Abstract

We demonstrate a sensitive method for the nonlinear optical characterization of micrometer long waveguides, and apply it to typical silicon-on-insulator nanowires and to hybrid plasmonic waveguides. We demonstrate that our method can detect extremely small nonlinear phase shifts, as low as 7.5·10−4 rad. The high sensitivity achieved imparts an advantage when investigating the nonlinear behavior of metallic structures as their short propagation distances complicates the task for conventional methods. Our results constitute the first experimental observation of χ(3) nonlinearities in the hybrid plasmonic platform and is important to test claims of hybrid plasmonic structures as candidates for efficient nonlinear optical devices.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Kerr effect in hybrid plasmonic waveguides

F. J. Diaz, Guangyuan Li, C. Martijn de Sterke, B. T. Kuhlmey, and S. Palomba
J. Opt. Soc. Am. B 33(5) 957-962 (2016)

Hybrid plasmon/dielectric waveguide for integrated silicon-on-insulator optical elements

P. D. Flammer, J. M. Banks, T. E. Furtak, C. G. Durfee, R. E. Hollingsworth, and R. T. Collins
Opt. Express 18(20) 21013-21023 (2010)

High-sensitivity liquid refractive-index sensor based on a Mach-Zehnder interferometer with a double-slot hybrid plasmonic waveguide

Xu Sun, Daoxin Dai, Lars Thylén, and Lech Wosinski
Opt. Express 23(20) 25688-25699 (2015)

References

  • View by:
  • |
  • |
  • |

  1. B. Booth, B. Bottoms, S. Buchter, D. Butler, T. Bowen, G. Celler, Y. Chen, D. Evans, L. Giovane, M. Glick, R. Grzybowski, B. Hemenway, L. Kimerling, L. Liao, H. Lui, J. Michel, J. Mu, R. Otte, P. Popescu, M. Romagnoli, L. Smith, V. Stojanovic, M. Tan, M. Taubenblatt, M. Tryson, C. Weaver, and T. Yamamoto, “On-Board Optical Interconnection Digest,” in CTR III TWG Report #32013, Community Technology Roadmap (CTR, 2013)
  2. D. A. B. Miller, “Are optical transistors the logical next step?” Nat. Photonics 4(1), 3–5 (2010).
    [Crossref]
  3. J. A. Kash, “Leveraging optical interconnects in future supercomputers and servers,” in 16th IEEE Symposium on High Performance Interconnects (IEEE, 2008), pp. 190-194.
    [Crossref]
  4. H. K. Tsang and Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23(6), 064007 (2008).
    [Crossref]
  5. J. Y. Lee, L. Yin, G. P. Agrawal, and P. M. Fauchet, “Ultrafast optical switching based on nonlinear polarization rotation in silicon waveguides,” Opt. Express 18(11), 11514–11523 (2010).
    [Crossref] [PubMed]
  6. V. Shahraam Afshar, T. M. Monro, and C. M. de Sterke, “Understanding the contribution of mode area and slow light to the effective Kerr nonlinearity of waveguides,” Opt. Express 21(15), 18558–18571 (2013).
    [Crossref] [PubMed]
  7. C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the Ultimate Limits of Plasmonic Enhancement,” Science 337(6098), 1072–1074 (2012).
    [Crossref] [PubMed]
  8. C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
    [Crossref]
  9. A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
    [Crossref]
  10. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics’,” Nat. Photonics 6(11), 737–748 (2012).
    [Crossref]
  11. J. B. Khurgin and G. Sun, “Plasmonic enhancement of the third order nonlinear optical phenomena: figures of merit,” Opt. Express 21(22), 27460–27480 (2013).
    [Crossref] [PubMed]
  12. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
    [Crossref]
  13. Y. Bian and Q. Gong, “Low-loss hybrid plasmonic modes guided by metal-coated dielectric wedges for subwavelength light confinement,” Appl. Opt. 52(23), 5733–5741 (2013).
    [Crossref] [PubMed]
  14. Y. Bian and Q. Gong, “Deep-subwavelength light confinement and transport in hybrid dielectric-loaded metal wedges,” Laser Photonics Rev. 8(4), 549–561 (2014).
    [Crossref]
  15. Y. Bian and Q. Gong, “Tuning the hybridization of plasmonic and coupled dielectric nanowire modes for highperformance optical waveguiding at sub-diffraction-limited scale,” Sci. Rep. 4, 6617 (2014).
  16. J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and S. Y. Shin, “Hybrid plasmonic waveguide for low-loss lightwave guiding,” Opt. Express 18(3), 2808–2813 (2010).
    [Crossref] [PubMed]
  17. Y. Bian, Z. Zheng, X. Zhao, Y. Su, L. Liu, J. Liu, J. Zhu, and T. Zhou, “Guiding of Long-Range Hybrid Plasmon Polariton in a Coupled Nanowire Array at Deep-Subwavelength Scale,” Photonics Technol. Lett. 24(15), 1279–1281 (2012).
    [Crossref]
  18. Y. Ma, G. Farrell, Y. Semenova, and Q. Wu, “Hybrid nanowedge plasmonic waveguide for low loss propagation with ultra-deep-subwavelength mode confinement,” Opt. Lett. 39(4), 973–976 (2014).
    [Crossref] [PubMed]
  19. S. Aldawsari and B. R. West, “Hybrid plasmonic waveguides for nonlinear applications,” in Photonics Global Conference (PGC, 2012).
    [Crossref]
  20. A. Pitilakis and E. E. Kriezis, “Highly nonlinear hybrid silicon-plasmonic waveguides: analysis and optimization,” J. Opt. Soc. Am. B 30(7), 1954–1965 (2013).
    [Crossref]
  21. K.Y. Wang, and A.C. Foster. “Optimization of CMOS-Compatible Hybrid Plasmonic Waveguides for Nonlinear Applications,” in Advanced Photonics OSA Technical Digest (Optical Society of America, 2011), paper JTuB15.
  22. K. Narayanan and S. F. Preble, “Optical nonlinearities in hydrogenated-amorphous silicon waveguides,” Opt. Express 18(9), 8998–9005 (2010).
    [Crossref] [PubMed]
  23. E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood., “Self-phase-modulation in submicron silicon-on-insulator photonic wires,” Opt. Express 14(12), 5524–5534 (2006).
    [Crossref] [PubMed]
  24. Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express 18(6), 5668–5673 (2010).
    [Crossref] [PubMed]
  25. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
    [Crossref] [PubMed]
  26. W. Min, S. Lu, M. Rueckel, G. R. Holtom, and X. S. Xie, “Near-Degenerate Four-Wave-Mixing Microscopy,” Nano Lett. 9(6), 2423–2426 (2009).
    [Crossref] [PubMed]
  27. H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase Mismatch–Free Nonlinear Propagation in Optical Zero-Index Materials,” Science 342(6163), 1223–1226 (2013).
  28. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2006), Ch. 4.
  29. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2006), Ch. 2.
  30. R. Dekker, E. J. Klien, J. Niehusmann, M. Först, F. Ondracek, J. Ctyroky, N. Usechak, and A. Dressen, “Self phase modulation and stimulated raman scattering due to high power femtosecond pulse propagation in silicon-on-insulator waveguides,” in Proceedings Symposium IEEE/LEOS Benelux Chapter (IEEE, 2005), pp. 197-200.
  31. A. Präkelt, M. Wollenhaupt, C. Sarpe-Tudoran, A. Assion, and T. Baumert, “Filling a spectral hole via self-phase modulation,” Appl. Phys. Lett. 87(12), 121113 (2005).
    [Crossref]
  32. D. Vermeulen, K. V. Acoleyen, S. Ghosh, S. Selvaraja, W. A. D. De Cort, N. A. Yebo, E. Hallynck, K. De Vos, P. P. P. Debackere, P. Dumon, W. Bogaerts, G. Roelkens, D. Van Thourhout, and R. Baet, “Efficient tapering to the fundamental quasi-TM mode in asymmetrical waveguides,” in 15th European conference on Integrated Optics (ECIO, 2010).
  33. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
    [Crossref]
  34. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
    [Crossref]
  35. B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, and I. Biaggio, “A high-optical quality supramolecular assembly for third-order nonlinear optics,” in Conference on Lasers and ElectroOptics/International Quantum Electronics Conference (CLEO, 2009), paper JWA120.

2015 (1)

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

2014 (4)

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Y. Bian and Q. Gong, “Deep-subwavelength light confinement and transport in hybrid dielectric-loaded metal wedges,” Laser Photonics Rev. 8(4), 549–561 (2014).
[Crossref]

Y. Bian and Q. Gong, “Tuning the hybridization of plasmonic and coupled dielectric nanowire modes for highperformance optical waveguiding at sub-diffraction-limited scale,” Sci. Rep. 4, 6617 (2014).

Y. Ma, G. Farrell, Y. Semenova, and Q. Wu, “Hybrid nanowedge plasmonic waveguide for low loss propagation with ultra-deep-subwavelength mode confinement,” Opt. Lett. 39(4), 973–976 (2014).
[Crossref] [PubMed]

2013 (5)

2012 (3)

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the Ultimate Limits of Plasmonic Enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Y. Bian, Z. Zheng, X. Zhao, Y. Su, L. Liu, J. Liu, J. Zhu, and T. Zhou, “Guiding of Long-Range Hybrid Plasmon Polariton in a Coupled Nanowire Array at Deep-Subwavelength Scale,” Photonics Technol. Lett. 24(15), 1279–1281 (2012).
[Crossref]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics’,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

2010 (5)

2009 (1)

W. Min, S. Lu, M. Rueckel, G. R. Holtom, and X. S. Xie, “Near-Degenerate Four-Wave-Mixing Microscopy,” Nano Lett. 9(6), 2423–2426 (2009).
[Crossref] [PubMed]

2008 (2)

H. K. Tsang and Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23(6), 064007 (2008).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

2006 (2)

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood., “Self-phase-modulation in submicron silicon-on-insulator photonic wires,” Opt. Express 14(12), 5524–5534 (2006).
[Crossref] [PubMed]

2005 (2)

2002 (1)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref] [PubMed]

Agrawal, G. P.

Alloatti, L.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Assion, A.

A. Präkelt, M. Wollenhaupt, C. Sarpe-Tudoran, A. Assion, and T. Baumert, “Filling a spectral hole via self-phase modulation,” Appl. Phys. Lett. 87(12), 121113 (2005).
[Crossref]

Ayre, M.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Baets, R.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
[Crossref]

Baeuerle, B.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Baumert, T.

A. Präkelt, M. Wollenhaupt, C. Sarpe-Tudoran, A. Assion, and T. Baumert, “Filling a spectral hole via self-phase modulation,” Appl. Phys. Lett. 87(12), 121113 (2005).
[Crossref]

Beckx, S.

Bian, Y.

Y. Bian and Q. Gong, “Deep-subwavelength light confinement and transport in hybrid dielectric-loaded metal wedges,” Laser Photonics Rev. 8(4), 549–561 (2014).
[Crossref]

Y. Bian and Q. Gong, “Tuning the hybridization of plasmonic and coupled dielectric nanowire modes for highperformance optical waveguiding at sub-diffraction-limited scale,” Sci. Rep. 4, 6617 (2014).

Y. Bian and Q. Gong, “Low-loss hybrid plasmonic modes guided by metal-coated dielectric wedges for subwavelength light confinement,” Appl. Opt. 52(23), 5733–5741 (2013).
[Crossref] [PubMed]

Y. Bian, Z. Zheng, X. Zhao, Y. Su, L. Liu, J. Liu, J. Zhu, and T. Zhou, “Guiding of Long-Range Hybrid Plasmon Polariton in a Coupled Nanowire Array at Deep-Subwavelength Scale,” Photonics Technol. Lett. 24(15), 1279–1281 (2012).
[Crossref]

Bienstman, P.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
[Crossref]

Bogaerts, W.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
[Crossref]

Chen, B.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Chen, X.

Chilkoti, A.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the Ultimate Limits of Plasmonic Enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Ciracì, C.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the Ultimate Limits of Plasmonic Enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Ctyroky, J.

R. Dekker, E. J. Klien, J. Niehusmann, M. Först, F. Ondracek, J. Ctyroky, N. Usechak, and A. Dressen, “Self phase modulation and stimulated raman scattering due to high power femtosecond pulse propagation in silicon-on-insulator waveguides,” in Proceedings Symposium IEEE/LEOS Benelux Chapter (IEEE, 2005), pp. 197-200.

Dalton, L. R.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

de Sterke, C. M.

Dekker, R.

R. Dekker, E. J. Klien, J. Niehusmann, M. Först, F. Ondracek, J. Ctyroky, N. Usechak, and A. Dressen, “Self phase modulation and stimulated raman scattering due to high power femtosecond pulse propagation in silicon-on-insulator waveguides,” in Proceedings Symposium IEEE/LEOS Benelux Chapter (IEEE, 2005), pp. 197-200.

Dinu, R.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Dressen, A.

R. Dekker, E. J. Klien, J. Niehusmann, M. Först, F. Ondracek, J. Ctyroky, N. Usechak, and A. Dressen, “Self phase modulation and stimulated raman scattering due to high power femtosecond pulse propagation in silicon-on-insulator waveguides,” in Proceedings Symposium IEEE/LEOS Benelux Chapter (IEEE, 2005), pp. 197-200.

Ducry, F.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Dudovich, N.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref] [PubMed]

Dulkeith, E.

Dumon, P.

Elder, D. L.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Emboras, A.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Farrell, G.

Fauchet, P. M.

Fedoryshyn, Y.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Fernández-Domínguez, A. I.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the Ultimate Limits of Plasmonic Enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Först, M.

R. Dekker, E. J. Klien, J. Niehusmann, M. Först, F. Ondracek, J. Ctyroky, N. Usechak, and A. Dressen, “Self phase modulation and stimulated raman scattering due to high power femtosecond pulse propagation in silicon-on-insulator waveguides,” in Proceedings Symposium IEEE/LEOS Benelux Chapter (IEEE, 2005), pp. 197-200.

Freude, W.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Gong, Q.

Y. Bian and Q. Gong, “Tuning the hybridization of plasmonic and coupled dielectric nanowire modes for highperformance optical waveguiding at sub-diffraction-limited scale,” Sci. Rep. 4, 6617 (2014).

Y. Bian and Q. Gong, “Deep-subwavelength light confinement and transport in hybrid dielectric-loaded metal wedges,” Laser Photonics Rev. 8(4), 549–561 (2014).
[Crossref]

Y. Bian and Q. Gong, “Low-loss hybrid plasmonic modes guided by metal-coated dielectric wedges for subwavelength light confinement,” Appl. Opt. 52(23), 5733–5741 (2013).
[Crossref] [PubMed]

Haffner, C.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Hafner, C.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Hasama, T.

Heni, W.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Hill, R. T.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the Ultimate Limits of Plasmonic Enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Hillerkuss, D.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Hoessbacher, C.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Holtom, G. R.

W. Min, S. Lu, M. Rueckel, G. R. Holtom, and X. S. Xie, “Near-Degenerate Four-Wave-Mixing Microscopy,” Nano Lett. 9(6), 2423–2426 (2009).
[Crossref] [PubMed]

Ishikawa, H.

Josten, A.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Ju, J. J.

Juchli, L.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Kamei, T.

Kash, J. A.

J. A. Kash, “Leveraging optical interconnects in future supercomputers and servers,” in 16th IEEE Symposium on High Performance Interconnects (IEEE, 2008), pp. 190-194.
[Crossref]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics’,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Kawashima, H.

Khurgin, J. B.

Kim, J. T.

Kim, M. S.

Kintaka, K.

Klien, E. J.

R. Dekker, E. J. Klien, J. Niehusmann, M. Först, F. Ondracek, J. Ctyroky, N. Usechak, and A. Dressen, “Self phase modulation and stimulated raman scattering due to high power femtosecond pulse propagation in silicon-on-insulator waveguides,” in Proceedings Symposium IEEE/LEOS Benelux Chapter (IEEE, 2005), pp. 197-200.

Koch, U.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Kohl, M.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Koos, C.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Korn, D.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Kriezis, E. E.

Lee, J. Y.

Leuthold, J.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Li, J.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Liu, J.

Y. Bian, Z. Zheng, X. Zhao, Y. Su, L. Liu, J. Liu, J. Zhu, and T. Zhou, “Guiding of Long-Range Hybrid Plasmon Polariton in a Coupled Nanowire Array at Deep-Subwavelength Scale,” Photonics Technol. Lett. 24(15), 1279–1281 (2012).
[Crossref]

Liu, L.

Y. Bian, Z. Zheng, X. Zhao, Y. Su, L. Liu, J. Liu, J. Zhu, and T. Zhou, “Guiding of Long-Range Hybrid Plasmon Polariton in a Coupled Nanowire Array at Deep-Subwavelength Scale,” Photonics Technol. Lett. 24(15), 1279–1281 (2012).
[Crossref]

Liu, Y.

H. K. Tsang and Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23(6), 064007 (2008).
[Crossref]

Lu, S.

W. Min, S. Lu, M. Rueckel, G. R. Holtom, and X. S. Xie, “Near-Degenerate Four-Wave-Mixing Microscopy,” Nano Lett. 9(6), 2423–2426 (2009).
[Crossref] [PubMed]

Luyssaert, B.

Ma, Y.

Maier, S. A.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the Ultimate Limits of Plasmonic Enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Melikyan, A.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Miller, D. A. B.

D. A. B. Miller, “Are optical transistors the logical next step?” Nat. Photonics 4(1), 3–5 (2010).
[Crossref]

Min, W.

W. Min, S. Lu, M. Rueckel, G. R. Holtom, and X. S. Xie, “Near-Degenerate Four-Wave-Mixing Microscopy,” Nano Lett. 9(6), 2423–2426 (2009).
[Crossref] [PubMed]

Mock, J. J.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the Ultimate Limits of Plasmonic Enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Monro, T. M.

Mori, M.

Muehlbrandt, S.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Muslija, A.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Narayanan, K.

Niegemann, J.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Niehusmann, J.

R. Dekker, E. J. Klien, J. Niehusmann, M. Först, F. Ondracek, J. Ctyroky, N. Usechak, and A. Dressen, “Self phase modulation and stimulated raman scattering due to high power femtosecond pulse propagation in silicon-on-insulator waveguides,” in Proceedings Symposium IEEE/LEOS Benelux Chapter (IEEE, 2005), pp. 197-200.

O’Brien, K.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase Mismatch–Free Nonlinear Propagation in Optical Zero-Index Materials,” Science 342(6163), 1223–1226 (2013).

Ogasawara, T.

Okano, M.

Ondracek, F.

R. Dekker, E. J. Klien, J. Niehusmann, M. Först, F. Ondracek, J. Ctyroky, N. Usechak, and A. Dressen, “Self phase modulation and stimulated raman scattering due to high power femtosecond pulse propagation in silicon-on-insulator waveguides,” in Proceedings Symposium IEEE/LEOS Benelux Chapter (IEEE, 2005), pp. 197-200.

Oron, D.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref] [PubMed]

Osgood, R. M.

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Palmer, R.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Panoiu, N. C.

Park, S.

Park, S. K.

Pendry, J. B.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the Ultimate Limits of Plasmonic Enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Pitilakis, A.

Präkelt, A.

A. Präkelt, M. Wollenhaupt, C. Sarpe-Tudoran, A. Assion, and T. Baumert, “Filling a spectral hole via self-phase modulation,” Appl. Phys. Lett. 87(12), 121113 (2005).
[Crossref]

Preble, S. F.

Rueckel, M.

W. Min, S. Lu, M. Rueckel, G. R. Holtom, and X. S. Xie, “Near-Degenerate Four-Wave-Mixing Microscopy,” Nano Lett. 9(6), 2423–2426 (2009).
[Crossref] [PubMed]

Sakakibara, Y.

Salamin, Y.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Salandrino, A.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase Mismatch–Free Nonlinear Propagation in Optical Zero-Index Materials,” Science 342(6163), 1223–1226 (2013).

Sarpe-Tudoran, C.

A. Präkelt, M. Wollenhaupt, C. Sarpe-Tudoran, A. Assion, and T. Baumert, “Filling a spectral hole via self-phase modulation,” Appl. Phys. Lett. 87(12), 121113 (2005).
[Crossref]

Schindler, P. C.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Semenova, Y.

Shahraam Afshar, V.

Shin, S. Y.

Shoji, Y.

Silberberg, Y.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref] [PubMed]

Smith, D. R.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the Ultimate Limits of Plasmonic Enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Sommer, M.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Su, Y.

Y. Bian, Z. Zheng, X. Zhao, Y. Su, L. Liu, J. Liu, J. Zhu, and T. Zhou, “Guiding of Long-Range Hybrid Plasmon Polariton in a Coupled Nanowire Array at Deep-Subwavelength Scale,” Photonics Technol. Lett. 24(15), 1279–1281 (2012).
[Crossref]

Suchowski, H.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase Mismatch–Free Nonlinear Propagation in Optical Zero-Index Materials,” Science 342(6163), 1223–1226 (2013).

Suda, S.

Sun, G.

Taillaert, D.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
[Crossref]

Tsang, H. K.

H. K. Tsang and Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23(6), 064007 (2008).
[Crossref]

Urzhumov, Y.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the Ultimate Limits of Plasmonic Enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Usechak, N.

R. Dekker, E. J. Klien, J. Niehusmann, M. Först, F. Ondracek, J. Ctyroky, N. Usechak, and A. Dressen, “Self phase modulation and stimulated raman scattering due to high power femtosecond pulse propagation in silicon-on-insulator waveguides,” in Proceedings Symposium IEEE/LEOS Benelux Chapter (IEEE, 2005), pp. 197-200.

Van Campenhout, J.

Van Laere, F.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Van Thourhout, D.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
[Crossref]

Vlasov, Y. A.

Wiaux, V.

Wollenhaupt, M.

A. Präkelt, M. Wollenhaupt, C. Sarpe-Tudoran, A. Assion, and T. Baumert, “Filling a spectral hole via self-phase modulation,” Appl. Phys. Lett. 87(12), 121113 (2005).
[Crossref]

Wong, Z. J.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase Mismatch–Free Nonlinear Propagation in Optical Zero-Index Materials,” Science 342(6163), 1223–1226 (2013).

Wu, Q.

Xie, X. S.

W. Min, S. Lu, M. Rueckel, G. R. Holtom, and X. S. Xie, “Near-Degenerate Four-Wave-Mixing Microscopy,” Nano Lett. 9(6), 2423–2426 (2009).
[Crossref] [PubMed]

Yin, L.

Yin, X.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase Mismatch–Free Nonlinear Propagation in Optical Zero-Index Materials,” Science 342(6163), 1223–1226 (2013).

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics’,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Zhang, X.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase Mismatch–Free Nonlinear Propagation in Optical Zero-Index Materials,” Science 342(6163), 1223–1226 (2013).

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Zhao, X.

Y. Bian, Z. Zheng, X. Zhao, Y. Su, L. Liu, J. Liu, J. Zhu, and T. Zhou, “Guiding of Long-Range Hybrid Plasmon Polariton in a Coupled Nanowire Array at Deep-Subwavelength Scale,” Photonics Technol. Lett. 24(15), 1279–1281 (2012).
[Crossref]

Zheng, Z.

Y. Bian, Z. Zheng, X. Zhao, Y. Su, L. Liu, J. Liu, J. Zhu, and T. Zhou, “Guiding of Long-Range Hybrid Plasmon Polariton in a Coupled Nanowire Array at Deep-Subwavelength Scale,” Photonics Technol. Lett. 24(15), 1279–1281 (2012).
[Crossref]

Zhou, T.

Y. Bian, Z. Zheng, X. Zhao, Y. Su, L. Liu, J. Liu, J. Zhu, and T. Zhou, “Guiding of Long-Range Hybrid Plasmon Polariton in a Coupled Nanowire Array at Deep-Subwavelength Scale,” Photonics Technol. Lett. 24(15), 1279–1281 (2012).
[Crossref]

Zhu, J.

Y. Bian, Z. Zheng, X. Zhao, Y. Su, L. Liu, J. Liu, J. Zhu, and T. Zhou, “Guiding of Long-Range Hybrid Plasmon Polariton in a Coupled Nanowire Array at Deep-Subwavelength Scale,” Photonics Technol. Lett. 24(15), 1279–1281 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. Präkelt, M. Wollenhaupt, C. Sarpe-Tudoran, A. Assion, and T. Baumert, “Filling a spectral hole via self-phase modulation,” Appl. Phys. Lett. 87(12), 121113 (2005).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Laser Photonics Rev. (1)

Y. Bian and Q. Gong, “Deep-subwavelength light confinement and transport in hybrid dielectric-loaded metal wedges,” Laser Photonics Rev. 8(4), 549–561 (2014).
[Crossref]

Nano Lett. (1)

W. Min, S. Lu, M. Rueckel, G. R. Holtom, and X. S. Xie, “Near-Degenerate Four-Wave-Mixing Microscopy,” Nano Lett. 9(6), 2423–2426 (2009).
[Crossref] [PubMed]

Nat. Photonics (5)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

D. A. B. Miller, “Are optical transistors the logical next step?” Nat. Photonics 4(1), 3–5 (2010).
[Crossref]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics’,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Nature (1)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref] [PubMed]

Opt. Express (7)

Opt. Lett. (1)

Photonics Technol. Lett. (1)

Y. Bian, Z. Zheng, X. Zhao, Y. Su, L. Liu, J. Liu, J. Zhu, and T. Zhou, “Guiding of Long-Range Hybrid Plasmon Polariton in a Coupled Nanowire Array at Deep-Subwavelength Scale,” Photonics Technol. Lett. 24(15), 1279–1281 (2012).
[Crossref]

Sci. Rep. (1)

Y. Bian and Q. Gong, “Tuning the hybridization of plasmonic and coupled dielectric nanowire modes for highperformance optical waveguiding at sub-diffraction-limited scale,” Sci. Rep. 4, 6617 (2014).

Science (2)

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the Ultimate Limits of Plasmonic Enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase Mismatch–Free Nonlinear Propagation in Optical Zero-Index Materials,” Science 342(6163), 1223–1226 (2013).

Semicond. Sci. Technol. (1)

H. K. Tsang and Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23(6), 064007 (2008).
[Crossref]

Other (9)

B. Booth, B. Bottoms, S. Buchter, D. Butler, T. Bowen, G. Celler, Y. Chen, D. Evans, L. Giovane, M. Glick, R. Grzybowski, B. Hemenway, L. Kimerling, L. Liao, H. Lui, J. Michel, J. Mu, R. Otte, P. Popescu, M. Romagnoli, L. Smith, V. Stojanovic, M. Tan, M. Taubenblatt, M. Tryson, C. Weaver, and T. Yamamoto, “On-Board Optical Interconnection Digest,” in CTR III TWG Report #32013, Community Technology Roadmap (CTR, 2013)

J. A. Kash, “Leveraging optical interconnects in future supercomputers and servers,” in 16th IEEE Symposium on High Performance Interconnects (IEEE, 2008), pp. 190-194.
[Crossref]

S. Aldawsari and B. R. West, “Hybrid plasmonic waveguides for nonlinear applications,” in Photonics Global Conference (PGC, 2012).
[Crossref]

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2006), Ch. 4.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2006), Ch. 2.

R. Dekker, E. J. Klien, J. Niehusmann, M. Först, F. Ondracek, J. Ctyroky, N. Usechak, and A. Dressen, “Self phase modulation and stimulated raman scattering due to high power femtosecond pulse propagation in silicon-on-insulator waveguides,” in Proceedings Symposium IEEE/LEOS Benelux Chapter (IEEE, 2005), pp. 197-200.

K.Y. Wang, and A.C. Foster. “Optimization of CMOS-Compatible Hybrid Plasmonic Waveguides for Nonlinear Applications,” in Advanced Photonics OSA Technical Digest (Optical Society of America, 2011), paper JTuB15.

D. Vermeulen, K. V. Acoleyen, S. Ghosh, S. Selvaraja, W. A. D. De Cort, N. A. Yebo, E. Hallynck, K. De Vos, P. P. P. Debackere, P. Dumon, W. Bogaerts, G. Roelkens, D. Van Thourhout, and R. Baet, “Efficient tapering to the fundamental quasi-TM mode in asymmetrical waveguides,” in 15th European conference on Integrated Optics (ECIO, 2010).

B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, and I. Biaggio, “A high-optical quality supramolecular assembly for third-order nonlinear optics,” in Conference on Lasers and ElectroOptics/International Quantum Electronics Conference (CLEO, 2009), paper JWA120.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Conceptual illustration of the method. A source provides a pulse centred at λc. The pulse is truncated at λt, and is then broadened during propagation. The pulse is filtered at λf.

Fig. 2
Fig. 2

Schematic of the complete experimental implementation. a) Spectral measurement of the truncated pulse λc = 1305 nm, λt = 1311 nm, λf = 1328 nm; dips in spectra are due to a Fabry-Perot cavity. b) Two photon autocorrelation of the truncated pulse; pulsewidth is 207 fs and shows no observable chirp. c) 4f pulse shaper set to form the truncated pulse. d) Incoupling/Outcoupling scheme to/from waveguide sample using a 100x NIR Olympus objective (N.A. 0.85). e) Spectral and spatial filtering using two Semrock RazorEdge long-pass filters and an aperture at the image plane, respectively.

Fig. 3
Fig. 3

SPM pulse propagation in the presence of a cubic nonlinearity for different nonlinear phase shifts; Left: Full sech pulse, Right: Spectrally truncated sech pulse. The area beneath the orange curve corresponds to the wavelengths which pass through the filter. The inset (not to scale) illustrates the measured signal for the small nonlinear phase shifts in our experiment.

Fig. 4
Fig. 4

Nonlinear signal generated by SOI waveguides of two differing length: 10 μm and 5 μm. Each coloured data set represents a repeated measurement performed on a separate day. The solid line is the theoretical fit. a) SEM of the standard 10 μm SOI photonic devices. b) SOI cross-section overlapped with TM mode power profile.

Fig. 5
Fig. 5

Nonlinear signal generated by an SOI waveguide control and two HPWG structures of differing Si3N4 thickness: 10nm and 5nm. All waveguides are 10 μm in length. a) Theoretical nonlinear phase shift (with P = 1000 mW and L = 10 μm) of the SOI waveguide and HPWG as a function of Si3N4 thickness. b) HPWG cross-section overlapped with TM fundamental mode power profile.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A(z,t) z = α 2 A(z,t)i β 2 2 A(z,t) t 2 +iγ | A(z,t) | 2 A(z,t)

Metrics