Abstract

An ultrathin plasmonic random laser is fabricated by a simple lift off process, which consists of a free-standing polymer membrane embedded with silver nanoparticles. Low threshold random lasing is observed when the 200-nm-thick membrane device is optically pumped, due to the strong plasmonic feedback and high-quality waveguide confinement provided by the silver nanoparticles and the polymer membrane, respectively. The free-standing polymer membrane is very flexible and transplantable, which can be attached to an optical fiber end face to achieve random lasing. This fabrication technique provides a promising way to realize plasmonic random lasing on surfaces with arbitrary shapes.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Red-green-blue plasmonic random laser

Tianrui Zhai, Zhiyang Xu, Songtao Li, and Xinping Zhang
Opt. Express 25(3) 2100-2106 (2017)

Plasmonic random lasing in polymer fiber

Songtao Li, Li Wang, Tianrui Zhai, Li Chen, Meng Wang, Yimeng Wang, Fei Tong, Yonglu Wang, and Xinping Zhang
Opt. Express 24(12) 12748-12754 (2016)

Plasmonic random laser on the fiber facet

Songtao Li, Li Wang, Tianrui Zhai, Zhiyang Xu, Yonglu Wang, Jieyu Wang, and Xinping Zhang
Opt. Express 23(18) 23985-23991 (2015)

References

  • View by:
  • |
  • |
  • |

  1. T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett. 85(18), 3968 (2004).
    [Crossref]
  2. O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
    [Crossref]
  3. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [Crossref] [PubMed]
  4. E. Heydari, R. Flehr, and J. Stumpe, “Influence of spacer layer on enhancement of nanoplasmon-assisted random lasing,” Appl. Phys. Lett. 102(13), 133110 (2013).
    [Crossref]
  5. Q. Qiao, C. X. Shan, J. Zheng, H. Zhu, S. F. Yu, B. H. Li, Y. Jia, and D. Z. Shen, “Surface plasmon enhanced electrically pumped random lasers,” Nanoscale 5(2), 513–517 (2013).
    [Crossref] [PubMed]
  6. Y. Wang, X. Shi, Y. Sun, R. Zheng, S. Wei, J. Shi, Z. Wang, and D. Liu, “Cascade-pumped random lasers with coherent emission formed by Ag-Au porous nanowires,” Opt. Lett. 39(1), 5–8 (2014).
    [Crossref] [PubMed]
  7. L. Cui, J. Shi, Y. Wang, R. Zheng, X. Chen, W. Gong, and D. Liu, “Retrieval of contaminated information using random lasers,” Appl. Phys. Lett. 106(20), 201101 (2015).
    [Crossref]
  8. T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
    [Crossref] [PubMed]
  9. G. Dice, S. Mujumdar, and A. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
    [Crossref]
  10. O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: Enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
    [Crossref]
  11. X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
    [Crossref]
  12. X. Shi, Y. Wang, Z. Wang, Y. Sun, D. Liu, Y. Zhang, Q. Li, and J. Shi, “High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires,” Appl. Phys. Lett. 103(2), 023504 (2013).
    [Crossref]
  13. X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
    [Crossref] [PubMed]
  14. X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2(1), 88–93 (2014).
    [Crossref]
  15. T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
    [Crossref] [PubMed]
  16. C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
    [Crossref] [PubMed]
  17. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
    [Crossref]
  18. W. L. Zhang, Y. Y. Zhu, Y. J. Rao, Z. N. Wang, X. H. Jia, and H. Wu, “Random fiber laser formed by mixing dispersion compensated fiber and single mode fiber,” Opt. Express 21(7), 8544–8549 (2013).
    [Crossref] [PubMed]
  19. S. Turitsyn, S. Babin, D. Churkin, I. Vatnik, M. Nikulin, and E. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
    [Crossref]
  20. S. Li, L. Wang, T. Zhai, Z. Xu, Y. Wang, J. Wang, and X. Zhang, “Plasmonic random laser on the fiber facet,” Opt. Express 23(18), 23985–23991 (2015).
    [Crossref] [PubMed]
  21. B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
    [Crossref] [PubMed]
  22. N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10(6), 426–431 (2014).
    [Crossref]
  23. T.-Y. Dong, W.-T. Chen, C.-W. Wang, C.-P. Chen, C.-N. Chen, M.-C. Lin, J.-M. Song, I.-G. Chen, and T.-H. Kao, “One-step synthesis of uniform silver nanoparticles capped by saturated decanoate: direct spray printing ink to form metallic silver films,” Phys. Chem. Chem. Phys. 11(29), 6269–6275 (2009).
    [Crossref] [PubMed]
  24. H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
    [Crossref]
  25. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]

2015 (3)

L. Cui, J. Shi, Y. Wang, R. Zheng, X. Chen, W. Gong, and D. Liu, “Retrieval of contaminated information using random lasers,” Appl. Phys. Lett. 106(20), 201101 (2015).
[Crossref]

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

S. Li, L. Wang, T. Zhai, Z. Xu, Y. Wang, J. Wang, and X. Zhang, “Plasmonic random laser on the fiber facet,” Opt. Express 23(18), 23985–23991 (2015).
[Crossref] [PubMed]

2014 (4)

S. Turitsyn, S. Babin, D. Churkin, I. Vatnik, M. Nikulin, and E. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
[Crossref]

N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10(6), 426–431 (2014).
[Crossref]

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2(1), 88–93 (2014).
[Crossref]

Y. Wang, X. Shi, Y. Sun, R. Zheng, S. Wei, J. Shi, Z. Wang, and D. Liu, “Cascade-pumped random lasers with coherent emission formed by Ag-Au porous nanowires,” Opt. Lett. 39(1), 5–8 (2014).
[Crossref] [PubMed]

2013 (4)

E. Heydari, R. Flehr, and J. Stumpe, “Influence of spacer layer on enhancement of nanoplasmon-assisted random lasing,” Appl. Phys. Lett. 102(13), 133110 (2013).
[Crossref]

Q. Qiao, C. X. Shan, J. Zheng, H. Zhu, S. F. Yu, B. H. Li, Y. Jia, and D. Z. Shen, “Surface plasmon enhanced electrically pumped random lasers,” Nanoscale 5(2), 513–517 (2013).
[Crossref] [PubMed]

X. Shi, Y. Wang, Z. Wang, Y. Sun, D. Liu, Y. Zhang, Q. Li, and J. Shi, “High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires,” Appl. Phys. Lett. 103(2), 023504 (2013).
[Crossref]

W. L. Zhang, Y. Y. Zhu, Y. J. Rao, Z. N. Wang, X. H. Jia, and H. Wu, “Random fiber laser formed by mixing dispersion compensated fiber and single mode fiber,” Opt. Express 21(7), 8544–8549 (2013).
[Crossref] [PubMed]

2012 (1)

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

2011 (2)

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

2010 (1)

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

2009 (2)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

T.-Y. Dong, W.-T. Chen, C.-W. Wang, C.-P. Chen, C.-N. Chen, M.-C. Lin, J.-M. Song, I.-G. Chen, and T.-H. Kao, “One-step synthesis of uniform silver nanoparticles capped by saturated decanoate: direct spray printing ink to form metallic silver films,” Phys. Chem. Chem. Phys. 11(29), 6269–6275 (2009).
[Crossref] [PubMed]

2008 (1)

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

2007 (1)

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

2006 (2)

O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: Enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

2005 (1)

G. Dice, S. Mujumdar, and A. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
[Crossref]

2004 (1)

T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett. 85(18), 3968 (2004).
[Crossref]

1999 (1)

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Ania-Castanon, J. D.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Babin, S.

S. Turitsyn, S. Babin, D. Churkin, I. Vatnik, M. Nikulin, and E. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
[Crossref]

Babin, S. A.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Bachelard, N.

N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10(6), 426–431 (2014).
[Crossref]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Brito-Silva, A. M.

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

Cao, H.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Chang, R.

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Chen, C.-N.

T.-Y. Dong, W.-T. Chen, C.-W. Wang, C.-P. Chen, C.-N. Chen, M.-C. Lin, J.-M. Song, I.-G. Chen, and T.-H. Kao, “One-step synthesis of uniform silver nanoparticles capped by saturated decanoate: direct spray printing ink to form metallic silver films,” Phys. Chem. Chem. Phys. 11(29), 6269–6275 (2009).
[Crossref] [PubMed]

Chen, C.-P.

T.-Y. Dong, W.-T. Chen, C.-W. Wang, C.-P. Chen, C.-N. Chen, M.-C. Lin, J.-M. Song, I.-G. Chen, and T.-H. Kao, “One-step synthesis of uniform silver nanoparticles capped by saturated decanoate: direct spray printing ink to form metallic silver films,” Phys. Chem. Chem. Phys. 11(29), 6269–6275 (2009).
[Crossref] [PubMed]

Chen, I.-G.

T.-Y. Dong, W.-T. Chen, C.-W. Wang, C.-P. Chen, C.-N. Chen, M.-C. Lin, J.-M. Song, I.-G. Chen, and T.-H. Kao, “One-step synthesis of uniform silver nanoparticles capped by saturated decanoate: direct spray printing ink to form metallic silver films,” Phys. Chem. Chem. Phys. 11(29), 6269–6275 (2009).
[Crossref] [PubMed]

Chen, J.

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

Chen, L.

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

Chen, W.-T.

T.-Y. Dong, W.-T. Chen, C.-W. Wang, C.-P. Chen, C.-N. Chen, M.-C. Lin, J.-M. Song, I.-G. Chen, and T.-H. Kao, “One-step synthesis of uniform silver nanoparticles capped by saturated decanoate: direct spray printing ink to form metallic silver films,” Phys. Chem. Chem. Phys. 11(29), 6269–6275 (2009).
[Crossref] [PubMed]

Chen, X.

L. Cui, J. Shi, Y. Wang, R. Zheng, X. Chen, W. Gong, and D. Liu, “Retrieval of contaminated information using random lasers,” Appl. Phys. Lett. 106(20), 201101 (2015).
[Crossref]

Choma, M. A.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Churkin, D.

S. Turitsyn, S. Babin, D. Churkin, I. Vatnik, M. Nikulin, and E. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
[Crossref]

Churkin, D. V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Cui, L.

L. Cui, J. Shi, Y. Wang, R. Zheng, X. Chen, W. Gong, and D. Liu, “Retrieval of contaminated information using random lasers,” Appl. Phys. Lett. 106(20), 201101 (2015).
[Crossref]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Davidov, D.

O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: Enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

de Araújo, C. B.

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

de Matos, C. J.

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

de S Menezes, L.

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

Dice, G.

G. Dice, S. Mujumdar, and A. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
[Crossref]

Dong, T.-Y.

T.-Y. Dong, W.-T. Chen, C.-W. Wang, C.-P. Chen, C.-N. Chen, M.-C. Lin, J.-M. Song, I.-G. Chen, and T.-H. Kao, “One-step synthesis of uniform silver nanoparticles capped by saturated decanoate: direct spray printing ink to form metallic silver films,” Phys. Chem. Chem. Phys. 11(29), 6269–6275 (2009).
[Crossref] [PubMed]

Elezzabi, A.

G. Dice, S. Mujumdar, and A. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
[Crossref]

El-Taher, A. E.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Feng, S.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Flehr, R.

E. Heydari, R. Flehr, and J. Stumpe, “Influence of spacer layer on enhancement of nanoplasmon-assisted random lasing,” Appl. Phys. Lett. 102(13), 133110 (2013).
[Crossref]

Fujita, K.

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

Gigan, S.

N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10(6), 426–431 (2014).
[Crossref]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Gomes, A. S.

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

Gong, W.

L. Cui, J. Shi, Y. Wang, R. Zheng, X. Chen, W. Gong, and D. Liu, “Retrieval of contaminated information using random lasers,” Appl. Phys. Lett. 106(20), 201101 (2015).
[Crossref]

H’Dhili, F.

T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett. 85(18), 3968 (2004).
[Crossref]

Harper, P.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Heydari, E.

E. Heydari, R. Flehr, and J. Stumpe, “Influence of spacer layer on enhancement of nanoplasmon-assisted random lasing,” Appl. Phys. Lett. 102(13), 133110 (2013).
[Crossref]

Ho, S.

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Jia, X. H.

Jia, Y.

Q. Qiao, C. X. Shan, J. Zheng, H. Zhu, S. F. Yu, B. H. Li, Y. Jia, and D. Z. Shen, “Surface plasmon enhanced electrically pumped random lasers,” Nanoscale 5(2), 513–517 (2013).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kablukov, S. I.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Kao, T.-H.

T.-Y. Dong, W.-T. Chen, C.-W. Wang, C.-P. Chen, C.-N. Chen, M.-C. Lin, J.-M. Song, I.-G. Chen, and T.-H. Kao, “One-step synthesis of uniform silver nanoparticles capped by saturated decanoate: direct spray printing ink to form metallic silver films,” Phys. Chem. Chem. Phys. 11(29), 6269–6275 (2009).
[Crossref] [PubMed]

Karalekas, V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Kawata, S.

T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett. 85(18), 3968 (2004).
[Crossref]

Li, B. H.

Q. Qiao, C. X. Shan, J. Zheng, H. Zhu, S. F. Yu, B. H. Li, Y. Jia, and D. Z. Shen, “Surface plasmon enhanced electrically pumped random lasers,” Nanoscale 5(2), 513–517 (2013).
[Crossref] [PubMed]

Li, Q.

X. Shi, Y. Wang, Z. Wang, Y. Sun, D. Liu, Y. Zhang, Q. Li, and J. Shi, “High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires,” Appl. Phys. Lett. 103(2), 023504 (2013).
[Crossref]

Li, S.

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

S. Li, L. Wang, T. Zhai, Z. Xu, Y. Wang, J. Wang, and X. Zhang, “Plasmonic random laser on the fiber facet,” Opt. Express 23(18), 23985–23991 (2015).
[Crossref] [PubMed]

Lin, M.-C.

T.-Y. Dong, W.-T. Chen, C.-W. Wang, C.-P. Chen, C.-N. Chen, M.-C. Lin, J.-M. Song, I.-G. Chen, and T.-H. Kao, “One-step synthesis of uniform silver nanoparticles capped by saturated decanoate: direct spray printing ink to form metallic silver films,” Phys. Chem. Chem. Phys. 11(29), 6269–6275 (2009).
[Crossref] [PubMed]

Liu, D.

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

L. Cui, J. Shi, Y. Wang, R. Zheng, X. Chen, W. Gong, and D. Liu, “Retrieval of contaminated information using random lasers,” Appl. Phys. Lett. 106(20), 201101 (2015).
[Crossref]

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2(1), 88–93 (2014).
[Crossref]

Y. Wang, X. Shi, Y. Sun, R. Zheng, S. Wei, J. Shi, Z. Wang, and D. Liu, “Cascade-pumped random lasers with coherent emission formed by Ag-Au porous nanowires,” Opt. Lett. 39(1), 5–8 (2014).
[Crossref] [PubMed]

X. Shi, Y. Wang, Z. Wang, Y. Sun, D. Liu, Y. Zhang, Q. Li, and J. Shi, “High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires,” Appl. Phys. Lett. 103(2), 023504 (2013).
[Crossref]

Liu, H.

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Ma, R. M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Martinez Gámez, M. A.

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

Matoba, T.

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

Meng, X.

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

Mujumdar, S.

G. Dice, S. Mujumdar, and A. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
[Crossref]

Murai, S.

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

Nikulin, M.

S. Turitsyn, S. Babin, D. Churkin, I. Vatnik, M. Nikulin, and E. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
[Crossref]

Noblin, X.

N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10(6), 426–431 (2014).
[Crossref]

Okamoto, T.

T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett. 85(18), 3968 (2004).
[Crossref]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Pang, Z.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Podivilov, E.

S. Turitsyn, S. Babin, D. Churkin, I. Vatnik, M. Nikulin, and E. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
[Crossref]

Podivilov, E. V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Popov, O.

O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: Enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

Qiao, Q.

Q. Qiao, C. X. Shan, J. Zheng, H. Zhu, S. F. Yu, B. H. Li, Y. Jia, and D. Z. Shen, “Surface plasmon enhanced electrically pumped random lasers,” Nanoscale 5(2), 513–517 (2013).
[Crossref] [PubMed]

Rao, Y. J.

Redding, B.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

Sebbah, P.

N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10(6), 426–431 (2014).
[Crossref]

Seelig, E.

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Shan, C. X.

Q. Qiao, C. X. Shan, J. Zheng, H. Zhu, S. F. Yu, B. H. Li, Y. Jia, and D. Z. Shen, “Surface plasmon enhanced electrically pumped random lasers,” Nanoscale 5(2), 513–517 (2013).
[Crossref] [PubMed]

Shen, D. Z.

Q. Qiao, C. X. Shan, J. Zheng, H. Zhu, S. F. Yu, B. H. Li, Y. Jia, and D. Z. Shen, “Surface plasmon enhanced electrically pumped random lasers,” Nanoscale 5(2), 513–517 (2013).
[Crossref] [PubMed]

Shi, J.

L. Cui, J. Shi, Y. Wang, R. Zheng, X. Chen, W. Gong, and D. Liu, “Retrieval of contaminated information using random lasers,” Appl. Phys. Lett. 106(20), 201101 (2015).
[Crossref]

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2(1), 88–93 (2014).
[Crossref]

Y. Wang, X. Shi, Y. Sun, R. Zheng, S. Wei, J. Shi, Z. Wang, and D. Liu, “Cascade-pumped random lasers with coherent emission formed by Ag-Au porous nanowires,” Opt. Lett. 39(1), 5–8 (2014).
[Crossref] [PubMed]

X. Shi, Y. Wang, Z. Wang, Y. Sun, D. Liu, Y. Zhang, Q. Li, and J. Shi, “High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires,” Appl. Phys. Lett. 103(2), 023504 (2013).
[Crossref]

Shi, X.

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2(1), 88–93 (2014).
[Crossref]

Y. Wang, X. Shi, Y. Sun, R. Zheng, S. Wei, J. Shi, Z. Wang, and D. Liu, “Cascade-pumped random lasers with coherent emission formed by Ag-Au porous nanowires,” Opt. Lett. 39(1), 5–8 (2014).
[Crossref] [PubMed]

X. Shi, Y. Wang, Z. Wang, Y. Sun, D. Liu, Y. Zhang, Q. Li, and J. Shi, “High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires,” Appl. Phys. Lett. 103(2), 023504 (2013).
[Crossref]

Song, J.-M.

T.-Y. Dong, W.-T. Chen, C.-W. Wang, C.-P. Chen, C.-N. Chen, M.-C. Lin, J.-M. Song, I.-G. Chen, and T.-H. Kao, “One-step synthesis of uniform silver nanoparticles capped by saturated decanoate: direct spray printing ink to form metallic silver films,” Phys. Chem. Chem. Phys. 11(29), 6269–6275 (2009).
[Crossref] [PubMed]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Stumpe, J.

E. Heydari, R. Flehr, and J. Stumpe, “Influence of spacer layer on enhancement of nanoplasmon-assisted random lasing,” Appl. Phys. Lett. 102(13), 133110 (2013).
[Crossref]

Su, X.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Sun, Y.

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2(1), 88–93 (2014).
[Crossref]

Y. Wang, X. Shi, Y. Sun, R. Zheng, S. Wei, J. Shi, Z. Wang, and D. Liu, “Cascade-pumped random lasers with coherent emission formed by Ag-Au porous nanowires,” Opt. Lett. 39(1), 5–8 (2014).
[Crossref] [PubMed]

X. Shi, Y. Wang, Z. Wang, Y. Sun, D. Liu, Y. Zhang, Q. Li, and J. Shi, “High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires,” Appl. Phys. Lett. 103(2), 023504 (2013).
[Crossref]

Tanaka, K.

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

Turitsyn, S.

S. Turitsyn, S. Babin, D. Churkin, I. Vatnik, M. Nikulin, and E. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
[Crossref]

Turitsyn, S. K.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Vatnik, I.

S. Turitsyn, S. Babin, D. Churkin, I. Vatnik, M. Nikulin, and E. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
[Crossref]

Wang, C.-W.

T.-Y. Dong, W.-T. Chen, C.-W. Wang, C.-P. Chen, C.-N. Chen, M.-C. Lin, J.-M. Song, I.-G. Chen, and T.-H. Kao, “One-step synthesis of uniform silver nanoparticles capped by saturated decanoate: direct spray printing ink to form metallic silver films,” Phys. Chem. Chem. Phys. 11(29), 6269–6275 (2009).
[Crossref] [PubMed]

Wang, J.

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

S. Li, L. Wang, T. Zhai, Z. Xu, Y. Wang, J. Wang, and X. Zhang, “Plasmonic random laser on the fiber facet,” Opt. Express 23(18), 23985–23991 (2015).
[Crossref] [PubMed]

Wang, L.

S. Li, L. Wang, T. Zhai, Z. Xu, Y. Wang, J. Wang, and X. Zhang, “Plasmonic random laser on the fiber facet,” Opt. Express 23(18), 23985–23991 (2015).
[Crossref] [PubMed]

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Wang, Q.

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Wang, Y.

L. Cui, J. Shi, Y. Wang, R. Zheng, X. Chen, W. Gong, and D. Liu, “Retrieval of contaminated information using random lasers,” Appl. Phys. Lett. 106(20), 201101 (2015).
[Crossref]

S. Li, L. Wang, T. Zhai, Z. Xu, Y. Wang, J. Wang, and X. Zhang, “Plasmonic random laser on the fiber facet,” Opt. Express 23(18), 23985–23991 (2015).
[Crossref] [PubMed]

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2(1), 88–93 (2014).
[Crossref]

Y. Wang, X. Shi, Y. Sun, R. Zheng, S. Wei, J. Shi, Z. Wang, and D. Liu, “Cascade-pumped random lasers with coherent emission formed by Ag-Au porous nanowires,” Opt. Lett. 39(1), 5–8 (2014).
[Crossref] [PubMed]

X. Shi, Y. Wang, Z. Wang, Y. Sun, D. Liu, Y. Zhang, Q. Li, and J. Shi, “High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires,” Appl. Phys. Lett. 103(2), 023504 (2013).
[Crossref]

Wang, Z.

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2(1), 88–93 (2014).
[Crossref]

Y. Wang, X. Shi, Y. Sun, R. Zheng, S. Wei, J. Shi, Z. Wang, and D. Liu, “Cascade-pumped random lasers with coherent emission formed by Ag-Au porous nanowires,” Opt. Lett. 39(1), 5–8 (2014).
[Crossref] [PubMed]

X. Shi, Y. Wang, Z. Wang, Y. Sun, D. Liu, Y. Zhang, Q. Li, and J. Shi, “High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires,” Appl. Phys. Lett. 103(2), 023504 (2013).
[Crossref]

Wang, Z. N.

Wei, S.

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2(1), 88–93 (2014).
[Crossref]

Y. Wang, X. Shi, Y. Sun, R. Zheng, S. Wei, J. Shi, Z. Wang, and D. Liu, “Cascade-pumped random lasers with coherent emission formed by Ag-Au porous nanowires,” Opt. Lett. 39(1), 5–8 (2014).
[Crossref] [PubMed]

Wu, H.

Xu, Z.

Yu, S. F.

Q. Qiao, C. X. Shan, J. Zheng, H. Zhu, S. F. Yu, B. H. Li, Y. Jia, and D. Z. Shen, “Surface plasmon enhanced electrically pumped random lasers,” Nanoscale 5(2), 513–517 (2013).
[Crossref] [PubMed]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zhai, T.

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

S. Li, L. Wang, T. Zhai, Z. Xu, Y. Wang, J. Wang, and X. Zhang, “Plasmonic random laser on the fiber facet,” Opt. Express 23(18), 23985–23991 (2015).
[Crossref] [PubMed]

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Zhang, W. L.

Zhang, X.

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

S. Li, L. Wang, T. Zhai, Z. Xu, Y. Wang, J. Wang, and X. Zhang, “Plasmonic random laser on the fiber facet,” Opt. Express 23(18), 23985–23991 (2015).
[Crossref] [PubMed]

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zhang, Y.

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2(1), 88–93 (2014).
[Crossref]

X. Shi, Y. Wang, Z. Wang, Y. Sun, D. Liu, Y. Zhang, Q. Li, and J. Shi, “High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires,” Appl. Phys. Lett. 103(2), 023504 (2013).
[Crossref]

Zhao, Y.

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Zheng, J.

Q. Qiao, C. X. Shan, J. Zheng, H. Zhu, S. F. Yu, B. H. Li, Y. Jia, and D. Z. Shen, “Surface plasmon enhanced electrically pumped random lasers,” Nanoscale 5(2), 513–517 (2013).
[Crossref] [PubMed]

Zheng, R.

L. Cui, J. Shi, Y. Wang, R. Zheng, X. Chen, W. Gong, and D. Liu, “Retrieval of contaminated information using random lasers,” Appl. Phys. Lett. 106(20), 201101 (2015).
[Crossref]

Y. Wang, X. Shi, Y. Sun, R. Zheng, S. Wei, J. Shi, Z. Wang, and D. Liu, “Cascade-pumped random lasers with coherent emission formed by Ag-Au porous nanowires,” Opt. Lett. 39(1), 5–8 (2014).
[Crossref] [PubMed]

Zhou, J.

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2(1), 88–93 (2014).
[Crossref]

Zhu, H.

Q. Qiao, C. X. Shan, J. Zheng, H. Zhu, S. F. Yu, B. H. Li, Y. Jia, and D. Z. Shen, “Surface plasmon enhanced electrically pumped random lasers,” Nanoscale 5(2), 513–517 (2013).
[Crossref] [PubMed]

Zhu, Y. Y.

Zilbershtein, A.

O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: Enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

Zong, Y.

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

Adv. Opt. Mater. (1)

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2(1), 88–93 (2014).
[Crossref]

Appl. Phys. Lett. (8)

L. Cui, J. Shi, Y. Wang, R. Zheng, X. Chen, W. Gong, and D. Liu, “Retrieval of contaminated information using random lasers,” Appl. Phys. Lett. 106(20), 201101 (2015).
[Crossref]

T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett. 85(18), 3968 (2004).
[Crossref]

O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

E. Heydari, R. Flehr, and J. Stumpe, “Influence of spacer layer on enhancement of nanoplasmon-assisted random lasing,” Appl. Phys. Lett. 102(13), 133110 (2013).
[Crossref]

G. Dice, S. Mujumdar, and A. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
[Crossref]

O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: Enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

X. Shi, Y. Wang, Z. Wang, Y. Sun, D. Liu, Y. Zhang, Q. Li, and J. Shi, “High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires,” Appl. Phys. Lett. 103(2), 023504 (2013).
[Crossref]

Nano Lett. (2)

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Nanoscale (2)

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

Q. Qiao, C. X. Shan, J. Zheng, H. Zhu, S. F. Yu, B. H. Li, Y. Jia, and D. Z. Shen, “Surface plasmon enhanced electrically pumped random lasers,” Nanoscale 5(2), 513–517 (2013).
[Crossref] [PubMed]

Nat. Photonics (2)

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Nat. Phys. (1)

N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10(6), 426–431 (2014).
[Crossref]

Nature (1)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

T.-Y. Dong, W.-T. Chen, C.-W. Wang, C.-P. Chen, C.-N. Chen, M.-C. Lin, J.-M. Song, I.-G. Chen, and T.-H. Kao, “One-step synthesis of uniform silver nanoparticles capped by saturated decanoate: direct spray printing ink to form metallic silver films,” Phys. Chem. Chem. Phys. 11(29), 6269–6275 (2009).
[Crossref] [PubMed]

Phys. Rep. (1)

S. Turitsyn, S. Babin, D. Churkin, I. Vatnik, M. Nikulin, and E. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
[Crossref]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (2)

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Fabrication procedures and simplified optical layout of ultrathin plasmonic random lasers. (a) A sandwich structure is fabricated by spin-coating the solution of the PVA and F8BT dopped with Ag NPs onto the glass substrate. (b) The sample is immersed in deionized water at room temperature for 30 mins, so that the PVA layer is sufficiently dissolved. (c) The F8BT layer peels off from the substrate, forming a free-standing membrane device with a thickness of 200 nm.
Fig. 2
Fig. 2 SEM images of (a) the Ag nanoparticle on an ITO glass substrate and (b) the F8BT film doped with Ag NPs. (c) Photograph of the ultrathin plasmonic random laser based on the free-standing polymer membrane. The PET plate with a round hole in the center acts as a frame. The diameter of the hole is about 5 mm.
Fig. 3
Fig. 3 (a) Measured emission spectra of the ultrathin plasmonic random laser. The inset denotes the enlarged view of the laser mode. (b) The output intensity and linewidth of the laser device as a function of the pump power density. The threshold of the laser emission (4 mg/mL) is around 2 μJ/cm2 as indicated by the black arrow. The brown- green-, and cyan-dot curves indicate different concentrations of Ag NPs, respectively.
Fig. 4
Fig. 4 (a) Measured spectra of plasmonic random laser on the fiber end face. The red curve presents the laser emission above the pump threshold. The black curve denotes the PL spectrum of F8BT. The blue curve indicates the extinction spectrum of Ag NPs in the F8BT film. The inset is a microscopy image of the plasmonic random laser on the fiber end face. The pump beam propagates in the optical fiber as indicated by the blue arrow. (b) PL lifetime of the F8BT membrane with and without Ag NPs.
Fig. 5
Fig. 5 The typical electric field distribution near the Ag NP embedded in the F8BT membrane. The black arrow indicates the direction of the incident light. The red arrow denotes the polarization direction of the excitation light. The refractive index of polymer (F8BT) is about 1.6. The scale bar is 100 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

l min = 2d n 2 / n 2 1 ,

Metrics