Abstract

Stimulated Raman scattering (SRS) enables fast, high resolution imaging of chemical constituents important to biological structures and functional processes, both in a label-free manner and using exogenous biomarkers. While this technology has shown remarkable potential, it is currently limited to point scanning and can only probe a few Raman bands at a time (most often, only one). In this work we take a fundamentally different approach to detecting the small nonlinear signals based on dispersion effects that accompany the loss/gain processes in SRS. In this proof of concept, we demonstrate that the dispersive measurements are more robust to noise compared to amplitude-based measurements, which then permit spectral or spatial multiplexing (potentially both, simultaneously). Finally, we illustrate how this method may enable different strategies for biochemical imaging using phase microscopy and optical coherence tomography.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Stimulated Raman scattering spectroscopic optical coherence tomography

Francisco E. Robles, Kevin C. Zhou, Martin C. Fischer, and Warren S. Warren
Optica 4(2) 243-246 (2017)

Stimulated Raman scattering flow cytometry for label-free single-particle analysis

Chi Zhang, Kai-Chih Huang, Bartek Rajwa, Junjie Li, Shiqi Yang, Haonan Lin, Chien-sheng Liao, Gregory Eakins, Shihuan Kuang, Valery Patsekin, J. Paul Robinson, and Ji-Xin Cheng
Optica 4(1) 103-109 (2017)

Broadband stimulated Raman scattering spectroscopy by a photonic time stretcher

Francesco Saltarelli, Vikas Kumar, Daniele Viola, Francesco Crisafi, Fabrizio Preda, Giulio Cerullo, and Dario Polli
Opt. Express 24(19) 21264-21275 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
    [Crossref] [PubMed]
  2. C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
    [Crossref] [PubMed]
  3. G. J. Puppels, F. F. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347(6290), 301–303 (1990).
    [Crossref] [PubMed]
  4. D. Fu, Y. Yu, A. Folick, E. Currie, R. V. Farese, T.-H. Tsai, X. S. Xie, and M. C. Wang, “In vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 136(24), 8820–8828 (2014).
    [Crossref] [PubMed]
  5. D. Fu, J. Zhou, W. S. Zhu, P. W. Manley, Y. K. Wang, T. Hood, A. Wylie, and X. S. Xie, “Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering,” Nat. Chem. 6(7), 614–622 (2014).
    [Crossref] [PubMed]
  6. P. D. Chowdary, Z. Jiang, E. J. Chaney, W. A. Benalcazar, D. L. Marks, M. Gruebele, and S. A. Boppart, “Molecular histopathology by spectrally reconstructed nonlinear interferometric vibrational imaging,” Cancer Res. 70(23), 9562–9569 (2010).
    [Crossref] [PubMed]
  7. M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Y. So, and Z. Huang, “Characterizing variability in in vivo Raman spectra of different anatomical locations in the upper gastrointestinal tract toward cancer detection,” J. Biomed. Opt. 16(3), 037003 (2011).
    [Crossref] [PubMed]
  8. M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122(2), 443–449 (2004).
    [Crossref] [PubMed]
  9. C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9, 295-305 (2015).
  10. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
    [Crossref]
  11. M. Cui, B. R. Bachler, and J. P. Ogilvie, “Comparing coherent and spontaneous Raman scattering under biological imaging conditions,” Opt. Lett. 34(6), 773–775 (2009).
    [Crossref] [PubMed]
  12. C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 883–909 (2008).
    [Crossref] [PubMed]
  13. E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
    [Crossref]
  14. M. Diem, M. Romeo, C. Matthäus, M. Miljkovic, L. Miller, and P. Lasch, “Comparison of Fourier transform infrared (FTIR) spectra of individual cells acquired using synchrotron and conventional sources,” Infrared Phys. Technol. 45(5-6), 331–338 (2004).
    [Crossref]
  15. M. Diem, S. Boydston-White, and L. Chiriboga, “Infrared spectroscopy of cells and tissues: shining light onto a novel subject,” Appl. Spectrosc. 53(4), 148–161 (1999).
    [Crossref]
  16. M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Transl. Med. 5(201), 201ra119 (2013).
    [Crossref] [PubMed]
  17. B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
    [Crossref] [PubMed]
  18. D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
    [Crossref] [PubMed]
  19. D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
    [Crossref] [PubMed]
  20. D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
    [Crossref] [PubMed]
  21. Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 1–7 (2012).
    [Crossref]
  22. C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265–e269 (2015).
    [Crossref] [PubMed]
  23. K. Seto, Y. Okuda, E. Tokunaga, and T. Kobayashi, “Development of a multiplex stimulated Raman microscope for spectral imaging through multi-channel lock-in detection,” Rev. Sci. Instrum. 84(8), 083705 (2013).
    [Crossref] [PubMed]
  24. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  25. F. E. Robles and A. Wax, “Separating the scattering and absorption coefficients using the real and imaginary parts of the refractive index with low-coherence interferometry,” Opt. Lett. 35(17), 2843–2845 (2010).
    [Crossref] [PubMed]
  26. F. E. Robles, L. L. Satterwhite, and A. Wax, “Nonlinear phase dispersion spectroscopy,” Opt. Lett. 36(23), 4665–4667 (2011).
    [Crossref] [PubMed]
  27. F. E. Robles, P. Samineni, J. W. Wilson, and W. S. Warren, “Pump-probe nonlinear phase dispersion spectroscopy,” Opt. Express 21(8), 9353–9364 (2013).
    [Crossref] [PubMed]
  28. F. E. Robles, M. C. Fischer, and W. S. Warren, “Femtosecond pulse shaping enables detection of optical Kerr-effect (OKE) dynamics for molecular imaging,” Opt. Lett. 39(16), 4788–4791 (2014).
    [Crossref] [PubMed]
  29. P. D. Chowdary, W. A. Benalcazar, Z. Jiang, D. M. Marks, S. A. Boppart, and M. Gruebele, “High speed nonlinear interferometric vibrational analysis of lipids by spectral decomposition,” Anal. Chem. 82(9), 3812–3818 (2010).
    [Crossref] [PubMed]
  30. R. Ahrenkiel, “Modified Kramers-Kronig analysis of optical spectra,” J. Opt. Soc. Am. 61(12), 1651–1655 (1971).
    [Crossref]
  31. J. R. Morell, M. Gingerich, G. Wolter, J. Jiao, M. Hunger, P. J. Klar, and M. Frba, “Synthesis and characterization of highly ordered bifunctional aromatic periodic mesoporous organosilicas with different pore sizes,” J. Mater. Chem. 16, 2809–2810 (2006).
  32. N. T. Shaked, Y. Zhu, M. T. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells,” Opt. Express 17(18), 15585–15591 (2009).
    [Crossref] [PubMed]
  33. N. A. Turko, A. Peled, and N. T. Shaked, “Wide-field interferometric phase microscopy with molecular specificity using plasmonic nanoparticles,” J. Biomed. Opt. 18(11), 111414 (2013).
    [Crossref] [PubMed]
  34. W. J. Eldridge, A. Meiri, A. Sheinfeld, M. T. Rinehart, and A. Wax, “Fast wide-field photothermal and quantitative phase cell imaging with optical lock-in detection,” Biomed. Opt. Express 5(8), 2517–2525 (2014).
    [Crossref] [PubMed]
  35. M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
    [Crossref] [PubMed]
  36. J. M. Tucker-Schwartz, T. A. Meyer, C. A. Patil, C. L. Duvall, and M. C. Skala, “In vivo photothermal optical coherence tomography of gold nanorod contrast agents,” Biomed. Opt. Express 3(11), 2881–2895 (2012).
    [Crossref] [PubMed]
  37. F. Robles, R. N. Graf, and A. Wax, “Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,” Opt. Express 17(8), 6799–6812 (2009).
    [Crossref] [PubMed]
  38. F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
    [Crossref] [PubMed]
  39. D. Jacob, R. L. Shelton, and B. E. Applegate, “Fourier domain pump-probe optical coherence tomography imaging of melanin,” Opt. Express 18(12), 12399–12410 (2010).
    [Crossref] [PubMed]
  40. W. Kim and B. E. Applegate, “In vivo molecular contrast OCT imaging of methylene blue,” Opt. Lett. 40(7), 1426–1429 (2015).
    [Crossref] [PubMed]
  41. M. Romeo, B. Mohlenhoff, M. Jennings, and M. Diem, “Infrared micro-spectroscopic studies of epithelial cells,” Biochim. Biophys. Acta 1758(7), 915–922 (2006).
    [Crossref] [PubMed]
  42. D. Fu and X. S. Xie, “Reliable cell segmentation based on spectral phasor analysis of hyperspectral stimulated Raman scattering imaging data,” Anal. Chem. 86(9), 4115–4119 (2014).
    [Crossref] [PubMed]
  43. Y. Park, T. Yamauchi, W. Choi, R. Dasari, and M. S. Feld, “Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells,” Opt. Lett. 34(23), 3668–3670 (2009).
    [Crossref] [PubMed]
  44. M. Rinehart, Y. Zhu, and A. Wax, “Quantitative phase spectroscopy,” Biomed. Opt. Express 3(5), 958–965 (2012).
    [Crossref] [PubMed]
  45. J. Jung, K. Kim, H. Yu, K. Lee, S. Lee, S. Nahm, H. Park, and Y. Park, “Biomedical applications of holographic microspectroscopy,” Appl. Opt. 53(27), G111–G122 (2014).
    [Crossref] [PubMed]
  46. M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, “Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy,” J. Biomed. Opt. 11(2), 024014 (2006).
    [Crossref] [PubMed]

2015 (3)

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9, 295-305 (2015).

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265–e269 (2015).
[Crossref] [PubMed]

W. Kim and B. E. Applegate, “In vivo molecular contrast OCT imaging of methylene blue,” Opt. Lett. 40(7), 1426–1429 (2015).
[Crossref] [PubMed]

2014 (7)

D. Fu and X. S. Xie, “Reliable cell segmentation based on spectral phasor analysis of hyperspectral stimulated Raman scattering imaging data,” Anal. Chem. 86(9), 4115–4119 (2014).
[Crossref] [PubMed]

J. Jung, K. Kim, H. Yu, K. Lee, S. Lee, S. Nahm, H. Park, and Y. Park, “Biomedical applications of holographic microspectroscopy,” Appl. Opt. 53(27), G111–G122 (2014).
[Crossref] [PubMed]

F. E. Robles, M. C. Fischer, and W. S. Warren, “Femtosecond pulse shaping enables detection of optical Kerr-effect (OKE) dynamics for molecular imaging,” Opt. Lett. 39(16), 4788–4791 (2014).
[Crossref] [PubMed]

W. J. Eldridge, A. Meiri, A. Sheinfeld, M. T. Rinehart, and A. Wax, “Fast wide-field photothermal and quantitative phase cell imaging with optical lock-in detection,” Biomed. Opt. Express 5(8), 2517–2525 (2014).
[Crossref] [PubMed]

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

D. Fu, Y. Yu, A. Folick, E. Currie, R. V. Farese, T.-H. Tsai, X. S. Xie, and M. C. Wang, “In vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 136(24), 8820–8828 (2014).
[Crossref] [PubMed]

D. Fu, J. Zhou, W. S. Zhu, P. W. Manley, Y. K. Wang, T. Hood, A. Wylie, and X. S. Xie, “Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering,” Nat. Chem. 6(7), 614–622 (2014).
[Crossref] [PubMed]

2013 (5)

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Transl. Med. 5(201), 201ra119 (2013).
[Crossref] [PubMed]

F. E. Robles, P. Samineni, J. W. Wilson, and W. S. Warren, “Pump-probe nonlinear phase dispersion spectroscopy,” Opt. Express 21(8), 9353–9364 (2013).
[Crossref] [PubMed]

K. Seto, Y. Okuda, E. Tokunaga, and T. Kobayashi, “Development of a multiplex stimulated Raman microscope for spectral imaging through multi-channel lock-in detection,” Rev. Sci. Instrum. 84(8), 083705 (2013).
[Crossref] [PubMed]

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

N. A. Turko, A. Peled, and N. T. Shaked, “Wide-field interferometric phase microscopy with molecular specificity using plasmonic nanoparticles,” J. Biomed. Opt. 18(11), 111414 (2013).
[Crossref] [PubMed]

2012 (4)

M. Rinehart, Y. Zhu, and A. Wax, “Quantitative phase spectroscopy,” Biomed. Opt. Express 3(5), 958–965 (2012).
[Crossref] [PubMed]

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 1–7 (2012).
[Crossref]

J. M. Tucker-Schwartz, T. A. Meyer, C. A. Patil, C. L. Duvall, and M. C. Skala, “In vivo photothermal optical coherence tomography of gold nanorod contrast agents,” Biomed. Opt. Express 3(11), 2881–2895 (2012).
[Crossref] [PubMed]

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[Crossref] [PubMed]

2011 (3)

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Y. So, and Z. Huang, “Characterizing variability in in vivo Raman spectra of different anatomical locations in the upper gastrointestinal tract toward cancer detection,” J. Biomed. Opt. 16(3), 037003 (2011).
[Crossref] [PubMed]

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

F. E. Robles, L. L. Satterwhite, and A. Wax, “Nonlinear phase dispersion spectroscopy,” Opt. Lett. 36(23), 4665–4667 (2011).
[Crossref] [PubMed]

2010 (5)

P. D. Chowdary, W. A. Benalcazar, Z. Jiang, D. M. Marks, S. A. Boppart, and M. Gruebele, “High speed nonlinear interferometric vibrational analysis of lipids by spectral decomposition,” Anal. Chem. 82(9), 3812–3818 (2010).
[Crossref] [PubMed]

F. E. Robles and A. Wax, “Separating the scattering and absorption coefficients using the real and imaginary parts of the refractive index with low-coherence interferometry,” Opt. Lett. 35(17), 2843–2845 (2010).
[Crossref] [PubMed]

D. Jacob, R. L. Shelton, and B. E. Applegate, “Fourier domain pump-probe optical coherence tomography imaging of melanin,” Opt. Express 18(12), 12399–12410 (2010).
[Crossref] [PubMed]

P. D. Chowdary, Z. Jiang, E. J. Chaney, W. A. Benalcazar, D. L. Marks, M. Gruebele, and S. A. Boppart, “Molecular histopathology by spectrally reconstructed nonlinear interferometric vibrational imaging,” Cancer Res. 70(23), 9562–9569 (2010).
[Crossref] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

2009 (4)

2008 (3)

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[Crossref] [PubMed]

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 883–909 (2008).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

2007 (2)

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
[Crossref] [PubMed]

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

2006 (3)

J. R. Morell, M. Gingerich, G. Wolter, J. Jiao, M. Hunger, P. J. Klar, and M. Frba, “Synthesis and characterization of highly ordered bifunctional aromatic periodic mesoporous organosilicas with different pore sizes,” J. Mater. Chem. 16, 2809–2810 (2006).

M. Romeo, B. Mohlenhoff, M. Jennings, and M. Diem, “Infrared micro-spectroscopic studies of epithelial cells,” Biochim. Biophys. Acta 1758(7), 915–922 (2006).
[Crossref] [PubMed]

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, “Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy,” J. Biomed. Opt. 11(2), 024014 (2006).
[Crossref] [PubMed]

2004 (2)

M. Diem, M. Romeo, C. Matthäus, M. Miljkovic, L. Miller, and P. Lasch, “Comparison of Fourier transform infrared (FTIR) spectra of individual cells acquired using synchrotron and conventional sources,” Infrared Phys. Technol. 45(5-6), 331–338 (2004).
[Crossref]

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122(2), 443–449 (2004).
[Crossref] [PubMed]

1999 (2)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

M. Diem, S. Boydston-White, and L. Chiriboga, “Infrared spectroscopy of cells and tissues: shining light onto a novel subject,” Appl. Spectrosc. 53(4), 148–161 (1999).
[Crossref]

1990 (1)

G. J. Puppels, F. F. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347(6290), 301–303 (1990).
[Crossref] [PubMed]

1971 (1)

Agar, N. Y. R.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Transl. Med. 5(201), 201ra119 (2013).
[Crossref] [PubMed]

Ahrenkiel, R.

Applegate, B. E.

Arndt-Jovin, D. J.

G. J. Puppels, F. F. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347(6290), 301–303 (1990).
[Crossref] [PubMed]

Bachler, B. R.

Benalcazar, W. A.

P. D. Chowdary, W. A. Benalcazar, Z. Jiang, D. M. Marks, S. A. Boppart, and M. Gruebele, “High speed nonlinear interferometric vibrational analysis of lipids by spectral decomposition,” Anal. Chem. 82(9), 3812–3818 (2010).
[Crossref] [PubMed]

P. D. Chowdary, Z. Jiang, E. J. Chaney, W. A. Benalcazar, D. L. Marks, M. Gruebele, and S. A. Boppart, “Molecular histopathology by spectrally reconstructed nonlinear interferometric vibrational imaging,” Cancer Res. 70(23), 9562–9569 (2010).
[Crossref] [PubMed]

Bergholt, M. S.

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Y. So, and Z. Huang, “Characterizing variability in in vivo Raman spectra of different anatomical locations in the upper gastrointestinal tract toward cancer detection,” J. Biomed. Opt. 16(3), 037003 (2011).
[Crossref] [PubMed]

Berner, S.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

Boppart, S. A.

P. D. Chowdary, Z. Jiang, E. J. Chaney, W. A. Benalcazar, D. L. Marks, M. Gruebele, and S. A. Boppart, “Molecular histopathology by spectrally reconstructed nonlinear interferometric vibrational imaging,” Cancer Res. 70(23), 9562–9569 (2010).
[Crossref] [PubMed]

P. D. Chowdary, W. A. Benalcazar, Z. Jiang, D. M. Marks, S. A. Boppart, and M. Gruebele, “High speed nonlinear interferometric vibrational analysis of lipids by spectral decomposition,” Anal. Chem. 82(9), 3812–3818 (2010).
[Crossref] [PubMed]

Boydston-White, S.

M. Diem, S. Boydston-White, and L. Chiriboga, “Infrared spectroscopy of cells and tissues: shining light onto a novel subject,” Appl. Spectrosc. 53(4), 148–161 (1999).
[Crossref]

Camelo-Piragua, S.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Transl. Med. 5(201), 201ra119 (2013).
[Crossref] [PubMed]

Camp, C. H.

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9, 295-305 (2015).

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Chaney, E. J.

P. D. Chowdary, Z. Jiang, E. J. Chaney, W. A. Benalcazar, D. L. Marks, M. Gruebele, and S. A. Boppart, “Molecular histopathology by spectrally reconstructed nonlinear interferometric vibrational imaging,” Cancer Res. 70(23), 9562–9569 (2010).
[Crossref] [PubMed]

Cheng, J.-X.

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265–e269 (2015).
[Crossref] [PubMed]

Chiriboga, L.

M. Diem, S. Boydston-White, and L. Chiriboga, “Infrared spectroscopy of cells and tissues: shining light onto a novel subject,” Appl. Spectrosc. 53(4), 148–161 (1999).
[Crossref]

Choi, W.

Choma, M. A.

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, “Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy,” J. Biomed. Opt. 11(2), 024014 (2006).
[Crossref] [PubMed]

Chowdary, P. D.

P. D. Chowdary, W. A. Benalcazar, Z. Jiang, D. M. Marks, S. A. Boppart, and M. Gruebele, “High speed nonlinear interferometric vibrational analysis of lipids by spectral decomposition,” Anal. Chem. 82(9), 3812–3818 (2010).
[Crossref] [PubMed]

P. D. Chowdary, Z. Jiang, E. J. Chaney, W. A. Benalcazar, D. L. Marks, M. Gruebele, and S. A. Boppart, “Molecular histopathology by spectrally reconstructed nonlinear interferometric vibrational imaging,” Cancer Res. 70(23), 9562–9569 (2010).
[Crossref] [PubMed]

Christensen, D. H.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122(2), 443–449 (2004).
[Crossref] [PubMed]

Cicerone, M. T.

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9, 295-305 (2015).

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Crow, M. J.

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[Crossref] [PubMed]

Cui, M.

Currie, E.

D. Fu, Y. Yu, A. Folick, E. Currie, R. V. Farese, T.-H. Tsai, X. S. Xie, and M. C. Wang, “In vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 136(24), 8820–8828 (2014).
[Crossref] [PubMed]

Dasari, R.

de Mul, F. F.

G. J. Puppels, F. F. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347(6290), 301–303 (1990).
[Crossref] [PubMed]

Diem, M.

M. Romeo, B. Mohlenhoff, M. Jennings, and M. Diem, “Infrared micro-spectroscopic studies of epithelial cells,” Biochim. Biophys. Acta 1758(7), 915–922 (2006).
[Crossref] [PubMed]

M. Diem, M. Romeo, C. Matthäus, M. Miljkovic, L. Miller, and P. Lasch, “Comparison of Fourier transform infrared (FTIR) spectra of individual cells acquired using synchrotron and conventional sources,” Infrared Phys. Technol. 45(5-6), 331–338 (2004).
[Crossref]

M. Diem, S. Boydston-White, and L. Chiriboga, “Infrared spectroscopy of cells and tissues: shining light onto a novel subject,” Appl. Spectrosc. 53(4), 148–161 (1999).
[Crossref]

Duvall, C. L.

Eldridge, W. J.

Ellerbee, A. K.

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, “Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy,” J. Biomed. Opt. 11(2), 024014 (2006).
[Crossref] [PubMed]

Evans, C. L.

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 883–909 (2008).
[Crossref] [PubMed]

Farese, R. V.

D. Fu, Y. Yu, A. Folick, E. Currie, R. V. Farese, T.-H. Tsai, X. S. Xie, and M. C. Wang, “In vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 136(24), 8820–8828 (2014).
[Crossref] [PubMed]

Feld, M. S.

Fischer, M. C.

Folick, A.

D. Fu, Y. Yu, A. Folick, E. Currie, R. V. Farese, T.-H. Tsai, X. S. Xie, and M. C. Wang, “In vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 136(24), 8820–8828 (2014).
[Crossref] [PubMed]

Frba, M.

J. R. Morell, M. Gingerich, G. Wolter, J. Jiao, M. Hunger, P. J. Klar, and M. Frba, “Synthesis and characterization of highly ordered bifunctional aromatic periodic mesoporous organosilicas with different pore sizes,” J. Mater. Chem. 16, 2809–2810 (2006).

Freudiger, C.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[Crossref] [PubMed]

Freudiger, C. W.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Transl. Med. 5(201), 201ra119 (2013).
[Crossref] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Fu, D.

D. Fu, J. Zhou, W. S. Zhu, P. W. Manley, Y. K. Wang, T. Hood, A. Wylie, and X. S. Xie, “Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering,” Nat. Chem. 6(7), 614–622 (2014).
[Crossref] [PubMed]

D. Fu, Y. Yu, A. Folick, E. Currie, R. V. Farese, T.-H. Tsai, X. S. Xie, and M. C. Wang, “In vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 136(24), 8820–8828 (2014).
[Crossref] [PubMed]

D. Fu and X. S. Xie, “Reliable cell segmentation based on spectral phasor analysis of hyperspectral stimulated Raman scattering imaging data,” Anal. Chem. 86(9), 4115–4119 (2014).
[Crossref] [PubMed]

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[Crossref] [PubMed]

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
[Crossref] [PubMed]

Fukui, K.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 1–7 (2012).
[Crossref]

Gilch, P.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

Gingerich, M.

J. R. Morell, M. Gingerich, G. Wolter, J. Jiao, M. Hunger, P. J. Klar, and M. Frba, “Synthesis and characterization of highly ordered bifunctional aromatic periodic mesoporous organosilicas with different pore sizes,” J. Mater. Chem. 16, 2809–2810 (2006).

Gniadecka, M.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122(2), 443–449 (2004).
[Crossref] [PubMed]

Gniadecki, R.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122(2), 443–449 (2004).
[Crossref] [PubMed]

Golby, A. J.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Transl. Med. 5(201), 201ra119 (2013).
[Crossref] [PubMed]

Graf, R. N.

Grant, G.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

Greve, J.

G. J. Puppels, F. F. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347(6290), 301–303 (1990).
[Crossref] [PubMed]

Gruebele, M.

P. D. Chowdary, Z. Jiang, E. J. Chaney, W. A. Benalcazar, D. L. Marks, M. Gruebele, and S. A. Boppart, “Molecular histopathology by spectrally reconstructed nonlinear interferometric vibrational imaging,” Cancer Res. 70(23), 9562–9569 (2010).
[Crossref] [PubMed]

P. D. Chowdary, W. A. Benalcazar, Z. Jiang, D. M. Marks, S. A. Boppart, and M. Gruebele, “High speed nonlinear interferometric vibrational analysis of lipids by spectral decomposition,” Anal. Chem. 82(9), 3812–3818 (2010).
[Crossref] [PubMed]

Hansen, L. K.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122(2), 443–449 (2004).
[Crossref] [PubMed]

Hartshorn, C. M.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Hashimoto, H.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 1–7 (2012).
[Crossref]

Hayashi, M.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Transl. Med. 5(201), 201ra119 (2013).
[Crossref] [PubMed]

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Heddleston, J. M.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Hercogova, J.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122(2), 443–449 (2004).
[Crossref] [PubMed]

Ho, K. Y.

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Y. So, and Z. Huang, “Characterizing variability in in vivo Raman spectra of different anatomical locations in the upper gastrointestinal tract toward cancer detection,” J. Biomed. Opt. 16(3), 037003 (2011).
[Crossref] [PubMed]

Holtom, G.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[Crossref] [PubMed]

Holtom, G. R.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Hood, T.

D. Fu, J. Zhou, W. S. Zhu, P. W. Manley, Y. K. Wang, T. Hood, A. Wylie, and X. S. Xie, “Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering,” Nat. Chem. 6(7), 614–622 (2014).
[Crossref] [PubMed]

Huang, Z.

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Y. So, and Z. Huang, “Characterizing variability in in vivo Raman spectra of different anatomical locations in the upper gastrointestinal tract toward cancer detection,” J. Biomed. Opt. 16(3), 037003 (2011).
[Crossref] [PubMed]

Hunger, M.

J. R. Morell, M. Gingerich, G. Wolter, J. Jiao, M. Hunger, P. J. Klar, and M. Frba, “Synthesis and characterization of highly ordered bifunctional aromatic periodic mesoporous organosilicas with different pore sizes,” J. Mater. Chem. 16, 2809–2810 (2006).

Itoh, K.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 1–7 (2012).
[Crossref]

Izatt, J. A.

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[Crossref] [PubMed]

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, “Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy,” J. Biomed. Opt. 11(2), 024014 (2006).
[Crossref] [PubMed]

Jacob, D.

Jennings, M.

M. Romeo, B. Mohlenhoff, M. Jennings, and M. Diem, “Infrared micro-spectroscopic studies of epithelial cells,” Biochim. Biophys. Acta 1758(7), 915–922 (2006).
[Crossref] [PubMed]

Ji, M.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Transl. Med. 5(201), 201ra119 (2013).
[Crossref] [PubMed]

Jiang, Z.

P. D. Chowdary, Z. Jiang, E. J. Chaney, W. A. Benalcazar, D. L. Marks, M. Gruebele, and S. A. Boppart, “Molecular histopathology by spectrally reconstructed nonlinear interferometric vibrational imaging,” Cancer Res. 70(23), 9562–9569 (2010).
[Crossref] [PubMed]

P. D. Chowdary, W. A. Benalcazar, Z. Jiang, D. M. Marks, S. A. Boppart, and M. Gruebele, “High speed nonlinear interferometric vibrational analysis of lipids by spectral decomposition,” Anal. Chem. 82(9), 3812–3818 (2010).
[Crossref] [PubMed]

Jiao, J.

J. R. Morell, M. Gingerich, G. Wolter, J. Jiao, M. Hunger, P. J. Klar, and M. Frba, “Synthesis and characterization of highly ordered bifunctional aromatic periodic mesoporous organosilicas with different pore sizes,” J. Mater. Chem. 16, 2809–2810 (2006).

Jovin, T. M.

G. J. Puppels, F. F. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347(6290), 301–303 (1990).
[Crossref] [PubMed]

Jung, J.

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Kim, K.

Kim, W.

Klar, P. J.

J. R. Morell, M. Gingerich, G. Wolter, J. Jiao, M. Hunger, P. J. Klar, and M. Frba, “Synthesis and characterization of highly ordered bifunctional aromatic periodic mesoporous organosilicas with different pore sizes,” J. Mater. Chem. 16, 2809–2810 (2006).

Kobayashi, T.

K. Seto, Y. Okuda, E. Tokunaga, and T. Kobayashi, “Development of a multiplex stimulated Raman microscope for spectral imaging through multi-channel lock-in detection,” Rev. Sci. Instrum. 84(8), 083705 (2013).
[Crossref] [PubMed]

Laimgruber, S.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

Lasch, P.

M. Diem, M. Romeo, C. Matthäus, M. Miljkovic, L. Miller, and P. Lasch, “Comparison of Fourier transform infrared (FTIR) spectra of individual cells acquired using synchrotron and conventional sources,” Infrared Phys. Technol. 45(5-6), 331–338 (2004).
[Crossref]

Lathia, J. D.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Lau, D.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Transl. Med. 5(201), 201ra119 (2013).
[Crossref] [PubMed]

Lee, K.

Lee, S.

Lee, S.-Y.

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265–e269 (2015).
[Crossref] [PubMed]

Lee, Y. J.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Li, J.

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265–e269 (2015).
[Crossref] [PubMed]

Liao, C.-S.

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265–e269 (2015).
[Crossref] [PubMed]

Ligon, K. L.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Transl. Med. 5(201), 201ra119 (2013).
[Crossref] [PubMed]

Lin, K.

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Y. So, and Z. Huang, “Characterizing variability in in vivo Raman spectra of different anatomical locations in the upper gastrointestinal tract toward cancer detection,” J. Biomed. Opt. 16(3), 037003 (2011).
[Crossref] [PubMed]

Liu, X.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Transl. Med. 5(201), 201ra119 (2013).
[Crossref] [PubMed]

Lu, F.-K.

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[Crossref] [PubMed]

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Manley, P. W.

D. Fu, J. Zhou, W. S. Zhu, P. W. Manley, Y. K. Wang, T. Hood, A. Wylie, and X. S. Xie, “Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering,” Nat. Chem. 6(7), 614–622 (2014).
[Crossref] [PubMed]

Marks, D. L.

P. D. Chowdary, Z. Jiang, E. J. Chaney, W. A. Benalcazar, D. L. Marks, M. Gruebele, and S. A. Boppart, “Molecular histopathology by spectrally reconstructed nonlinear interferometric vibrational imaging,” Cancer Res. 70(23), 9562–9569 (2010).
[Crossref] [PubMed]

Marks, D. M.

P. D. Chowdary, W. A. Benalcazar, Z. Jiang, D. M. Marks, S. A. Boppart, and M. Gruebele, “High speed nonlinear interferometric vibrational analysis of lipids by spectral decomposition,” Anal. Chem. 82(9), 3812–3818 (2010).
[Crossref] [PubMed]

Matthäus, C.

M. Diem, M. Romeo, C. Matthäus, M. Miljkovic, L. Miller, and P. Lasch, “Comparison of Fourier transform infrared (FTIR) spectra of individual cells acquired using synchrotron and conventional sources,” Infrared Phys. Technol. 45(5-6), 331–338 (2004).
[Crossref]

Matthews, T. E.

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
[Crossref] [PubMed]

Meiri, A.

Meyer, T. A.

Miljkovic, M.

M. Diem, M. Romeo, C. Matthäus, M. Miljkovic, L. Miller, and P. Lasch, “Comparison of Fourier transform infrared (FTIR) spectra of individual cells acquired using synchrotron and conventional sources,” Infrared Phys. Technol. 45(5-6), 331–338 (2004).
[Crossref]

Miller, L.

M. Diem, M. Romeo, C. Matthäus, M. Miljkovic, L. Miller, and P. Lasch, “Comparison of Fourier transform infrared (FTIR) spectra of individual cells acquired using synchrotron and conventional sources,” Infrared Phys. Technol. 45(5-6), 331–338 (2004).
[Crossref]

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Mohlenhoff, B.

M. Romeo, B. Mohlenhoff, M. Jennings, and M. Diem, “Infrared micro-spectroscopic studies of epithelial cells,” Biochim. Biophys. Acta 1758(7), 915–922 (2006).
[Crossref] [PubMed]

Morell, J. R.

J. R. Morell, M. Gingerich, G. Wolter, J. Jiao, M. Hunger, P. J. Klar, and M. Frba, “Synthesis and characterization of highly ordered bifunctional aromatic periodic mesoporous organosilicas with different pore sizes,” J. Mater. Chem. 16, 2809–2810 (2006).

Nahm, S.

Nielsen, O. F.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122(2), 443–449 (2004).
[Crossref] [PubMed]

Nishizawa, N.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 1–7 (2012).
[Crossref]

Norton, I.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Transl. Med. 5(201), 201ra119 (2013).
[Crossref] [PubMed]

Ogilvie, J. P.

Oglesbee, R. A.

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265–e269 (2015).
[Crossref] [PubMed]

Okuda, Y.

K. Seto, Y. Okuda, E. Tokunaga, and T. Kobayashi, “Development of a multiplex stimulated Raman microscope for spectral imaging through multi-channel lock-in detection,” Rev. Sci. Instrum. 84(8), 083705 (2013).
[Crossref] [PubMed]

Orringer, D. A.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Transl. Med. 5(201), 201ra119 (2013).
[Crossref] [PubMed]

Otsuka, Y.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 1–7 (2012).
[Crossref]

Otto, C.

G. J. Puppels, F. F. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347(6290), 301–303 (1990).
[Crossref] [PubMed]

Ozeki, Y.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 1–7 (2012).
[Crossref]

Park, H.

Park, Y.

Patil, C. A.

Peled, A.

N. A. Turko, A. Peled, and N. T. Shaked, “Wide-field interferometric phase microscopy with molecular specificity using plasmonic nanoparticles,” J. Biomed. Opt. 18(11), 111414 (2013).
[Crossref] [PubMed]

Pernik, D. R.

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[Crossref] [PubMed]

Philipsen, P. A.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122(2), 443–449 (2004).
[Crossref] [PubMed]

Ploetz, E.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

Puppels, G. J.

G. J. Puppels, F. F. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347(6290), 301–303 (1990).
[Crossref] [PubMed]

Ramkissoon, S.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Transl. Med. 5(201), 201ra119 (2013).
[Crossref] [PubMed]

Reichman, J.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

Rich, J. N.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Rinehart, M.

Rinehart, M. T.

Robert-Nicoud, M.

G. J. Puppels, F. F. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347(6290), 301–303 (1990).
[Crossref] [PubMed]

Robles, F.

Robles, F. E.

Romeo, M.

M. Romeo, B. Mohlenhoff, M. Jennings, and M. Diem, “Infrared micro-spectroscopic studies of epithelial cells,” Biochim. Biophys. Acta 1758(7), 915–922 (2006).
[Crossref] [PubMed]

M. Diem, M. Romeo, C. Matthäus, M. Miljkovic, L. Miller, and P. Lasch, “Comparison of Fourier transform infrared (FTIR) spectra of individual cells acquired using synchrotron and conventional sources,” Infrared Phys. Technol. 45(5-6), 331–338 (2004).
[Crossref]

Rossen, K.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122(2), 443–449 (2004).
[Crossref] [PubMed]

Saar, B. G.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Sagher, O.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Transl. Med. 5(201), 201ra119 (2013).
[Crossref] [PubMed]

Samineni, P.

Santagata, S.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Transl. Med. 5(201), 201ra119 (2013).
[Crossref] [PubMed]

Satoh, S.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 1–7 (2012).
[Crossref]

Satterwhite, L. L.

Seto, K.

K. Seto, Y. Okuda, E. Tokunaga, and T. Kobayashi, “Development of a multiplex stimulated Raman microscope for spectral imaging through multi-channel lock-in detection,” Rev. Sci. Instrum. 84(8), 083705 (2013).
[Crossref] [PubMed]

Shaked, N. T.

N. A. Turko, A. Peled, and N. T. Shaked, “Wide-field interferometric phase microscopy with molecular specificity using plasmonic nanoparticles,” J. Biomed. Opt. 18(11), 111414 (2013).
[Crossref] [PubMed]

N. T. Shaked, Y. Zhu, M. T. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells,” Opt. Express 17(18), 15585–15591 (2009).
[Crossref] [PubMed]

Sheinfeld, A.

Shelton, R. L.

Sigurdsson, S.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122(2), 443–449 (2004).
[Crossref] [PubMed]

Skala, M. C.

J. M. Tucker-Schwartz, T. A. Meyer, C. A. Patil, C. L. Duvall, and M. C. Skala, “In vivo photothermal optical coherence tomography of gold nanorod contrast agents,” Biomed. Opt. Express 3(11), 2881–2895 (2012).
[Crossref] [PubMed]

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[Crossref] [PubMed]

Slipchenko, M. N.

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265–e269 (2015).
[Crossref] [PubMed]

So, J. B. Y.

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Y. So, and Z. Huang, “Characterizing variability in in vivo Raman spectra of different anatomical locations in the upper gastrointestinal tract toward cancer detection,” J. Biomed. Opt. 16(3), 037003 (2011).
[Crossref] [PubMed]

Spino, C.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Transl. Med. 5(201), 201ra119 (2013).
[Crossref] [PubMed]

Stanley, C. M.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

Sumimura, K.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 1–7 (2012).
[Crossref]

Teh, M.

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Y. So, and Z. Huang, “Characterizing variability in in vivo Raman spectra of different anatomical locations in the upper gastrointestinal tract toward cancer detection,” J. Biomed. Opt. 16(3), 037003 (2011).
[Crossref] [PubMed]

Thomsen, H. K.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122(2), 443–449 (2004).
[Crossref] [PubMed]

Tokunaga, E.

K. Seto, Y. Okuda, E. Tokunaga, and T. Kobayashi, “Development of a multiplex stimulated Raman microscope for spectral imaging through multi-channel lock-in detection,” Rev. Sci. Instrum. 84(8), 083705 (2013).
[Crossref] [PubMed]

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Tsai, T.-H.

D. Fu, Y. Yu, A. Folick, E. Currie, R. V. Farese, T.-H. Tsai, X. S. Xie, and M. C. Wang, “In vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 136(24), 8820–8828 (2014).
[Crossref] [PubMed]

Tucker-Schwartz, J. M.

Turko, N. A.

N. A. Turko, A. Peled, and N. T. Shaked, “Wide-field interferometric phase microscopy with molecular specificity using plasmonic nanoparticles,” J. Biomed. Opt. 18(11), 111414 (2013).
[Crossref] [PubMed]

Umemura, W.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 1–7 (2012).
[Crossref]

Walker, A. R. H.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Wang, M. C.

D. Fu, Y. Yu, A. Folick, E. Currie, R. V. Farese, T.-H. Tsai, X. S. Xie, and M. C. Wang, “In vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 136(24), 8820–8828 (2014).
[Crossref] [PubMed]

Wang, P.

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265–e269 (2015).
[Crossref] [PubMed]

Wang, Y. K.

D. Fu, J. Zhou, W. S. Zhu, P. W. Manley, Y. K. Wang, T. Hood, A. Wylie, and X. S. Xie, “Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering,” Nat. Chem. 6(7), 614–622 (2014).
[Crossref] [PubMed]

Warren, W. S.

Wax, A.

W. J. Eldridge, A. Meiri, A. Sheinfeld, M. T. Rinehart, and A. Wax, “Fast wide-field photothermal and quantitative phase cell imaging with optical lock-in detection,” Biomed. Opt. Express 5(8), 2517–2525 (2014).
[Crossref] [PubMed]

M. Rinehart, Y. Zhu, and A. Wax, “Quantitative phase spectroscopy,” Biomed. Opt. Express 3(5), 958–965 (2012).
[Crossref] [PubMed]

F. E. Robles, L. L. Satterwhite, and A. Wax, “Nonlinear phase dispersion spectroscopy,” Opt. Lett. 36(23), 4665–4667 (2011).
[Crossref] [PubMed]

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

F. E. Robles and A. Wax, “Separating the scattering and absorption coefficients using the real and imaginary parts of the refractive index with low-coherence interferometry,” Opt. Lett. 35(17), 2843–2845 (2010).
[Crossref] [PubMed]

N. T. Shaked, Y. Zhu, M. T. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells,” Opt. Express 17(18), 15585–15591 (2009).
[Crossref] [PubMed]

F. Robles, R. N. Graf, and A. Wax, “Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,” Opt. Express 17(8), 6799–6812 (2009).
[Crossref] [PubMed]

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[Crossref] [PubMed]

Wessel, S.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122(2), 443–449 (2004).
[Crossref] [PubMed]

Wilson, C.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

Wilson, J. W.

Wolter, G.

J. R. Morell, M. Gingerich, G. Wolter, J. Jiao, M. Hunger, P. J. Klar, and M. Frba, “Synthesis and characterization of highly ordered bifunctional aromatic periodic mesoporous organosilicas with different pore sizes,” J. Mater. Chem. 16, 2809–2810 (2006).

Wulf, H. C.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122(2), 443–449 (2004).
[Crossref] [PubMed]

Wylie, A.

D. Fu, J. Zhou, W. S. Zhu, P. W. Manley, Y. K. Wang, T. Hood, A. Wylie, and X. S. Xie, “Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering,” Nat. Chem. 6(7), 614–622 (2014).
[Crossref] [PubMed]

Xie, X. S.

D. Fu, J. Zhou, W. S. Zhu, P. W. Manley, Y. K. Wang, T. Hood, A. Wylie, and X. S. Xie, “Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering,” Nat. Chem. 6(7), 614–622 (2014).
[Crossref] [PubMed]

D. Fu, Y. Yu, A. Folick, E. Currie, R. V. Farese, T.-H. Tsai, X. S. Xie, and M. C. Wang, “In vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 136(24), 8820–8828 (2014).
[Crossref] [PubMed]

D. Fu and X. S. Xie, “Reliable cell segmentation based on spectral phasor analysis of hyperspectral stimulated Raman scattering imaging data,” Anal. Chem. 86(9), 4115–4119 (2014).
[Crossref] [PubMed]

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Transl. Med. 5(201), 201ra119 (2013).
[Crossref] [PubMed]

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[Crossref] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 883–909 (2008).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Yamauchi, T.

Yazdanfar, S.

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, “Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy,” J. Biomed. Opt. 11(2), 024014 (2006).
[Crossref] [PubMed]

Ye, T.

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
[Crossref] [PubMed]

Yeoh, K. G.

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Y. So, and Z. Huang, “Characterizing variability in in vivo Raman spectra of different anatomical locations in the upper gastrointestinal tract toward cancer detection,” J. Biomed. Opt. 16(3), 037003 (2011).
[Crossref] [PubMed]

Young, G. S.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Transl. Med. 5(201), 201ra119 (2013).
[Crossref] [PubMed]

Yu, H.

Yu, Y.

D. Fu, Y. Yu, A. Folick, E. Currie, R. V. Farese, T.-H. Tsai, X. S. Xie, and M. C. Wang, “In vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 136(24), 8820–8828 (2014).
[Crossref] [PubMed]

Yurtsever, G.

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
[Crossref] [PubMed]

Zhang, X.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[Crossref] [PubMed]

Zheng, W.

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Y. So, and Z. Huang, “Characterizing variability in in vivo Raman spectra of different anatomical locations in the upper gastrointestinal tract toward cancer detection,” J. Biomed. Opt. 16(3), 037003 (2011).
[Crossref] [PubMed]

Zhou, J.

D. Fu, J. Zhou, W. S. Zhu, P. W. Manley, Y. K. Wang, T. Hood, A. Wylie, and X. S. Xie, “Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering,” Nat. Chem. 6(7), 614–622 (2014).
[Crossref] [PubMed]

Zhu, W. S.

D. Fu, J. Zhou, W. S. Zhu, P. W. Manley, Y. K. Wang, T. Hood, A. Wylie, and X. S. Xie, “Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering,” Nat. Chem. 6(7), 614–622 (2014).
[Crossref] [PubMed]

Zhu, Y.

Zinth, W.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Anal. Chem. (2)

P. D. Chowdary, W. A. Benalcazar, Z. Jiang, D. M. Marks, S. A. Boppart, and M. Gruebele, “High speed nonlinear interferometric vibrational analysis of lipids by spectral decomposition,” Anal. Chem. 82(9), 3812–3818 (2010).
[Crossref] [PubMed]

D. Fu and X. S. Xie, “Reliable cell segmentation based on spectral phasor analysis of hyperspectral stimulated Raman scattering imaging data,” Anal. Chem. 86(9), 4115–4119 (2014).
[Crossref] [PubMed]

Annu. Rev. Anal. Chem. (Palo Alto, Calif.) (1)

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 883–909 (2008).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

Appl. Spectrosc. (1)

M. Diem, S. Boydston-White, and L. Chiriboga, “Infrared spectroscopy of cells and tissues: shining light onto a novel subject,” Appl. Spectrosc. 53(4), 148–161 (1999).
[Crossref]

Biochim. Biophys. Acta (1)

M. Romeo, B. Mohlenhoff, M. Jennings, and M. Diem, “Infrared micro-spectroscopic studies of epithelial cells,” Biochim. Biophys. Acta 1758(7), 915–922 (2006).
[Crossref] [PubMed]

Biomed. Opt. Express (3)

Cancer Res. (1)

P. D. Chowdary, Z. Jiang, E. J. Chaney, W. A. Benalcazar, D. L. Marks, M. Gruebele, and S. A. Boppart, “Molecular histopathology by spectrally reconstructed nonlinear interferometric vibrational imaging,” Cancer Res. 70(23), 9562–9569 (2010).
[Crossref] [PubMed]

Infrared Phys. Technol. (1)

M. Diem, M. Romeo, C. Matthäus, M. Miljkovic, L. Miller, and P. Lasch, “Comparison of Fourier transform infrared (FTIR) spectra of individual cells acquired using synchrotron and conventional sources,” Infrared Phys. Technol. 45(5-6), 331–338 (2004).
[Crossref]

J. Am. Chem. Soc. (2)

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[Crossref] [PubMed]

D. Fu, Y. Yu, A. Folick, E. Currie, R. V. Farese, T.-H. Tsai, X. S. Xie, and M. C. Wang, “In vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 136(24), 8820–8828 (2014).
[Crossref] [PubMed]

J. Biomed. Opt. (4)

N. A. Turko, A. Peled, and N. T. Shaked, “Wide-field interferometric phase microscopy with molecular specificity using plasmonic nanoparticles,” J. Biomed. Opt. 18(11), 111414 (2013).
[Crossref] [PubMed]

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, “Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy,” J. Biomed. Opt. 11(2), 024014 (2006).
[Crossref] [PubMed]

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Y. So, and Z. Huang, “Characterizing variability in in vivo Raman spectra of different anatomical locations in the upper gastrointestinal tract toward cancer detection,” J. Biomed. Opt. 16(3), 037003 (2011).
[Crossref] [PubMed]

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
[Crossref] [PubMed]

J. Invest. Dermatol. (1)

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122(2), 443–449 (2004).
[Crossref] [PubMed]

J. Mater. Chem. (1)

J. R. Morell, M. Gingerich, G. Wolter, J. Jiao, M. Hunger, P. J. Klar, and M. Frba, “Synthesis and characterization of highly ordered bifunctional aromatic periodic mesoporous organosilicas with different pore sizes,” J. Mater. Chem. 16, 2809–2810 (2006).

J. Opt. Soc. Am. (1)

J. Phys. Chem. B (1)

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

Light Sci. Appl. (1)

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265–e269 (2015).
[Crossref] [PubMed]

Nano Lett. (1)

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[Crossref] [PubMed]

Nat. Chem. (1)

D. Fu, J. Zhou, W. S. Zhu, P. W. Manley, Y. K. Wang, T. Hood, A. Wylie, and X. S. Xie, “Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering,” Nat. Chem. 6(7), 614–622 (2014).
[Crossref] [PubMed]

Nat. Photonics (4)

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 1–7 (2012).
[Crossref]

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9, 295-305 (2015).

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Nature (1)

G. J. Puppels, F. F. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347(6290), 301–303 (1990).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (6)

Phys. Rev. Lett. (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Rev. Sci. Instrum. (1)

K. Seto, Y. Okuda, E. Tokunaga, and T. Kobayashi, “Development of a multiplex stimulated Raman microscope for spectral imaging through multi-channel lock-in detection,” Rev. Sci. Instrum. 84(8), 083705 (2013).
[Crossref] [PubMed]

Sci. Transl. Med. (1)

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Transl. Med. 5(201), 201ra119 (2013).
[Crossref] [PubMed]

Science (2)

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Other (1)

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) SRS energy diagram with two fields tuned to a material’s vibrational resonance at a frequency Ω0. (b) Stimulated Raman interaction between a broadband (probe) pulse and a pump result in amplifications (Stokes side) and loss (anti-Stokes side) of the probe. The material’s complex third-order nonlinear susceptibility is also plotted.

Fig. 2
Fig. 2

Experimental system. A 4-f femtosecond pulse-shaper is used to generate two identical pulses (probe and reference) separated by time T. SP: spectrometer, AOM: acousto-optic modulator, RF: radio frequency.

Fig. 3
Fig. 3

Signal processing and representative data. The interferometric signal [black line in (a)] is Fourier transformed (b). The time-domain peak is filtered, shifted back to DC, and transformed back to the Fourier domain. This process gives both the amplitude and phase [red and blue lines, respectively, in (a)]. (c) The process is repeated with and without the pump, and the changes reveal the material’s nonlinear properties. (d) The conventional SRS (Raman) spectrum is obtained by normalizing by the source’s power spectral density. (e) The dispersive properties are obtained by dividing by ω/c. The plots (d-e) show three different probe powers, with the pump set to 50 µW. The error (gray area) is determined from the standard deviation of 10 measurements. Inset in (e) shows the modeled dispersion obtained by first modeling the attenuation using two Gaussian curves centered at −2922 cm−1 and −2885 cm−1, as shown in the inset in (d), and then applying a subtractive Kramers-Kronig relation.

Fig. 4
Fig. 4

(a) Signal, (b) noise (assessed from 10 independent measurements), and (c) SNR scaling with varying probe power for both the phase and amplitude measurements using olive oil as the sample.

Fig. 5
Fig. 5

(a) Signal, (b) noise (assessed from 10 independent measurements), and (c) SNR scaling with varying average pump power for both the phase and amplitude measurements using benzene as the sample. (d) Experimental and (e) modeled attenuation and dispersion spectra. The error (gray area) is determined from the standard deviation of 10 measurements.

Fig. 6
Fig. 6

(a) Noise power spectrum (NPS) of the amplitude at two wavelengths (blue and red lines). The yellow line is the NPS of the ratio of the normalized signals. A similar NPS is obtained from the difference of the two signals. Inset shows the measured signals (blue and red) and their ratio (yellow). (b) NPS of phase at two wavelengths (blue and red lines). The yellow line is the NPS of the differences between the two signals. Note that this removes all noise components. Inset shows the measured signals (blue and red) and the difference (yellow).

Fig. 7
Fig. 7

Broadband dispersion-based SRS imaging. (a) Transmission image of a thin sample composed of oil and water, pressed between two coverslips. (b) SRS molecular image based on nonlinear amplitude changes computed by projecting the spectrum in each spatial pixel of the image onto the average olive oil SRS spectrum. (c) Average SRS spectrum from the boxed two regions in (a). (d) SRS molecular image based on nonlinear dispersion. (e) Nonlinear dispersions image scaled by the signal intensity, which rejects noise caused by low intensity signals. (f) Average SRS dispersion spectrum from the boxed two regions in (a).

Fig. 8
Fig. 8

SRS molecular OCT imaging. (a) Images of 3µm polystyrene beads and (b) freshly excised human adipose tissue from the abdomen taken with the pump and probe beams temporally overlapped (τ = 0) and with a 2ps time delay. The SNR scale ranges from 0 to 83dB for (a) and from 0 to 78dB for (b) using the standard OCT definition [SNR = 20log(Signal/Noise)].

Fig. 9
Fig. 9

Representation of the phase sensitivity, δϕ, given by the average angle spanned by the complex signal, I ˜ i n t ,and orthogonal noise components, σshot sinrand). Adapted from [46].

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E p r ( ω ) = E 0 ( ω ) e i ñ N L ( ω ) ω 2 z r / c
ñ N L ( ω ) = 3 4 n 0 2 ε 0 c χ ( 3 ) ( Ω ) I p u
I ˜ int ( ω ) = | E 0 ( ω ) | 2 e i ω T × e C 0 2 ω Im { χ ( 3 ) ( Ω ) } I p u × e i C 0 ω Re { χ ( 3 ) ( Ω ) } I p u
Δ | I ˜ int ( ω ) | = I 0 ( ω ) I 0 ( ω ) e C 0 2 ω Im { χ ( 3 ) } I p u
Δ | I ˜ int ( ω ) | = I 0 ( ω ) ( 1 e 1 2 α z r )
Δ | I ˜ int ( ω ) | = 1 2 I 0 ( ω ) α z r = 3 ω z r 4 n 0 2 c 2 ε 0 Im { χ ( 3 ) ( Ω ) } I p u I 0 ( ω ) .
Δ I ˜ int ( ω ) = C 0 ω Re { χ ( 3 ) ( Ω ) } I p u = 3 ω z r 2 n 0 2 c 2 ε 0 Re { χ ( 3 ) ( Ω ) } I p u
χ ( 3 ) ( Ω ) = χ 0 ( 3 ) Ω 0 2 Ω 0 2 Ω 2 + i Ω Δ Ω .
δ ϕ = 2 π 0 π / 2 tan 1 ( σ n o i s e sin ϕ r a n d | I ˜ int | ) d ϕ r a n d = 2 π 1 I 0
S N R a m p = Δ | I ˜ int | σ s h o t ~ C 0 ω χ 0 ( 3 ) Ω 0 I p u I 0 2 Δ Ω
S N R p h a s e = Δ I ˜ int δ ϕ ~ π C 0 ω χ 0 ( 3 ) Ω 0 I p u I 0 4 Δ Ω

Metrics