), 1548–1550 (1991).
[Crossref]

Hong, N. J.

C. L. Zhao, X. F. Yang, C. Lu, N. J. Hong, X. Guo, P. R. Chaudhuri, and X. Y. Dong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230(4–6), 313–317 (2004).

Hu, Y. D.

Huang, S.

Innis, D.

D. Innis, Q. Zhong, A. M. Vengserkar, W. A. Reed, S. G. Kosinski, and P. J. Lemaire, “Atomic force microscopy study of uv-induced anisotropy in hydrogen-loaded germanosilicate fibers,” Appl. Phys. Lett. 65(12), 1528–1530 (1994).
[Crossref]

Inniss, D.

James, S. W.

C. C. Ye, S. E. Staines, S. W. James, and R. P. Tatam, “A polarization-maintaining fiber Bragg grating interrogation system for multi-axis strain sensing,” Meas. Sci. Technol. 13(9), 1446–1449 (2002).
[Crossref]

Janos, M.

Jia, H. Z.

G. H. Chen, L. Y. Liu, H. Z. Jia, J. M. Yu, L. Xu, and W. C. Wang, “Simultaneous strain and temperature measurements with fiber Bragg grating written in novel Hi-Bi optical fiber,” IEEE Photonics Technol. Lett. 16(1), 221–223 (2004).
[Crossref]

Jiang, S. B.

Johnson, D. C.

K. O. Hill, F. Bilodeau, B. Malo, and D. C. Johnson, “Birefringent photosensitivity in monomode optical fiber: application to external writing of rocking filters,” Electron. Lett. 27(17), 1548–1550 (1991).
[Crossref]

Kai, G.

Kaneda, Y.

Kersey, A. D.

M. A. Davis and A. D. Kersey, “Application of a fiber fourier transform spectrometer to the detection of wavelength-encoded signals from Bragg grating sensors,” J. Lightwave Technol. 13(7), 1289–1295 (1995).
[Crossref]

Koch, A. W.

Kosinski, S. G.

A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Reed, P. J. Lemaire, and S. G. Kosinski, “Birefringence reduction in side-written photoinduced fiber devices by a dual-exposure method,” Opt. Lett. 19(16), 1260–1262 (1994).
[Crossref] [PubMed]

D. Innis, Q. Zhong, A. M. Vengserkar, W. A. Reed, S. G. Kosinski, and P. J. Lemaire, “Atomic force microscopy study of uv-induced anisotropy in hydrogen-loaded germanosilicate fibers,” Appl. Phys. Lett. 65(12), 1528–1530 (1994).
[Crossref]

Larochelle, S.

Lawrence, C. M.

C. M. Lawrence, D. V. Nelson, E. Udd, and T. Bennett, “A fiber optic sensor for transverse strain measurement,” Exp. Mech. 39(3), 202–209 (1999).
[Crossref]

Lee, K. S.

Lemaire, P. J.

D. Innis, Q. Zhong, A. M. Vengserkar, W. A. Reed, S. G. Kosinski, and P. J. Lemaire, “Atomic force microscopy study of uv-induced anisotropy in hydrogen-loaded germanosilicate fibers,” Appl. Phys. Lett. 65(12), 1528–1530 (1994).
[Crossref]

A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Reed, P. J. Lemaire, and S. G. Kosinski, “Birefringence reduction in side-written photoinduced fiber devices by a dual-exposure method,” Opt. Lett. 19(16), 1260–1262 (1994).
[Crossref] [PubMed]

Li, C.

Liu, L. Y.

G. H. Chen, L. Y. Liu, H. Z. Jia, J. M. Yu, L. Xu, and W. C. Wang, “Simultaneous strain and temperature measurements with fiber Bragg grating written in novel Hi-Bi optical fiber,” IEEE Photonics Technol. Lett. 16(1), 221–223 (2004).
[Crossref]

Liu, T.

Liu, Y.

Liu, Z.

Lu, C.

C. L. Zhao, X. F. Yang, C. Lu, N. J. Hong, X. Guo, P. R. Chaudhuri, and X. Y. Dong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230(4–6), 313–317 (2004).

Malo, B.

K. O. Hill, F. Bilodeau, B. Malo, and D. C. Johnson, “Birefringent photosensitivity in monomode optical fiber: application to external writing of rocking filters,” Electron. Lett. 27(17), 1548–1550 (1991).
[Crossref]

Meng, Z.

Mergo, P.

G. Statkiewicz-Barabach, J. Olszewski, P. Mergo, and W. Urbanczyk, “Higher-order rocking filters induced mechanically in fibers with different birefringence dispersion,” Appl. Opt. 53(7), 1258–1267 (2014).
[Crossref] [PubMed]

J. P. Carvalho, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. M. Baptista, O. Frazão, P. Mergo, J. L. Santos, and W. Urbanczyk, “Long period gratings and rocking filters written with a CO2 laser in highly-birefringent boron-doped photonic crystal fibers for sensing applications,” Opt. Commun. 285(3), 264–268 (2012).
[Crossref]

Mizrahi, V.

Müller, M. S.

Nelson, D. V.

C. M. Lawrence, D. V. Nelson, E. Udd, and T. Bennett, “A fiber optic sensor for transverse strain measurement,” Exp. Mech. 39(3), 202–209 (1999).
[Crossref]

Noda, J.

Okamoto, K.

Olszewski, J.

Pan, Z.

Peng, F.

Peyghambarian, N.

Qin, M.

Qu, R.

Reed, W. A.

A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Reed, P. J. Lemaire, and S. G. Kosinski, “Birefringence reduction in side-written photoinduced fiber devices by a dual-exposure method,” Opt. Lett. 19(16), 1260–1262 (1994).
[Crossref] [PubMed]

D. Innis, Q. Zhong, A. M. Vengserkar, W. A. Reed, S. G. Kosinski, and P. J. Lemaire, “Atomic force microscopy study of uv-induced anisotropy in hydrogen-loaded germanosilicate fibers,” Appl. Phys. Lett. 65(12), 1528–1530 (1994).
[Crossref]

Russell, P. S.

P. S. Russell and D. P. Hand, “Rocking filter formation in photosensitive high birefringence optical fibers,” Electron. Lett. 26(22), 1846–1848 (1990).
[Crossref]

Santos, J. L.

J. P. Carvalho, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. M. Baptista, O. Frazão, P. Mergo, J. L. Santos, and W. Urbanczyk, “Long period gratings and rocking filters written with a CO2 laser in highly-birefringent boron-doped photonic crystal fibers for sensing applications,” Opt. Commun. 285(3), 264–268 (2012).
[Crossref]

Sceats, M. G.

Spiegelberg, C.

Staines, S. E.

C. C. Ye, S. E. Staines, S. W. James, and R. P. Tatam, “A polarization-maintaining fiber Bragg grating interrogation system for multi-axis strain sensing,” Meas. Sci. Technol. 13(9), 1446–1449 (2002).
[Crossref]

Statkiewicz-Barabach, G.

Takada, K.

Tatam, R. P.

C. C. Ye, S. E. Staines, S. W. James, and R. P. Tatam, “A polarization-maintaining fiber Bragg grating interrogation system for multi-axis strain sensing,” Meas. Sci. Technol. 13(9), 1446–1449 (2002).
[Crossref]

Torres, P.

Udd, E.

C. M. Lawrence, D. V. Nelson, E. Udd, and T. Bennett, “A fiber optic sensor for transverse strain measurement,” Exp. Mech. 39(3), 202–209 (1999).
[Crossref]

Urbanczyk, W.

Vengsarkar, A. M.

Vengserkar, A. M.

D. Innis, Q. Zhong, A. M. Vengserkar, W. A. Reed, S. G. Kosinski, and P. J. Lemaire, “Atomic force microscopy study of uv-induced anisotropy in hydrogen-loaded germanosilicate fibers,” Appl. Phys. Lett. 65(12), 1528–1530 (1994).
[Crossref]

Wang, W. C.

G. H. Chen, L. Y. Liu, H. Z. Jia, J. M. Yu, L. Xu, and W. C. Wang, “Simultaneous strain and temperature measurements with fiber Bragg grating written in novel Hi-Bi optical fiber,” IEEE Photonics Technol. Lett. 16(1), 221–223 (2004).
[Crossref]

Wojcik, J.

Wu, B.

Xu, L.

G. H. Chen, L. Y. Liu, H. Z. Jia, J. M. Yu, L. Xu, and W. C. Wang, “Simultaneous strain and temperature measurements with fiber Bragg grating written in novel Hi-Bi optical fiber,” IEEE Photonics Technol. Lett. 16(1), 221–223 (2004).
[Crossref]

Yan, D.

Yang, F.

Yang, J.

Yang, X. F.

C. L. Zhao, X. F. Yang, C. Lu, N. J. Hong, X. Guo, P. R. Chaudhuri, and X. Y. Dong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230(4–6), 313–317 (2004).

Yao, X. S.

Ye, C. C.

C. C. Ye, S. E. Staines, S. W. James, and R. P. Tatam, “A polarization-maintaining fiber Bragg grating interrogation system for multi-axis strain sensing,” Meas. Sci. Technol. 13(9), 1446–1449 (2002).
[Crossref]

Ye, Q.

Yu, J. M.

G. H. Chen, L. Y. Liu, H. Z. Jia, J. M. Yu, L. Xu, and W. C. Wang, “Simultaneous strain and temperature measurements with fiber Bragg grating written in novel Hi-Bi optical fiber,” IEEE Photonics Technol. Lett. 16(1), 221–223 (2004).
[Crossref]

Yuan, L.

Yuan, S.

Yuan, Y.

Zhang, Y.

Zhao, C. L.

C. L. Zhao, X. F. Yang, C. Lu, N. J. Hong, X. Guo, P. R. Chaudhuri, and X. Y. Dong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230(4–6), 313–317 (2004).

Zhong, Q.

D. Innis, Q. Zhong, A. M. Vengserkar, W. A. Reed, S. G. Kosinski, and P. J. Lemaire, “Atomic force microscopy study of uv-induced anisotropy in hydrogen-loaded germanosilicate fibers,” Appl. Phys. Lett. 65(12), 1528–1530 (1994).
[Crossref]

A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Reed, P. J. Lemaire, and S. G. Kosinski, “Birefringence reduction in side-written photoinduced fiber devices by a dual-exposure method,” Opt. Lett. 19(16), 1260–1262 (1994).
[Crossref] [PubMed]

Zhou, A.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. Innis, Q. Zhong, A. M. Vengserkar, W. A. Reed, S. G. Kosinski, and P. J. Lemaire, “Atomic force microscopy study of uv-induced anisotropy in hydrogen-loaded germanosilicate fibers,” Appl. Phys. Lett. 65(12), 1528–1530 (1994).
[Crossref]

Electron. Lett. (2)

P. S. Russell and D. P. Hand, “Rocking filter formation in photosensitive high birefringence optical fibers,” Electron. Lett. 26(22), 1846–1848 (1990).
[Crossref]

K. O. Hill, F. Bilodeau, B. Malo, and D. C. Johnson, “Birefringent photosensitivity in monomode optical fiber: application to external writing of rocking filters,” Electron. Lett. 27(17), 1548–1550 (1991).
[Crossref]

Exp. Mech. (1)

C. M. Lawrence, D. V. Nelson, E. Udd, and T. Bennett, “A fiber optic sensor for transverse strain measurement,” Exp. Mech. 39(3), 202–209 (1999).
[Crossref]

IEEE Photonics Technol. Lett. (1)

G. H. Chen, L. Y. Liu, H. Z. Jia, J. M. Yu, L. Xu, and W. C. Wang, “Simultaneous strain and temperature measurements with fiber Bragg grating written in novel Hi-Bi optical fiber,” IEEE Photonics Technol. Lett. 16(1), 221–223 (2004).
[Crossref]

J. Lightwave Technol. (5)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

C. C. Ye, S. E. Staines, S. W. James, and R. P. Tatam, “A polarization-maintaining fiber Bragg grating interrogation system for multi-axis strain sensing,” Meas. Sci. Technol. 13(9), 1446–1449 (2002).
[Crossref]

Opt. Commun. (2)

C. L. Zhao, X. F. Yang, C. Lu, N. J. Hong, X. Guo, P. R. Chaudhuri, and X. Y. Dong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230(4–6), 313–317 (2004).

J. P. Carvalho, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. M. Baptista, O. Frazão, P. Mergo, J. L. Santos, and W. Urbanczyk, “Long period gratings and rocking filters written with a CO2 laser in highly-birefringent boron-doped photonic crystal fibers for sensing applications,” Opt. Commun. 285(3), 264–268 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (6)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The transmission spectrum of PMF with two written-in FBGs.
Fig. 2
Fig. 2 (a) the asymmetric refractive index profile of FBG by side-written technology (b) the PMC of FBG-in-PMF (c) the PMC measurement based on an OCDP system.
Fig. 3
Fig. 3 (a) a SLD spectrum of 1310 nm. (b) the PMC measurement of FBGs-in-PMF based on the 1310 nm SLD: PMC peaks introduced by FBGs-in-PMF. (c) a 1550 nm SLD transmission spectrum with two written-in FBGs when the polarization orientation of SLD light is aligned to PMF slow axis. (d) the PMC measurement of FBGs-in-PMF based on the 1550 nm SLD: beat signals introduced by two FBGs-in-PMF.
Fig. 4
Fig. 4 (a) Temperature response of the PMC in PMF. (b) The theoretical and experimental results of the FBG beat length Vs temperature. (c) The measurement of the localized temperature change at FBG2 based on both sensing signals in (a) and (b).
Fig. 5
Fig. 5 (a) the simulation of the relative PMC intensities of FBGs-in-PMF Vs FBG length. (b) the simulation of the relative PMC intensities of FBG-in-PMF Vs Writing angle.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I s ( ν ) = 1 4 ( 1 η ) I S L D ( ν ) [ 1 i R F B G i ( ν ) ]
I f ( ν ) = 1 4 η I S L D ( ν ) [ 1 i R F B G i ( ν ) ]
I ( ν , L s c a n ) = 1 2 I s ( ν ) + 1 2 I f ( ν ) + γ I f ( ν ) I s ( ν ) cos ( 2 π ν Δ n L P M F _ r e s t ) + 1 2 γ I f ( ν ) I s ( ν ) cos [ 2 π ν ( Δ n L P M F _ r e s t L s c a n ) ] + 1 2 γ I f ( ν ) I s ( ν ) cos [ 2 π ν ( Δ n L P M F _ r e s t + L s c a n ) ] + 1 2 γ [ I f ( ν ) + I s ( ν ) ] cos ( 2 π ν L s c a n )
I t o t a l ( L s c a n ) = 0 I ( ν , L s c a n ) d ν
0 1 2 γ [ I f ( ν ) + I s ( ν ) ] cos ( 2 π ν L s c a n ) d ν = 0 1 8 γ I S L D ( ν ) [ 1 i R F B G i ( ν ) ] cos ( 2 π ν L s c a n ) d ν = 0 1 8 γ I S L D ( ν ) cos ( 2 π ν L s c a n ) d ν 1 8 γ i = 1 , 2 I S L D ( ν i ) R F B G i ( ν i ) cos ( 2 π ν i L s c a n ) δ ν i

Metrics