Abstract

To achieve efficiently coupling to external light is still remaining an insurmountable challenge that graphene faces before it can play an irreplaceable role in the plasmonic field. Here, this difficulty is overcome by a scheme capable of exciting graphene surface plasmons (GSPs) in in-plane bended gratings that are formed by elastic vibrations of graphene nanoribbons (GNRs). The gratings enable the light polarized perpendicularly to the GNRs to two kinds of GSP modes, of which the field concentrations are within the grating crest (crest mode, C-M) and trough (trough mode, T-M), respectively. These two kinds of modes will individually cause notches in the transmission spectrum and permit fast off-on switching and tuning of their excitation dynamically (elastic vibration, Fermi energy) and geometrically (ribbon width). The performance of this device is analyzed by finite-difference time-domain simulations, which demonstrates a good agreement with the quasi-static analysis theory. The proposed concept expands our understanding of plasmons in GNRs and offers a platform for realizing of 2D graphene plasmonic devices with broadband operations and multichannel modulations.

© 2016 Optical Society of America

Full Article  |  PDF Article

Corrections

Sheng-Xuan Xia, Xiang Zhai, Ling-Ling Wang, Qi Lin, and Shuang-Chun Wen, "Excitation of crest and trough surface plasmon modes in in-plane bended graphene nanoribbons: erratum," Opt. Express 24, 7436-7436 (2016)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-24-7-7436

OSA Recommended Articles
Localized plasmonic field enhancement in shaped graphene nanoribbons

Sheng-Xuan Xia, Xiang Zhai, Ling-Ling Wang, Qi Lin, and Shuang-Chun Wen
Opt. Express 24(15) 16336-16348 (2016)

Excitation of surface plasmons in sinusoidally shaped graphene nanoribbons

Sheng-Xuan Xia, Xiang Zhai, Ling-Ling Wang, Gui-Dong Liu, and Shuang-Chun Wen
J. Opt. Soc. Am. B 33(10) 2129-2134 (2016)

Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons

Jinpeng Nong, Wei Wei, Wei Wang, Guilian Lan, Zhengguo Shang, Juemin Yi, and Linlong Tang
Opt. Express 26(2) 1633-1644 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
    [Crossref] [PubMed]
  2. J. H. Ahn, B. H. Hong, F. Torrisi, J. N. Coleman, J. Liu, S. Böhm, M. Drndić, K. Kostarelos, K. S. Novoselov, and E. J. Siochi, “Things you could do with graphene,” Nat. Nanotechnol. 9, 737–747 (2014).
    [Crossref] [PubMed]
  3. N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: a dynamic platform for electrical control of plasmonic resonance,” Nanophotonics 4(1), 214-223 (2015).
    [Crossref]
  4. J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
    [Crossref] [PubMed]
  5. F. H. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
    [Crossref] [PubMed]
  6. M. Farhat, S. Guenneau, and H. Bağcı, “Exciting graphene surface plasmon polaritons through light and sound interplay,” Phys. Rev. Lett. 111(23), 237404 (2013).
    [Crossref] [PubMed]
  7. W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
    [Crossref] [PubMed]
  8. S. Xia, X. Zhai, L. Wang, H. Li, Z. Huang, and Q. Lin, “Dynamically tuning the optical coupling of surface plasmons in coplanar graphene nanoribbons,” Opt. Commun. 352, 110–115 (2015).
    [Crossref]
  9. F. Liu, C. Qian, and Y. D. Chong, “Directional excitation of graphene surface plasmons,” Opt. Express 23(3), 2383–2391 (2015).
    [Crossref] [PubMed]
  10. J. Schiefele, J. Pedrós, F. Sols, F. Calle, and F. Guinea, “Coupling light into graphene plasmons through surface acoustic waves,” Phys. Rev. Lett. 111(23), 237405 (2013).
    [Crossref] [PubMed]
  11. T. M. Slipchenko, M. L. Nesterov, L. Martin-Moreno, and A. Y. Nikitin, “Analytical solution for the diffraction of an electromagnetic wave by a graphene grating,” J. Opt. 15(11), 114008 (2013).
    [Crossref]
  12. A. Y. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84(16), 161407 (2011).
    [Crossref]
  13. C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
    [Crossref] [PubMed]
  14. J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Electromechanical resonators from graphene sheets,” Science 315(5811), 490–493 (2007).
    [Crossref] [PubMed]
  15. K. F. Graff, Wave Motion in Elastic Solids in Courier Corporation, (Academic, 2012).
  16. A. Ishikawa and T. Tanaka, “Plasmon hybridization in graphene metamaterials,” Appl. Phys. Lett. 102(25), 253110 (2013).
    [Crossref]
  17. S. He, X. Zhang, and Y. He, “Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI,” Opt. Express 21(25), 30664–30673 (2013).
    [Crossref] [PubMed]
  18. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
    [Crossref] [PubMed]
  19. Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
    [Crossref] [PubMed]
  20. D. K. Efetov and P. Kim, “Controlling electron-phonon interactions in graphene at ultrahigh carrier densities,” Phys. Rev. Lett. 105(25), 256805 (2010).
    [Crossref] [PubMed]
  21. V. Atanasov and A. Saxena, “Helicoidal graphene nanoribbons: chiraltronics,” Phys. Rev. B 92(3), 035440 (2015).
    [Crossref]
  22. H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
    [Crossref]

2015 (4)

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: a dynamic platform for electrical control of plasmonic resonance,” Nanophotonics 4(1), 214-223 (2015).
[Crossref]

S. Xia, X. Zhai, L. Wang, H. Li, Z. Huang, and Q. Lin, “Dynamically tuning the optical coupling of surface plasmons in coplanar graphene nanoribbons,” Opt. Commun. 352, 110–115 (2015).
[Crossref]

F. Liu, C. Qian, and Y. D. Chong, “Directional excitation of graphene surface plasmons,” Opt. Express 23(3), 2383–2391 (2015).
[Crossref] [PubMed]

V. Atanasov and A. Saxena, “Helicoidal graphene nanoribbons: chiraltronics,” Phys. Rev. B 92(3), 035440 (2015).
[Crossref]

2014 (1)

J. H. Ahn, B. H. Hong, F. Torrisi, J. N. Coleman, J. Liu, S. Böhm, M. Drndić, K. Kostarelos, K. S. Novoselov, and E. J. Siochi, “Things you could do with graphene,” Nat. Nanotechnol. 9, 737–747 (2014).
[Crossref] [PubMed]

2013 (7)

J. Schiefele, J. Pedrós, F. Sols, F. Calle, and F. Guinea, “Coupling light into graphene plasmons through surface acoustic waves,” Phys. Rev. Lett. 111(23), 237405 (2013).
[Crossref] [PubMed]

T. M. Slipchenko, M. L. Nesterov, L. Martin-Moreno, and A. Y. Nikitin, “Analytical solution for the diffraction of an electromagnetic wave by a graphene grating,” J. Opt. 15(11), 114008 (2013).
[Crossref]

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

M. Farhat, S. Guenneau, and H. Bağcı, “Exciting graphene surface plasmon polaritons through light and sound interplay,” Phys. Rev. Lett. 111(23), 237404 (2013).
[Crossref] [PubMed]

A. Ishikawa and T. Tanaka, “Plasmon hybridization in graphene metamaterials,” Appl. Phys. Lett. 102(25), 253110 (2013).
[Crossref]

S. He, X. Zhang, and Y. He, “Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI,” Opt. Express 21(25), 30664–30673 (2013).
[Crossref] [PubMed]

2012 (2)

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

2011 (3)

F. H. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

A. Y. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84(16), 161407 (2011).
[Crossref]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

2010 (1)

D. K. Efetov and P. Kim, “Controlling electron-phonon interactions in graphene at ultrahigh carrier densities,” Phys. Rev. Lett. 105(25), 256805 (2010).
[Crossref] [PubMed]

2008 (1)

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

2007 (2)

J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Electromechanical resonators from graphene sheets,” Science 315(5811), 490–493 (2007).
[Crossref] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Ahn, J. H.

J. H. Ahn, B. H. Hong, F. Torrisi, J. N. Coleman, J. Liu, S. Böhm, M. Drndić, K. Kostarelos, K. S. Novoselov, and E. J. Siochi, “Things you could do with graphene,” Nat. Nanotechnol. 9, 737–747 (2014).
[Crossref] [PubMed]

Ajayan, P. M.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Atanasov, V.

V. Atanasov and A. Saxena, “Helicoidal graphene nanoribbons: chiraltronics,” Phys. Rev. B 92(3), 035440 (2015).
[Crossref]

Avouris, P.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Bagci, H.

M. Farhat, S. Guenneau, and H. Bağcı, “Exciting graphene surface plasmon polaritons through light and sound interplay,” Phys. Rev. Lett. 111(23), 237404 (2013).
[Crossref] [PubMed]

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Böhm, S.

J. H. Ahn, B. H. Hong, F. Torrisi, J. N. Coleman, J. Liu, S. Böhm, M. Drndić, K. Kostarelos, K. S. Novoselov, and E. J. Siochi, “Things you could do with graphene,” Nat. Nanotechnol. 9, 737–747 (2014).
[Crossref] [PubMed]

Boltasseva, A.

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: a dynamic platform for electrical control of plasmonic resonance,” Nanophotonics 4(1), 214-223 (2015).
[Crossref]

Bunch, J. S.

J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Electromechanical resonators from graphene sheets,” Science 315(5811), 490–493 (2007).
[Crossref] [PubMed]

Calle, F.

J. Schiefele, J. Pedrós, F. Sols, F. Calle, and F. Guinea, “Coupling light into graphene plasmons through surface acoustic waves,” Phys. Rev. Lett. 111(23), 237405 (2013).
[Crossref] [PubMed]

Chang, D. E.

F. H. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Chong, Y. D.

Christensen, J.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

Coleman, J. N.

J. H. Ahn, B. H. Hong, F. Torrisi, J. N. Coleman, J. Liu, S. Böhm, M. Drndić, K. Kostarelos, K. S. Novoselov, and E. J. Siochi, “Things you could do with graphene,” Nat. Nanotechnol. 9, 737–747 (2014).
[Crossref] [PubMed]

Craighead, H. G.

J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Electromechanical resonators from graphene sheets,” Science 315(5811), 490–493 (2007).
[Crossref] [PubMed]

Drndic, M.

J. H. Ahn, B. H. Hong, F. Torrisi, J. N. Coleman, J. Liu, S. Böhm, M. Drndić, K. Kostarelos, K. S. Novoselov, and E. J. Siochi, “Things you could do with graphene,” Nat. Nanotechnol. 9, 737–747 (2014).
[Crossref] [PubMed]

Efetov, D. K.

D. K. Efetov and P. Kim, “Controlling electron-phonon interactions in graphene at ultrahigh carrier densities,” Phys. Rev. Lett. 105(25), 256805 (2010).
[Crossref] [PubMed]

Emani, N. K.

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: a dynamic platform for electrical control of plasmonic resonance,” Nanophotonics 4(1), 214-223 (2015).
[Crossref]

Fang, Z.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Farhat, M.

M. Farhat, S. Guenneau, and H. Bağcı, “Exciting graphene surface plasmon polaritons through light and sound interplay,” Phys. Rev. Lett. 111(23), 237404 (2013).
[Crossref] [PubMed]

Frank, I. W.

J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Electromechanical resonators from graphene sheets,” Science 315(5811), 490–493 (2007).
[Crossref] [PubMed]

Freitag, M.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Gao, W.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

García de Abajo, F. J.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

F. H. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

García-Vidal, F. J.

A. Y. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84(16), 161407 (2011).
[Crossref]

Geim, A. K.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Geng, B.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Guenneau, S.

M. Farhat, S. Guenneau, and H. Bağcı, “Exciting graphene surface plasmon polaritons through light and sound interplay,” Phys. Rev. Lett. 111(23), 237404 (2013).
[Crossref] [PubMed]

Guinea, F.

J. Schiefele, J. Pedrós, F. Sols, F. Calle, and F. Guinea, “Coupling light into graphene plasmons through surface acoustic waves,” Phys. Rev. Lett. 111(23), 237405 (2013).
[Crossref] [PubMed]

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

A. Y. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84(16), 161407 (2011).
[Crossref]

Halas, N. J.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

He, S.

He, Y.

Hone, J.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

Hong, B. H.

J. H. Ahn, B. H. Hong, F. Torrisi, J. N. Coleman, J. Liu, S. Böhm, M. Drndić, K. Kostarelos, K. S. Novoselov, and E. J. Siochi, “Things you could do with graphene,” Nat. Nanotechnol. 9, 737–747 (2014).
[Crossref] [PubMed]

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Huang, Z.

S. Xia, X. Zhai, L. Wang, H. Li, Z. Huang, and Q. Lin, “Dynamically tuning the optical coupling of surface plasmons in coplanar graphene nanoribbons,” Opt. Commun. 352, 110–115 (2015).
[Crossref]

Ishikawa, A.

A. Ishikawa and T. Tanaka, “Plasmon hybridization in graphene metamaterials,” Appl. Phys. Lett. 102(25), 253110 (2013).
[Crossref]

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Kildishev, A. V.

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: a dynamic platform for electrical control of plasmonic resonance,” Nanophotonics 4(1), 214-223 (2015).
[Crossref]

Kim, P.

D. K. Efetov and P. Kim, “Controlling electron-phonon interactions in graphene at ultrahigh carrier densities,” Phys. Rev. Lett. 105(25), 256805 (2010).
[Crossref] [PubMed]

Koppens, F. H.

F. H. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Koppens, F. H. L.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

Kostarelos, K.

J. H. Ahn, B. H. Hong, F. Torrisi, J. N. Coleman, J. Liu, S. Böhm, M. Drndić, K. Kostarelos, K. S. Novoselov, and E. J. Siochi, “Things you could do with graphene,” Nat. Nanotechnol. 9, 737–747 (2014).
[Crossref] [PubMed]

Kysar, J. W.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

Lee, C.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

Li, H.

S. Xia, X. Zhai, L. Wang, H. Li, Z. Huang, and Q. Lin, “Dynamically tuning the optical coupling of surface plasmons in coplanar graphene nanoribbons,” Opt. Commun. 352, 110–115 (2015).
[Crossref]

Li, X.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Lin, Q.

S. Xia, X. Zhai, L. Wang, H. Li, Z. Huang, and Q. Lin, “Dynamically tuning the optical coupling of surface plasmons in coplanar graphene nanoribbons,” Opt. Commun. 352, 110–115 (2015).
[Crossref]

Liu, F.

Liu, J.

J. H. Ahn, B. H. Hong, F. Torrisi, J. N. Coleman, J. Liu, S. Böhm, M. Drndić, K. Kostarelos, K. S. Novoselov, and E. J. Siochi, “Things you could do with graphene,” Nat. Nanotechnol. 9, 737–747 (2014).
[Crossref] [PubMed]

Liu, Z.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Low, T.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Ma, L.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Manjavacas, A.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Martin-Moreno, L.

T. M. Slipchenko, M. L. Nesterov, L. Martin-Moreno, and A. Y. Nikitin, “Analytical solution for the diffraction of an electromagnetic wave by a graphene grating,” J. Opt. 15(11), 114008 (2013).
[Crossref]

Martín-Moreno, L.

A. Y. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84(16), 161407 (2011).
[Crossref]

McEuen, P. L.

J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Electromechanical resonators from graphene sheets,” Science 315(5811), 490–493 (2007).
[Crossref] [PubMed]

Nesterov, M. L.

T. M. Slipchenko, M. L. Nesterov, L. Martin-Moreno, and A. Y. Nikitin, “Analytical solution for the diffraction of an electromagnetic wave by a graphene grating,” J. Opt. 15(11), 114008 (2013).
[Crossref]

Nikitin, A. Y.

T. M. Slipchenko, M. L. Nesterov, L. Martin-Moreno, and A. Y. Nikitin, “Analytical solution for the diffraction of an electromagnetic wave by a graphene grating,” J. Opt. 15(11), 114008 (2013).
[Crossref]

A. Y. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84(16), 161407 (2011).
[Crossref]

Nordlander, P.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Novoselov, K. S.

J. H. Ahn, B. H. Hong, F. Torrisi, J. N. Coleman, J. Liu, S. Böhm, M. Drndić, K. Kostarelos, K. S. Novoselov, and E. J. Siochi, “Things you could do with graphene,” Nat. Nanotechnol. 9, 737–747 (2014).
[Crossref] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Parpia, J. M.

J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Electromechanical resonators from graphene sheets,” Science 315(5811), 490–493 (2007).
[Crossref] [PubMed]

Pedrós, J.

J. Schiefele, J. Pedrós, F. Sols, F. Calle, and F. Guinea, “Coupling light into graphene plasmons through surface acoustic waves,” Phys. Rev. Lett. 111(23), 237405 (2013).
[Crossref] [PubMed]

Qian, C.

Qiu, C.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

Saxena, A.

V. Atanasov and A. Saxena, “Helicoidal graphene nanoribbons: chiraltronics,” Phys. Rev. B 92(3), 035440 (2015).
[Crossref]

Schiefele, J.

J. Schiefele, J. Pedrós, F. Sols, F. Calle, and F. Guinea, “Coupling light into graphene plasmons through surface acoustic waves,” Phys. Rev. Lett. 111(23), 237405 (2013).
[Crossref] [PubMed]

Schlather, A.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Shalaev, V. M.

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: a dynamic platform for electrical control of plasmonic resonance,” Nanophotonics 4(1), 214-223 (2015).
[Crossref]

Shen, Y. R.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Shu, J.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

Siochi, E. J.

J. H. Ahn, B. H. Hong, F. Torrisi, J. N. Coleman, J. Liu, S. Böhm, M. Drndić, K. Kostarelos, K. S. Novoselov, and E. J. Siochi, “Things you could do with graphene,” Nat. Nanotechnol. 9, 737–747 (2014).
[Crossref] [PubMed]

Slipchenko, T. M.

T. M. Slipchenko, M. L. Nesterov, L. Martin-Moreno, and A. Y. Nikitin, “Analytical solution for the diffraction of an electromagnetic wave by a graphene grating,” J. Opt. 15(11), 114008 (2013).
[Crossref]

Sols, F.

J. Schiefele, J. Pedrós, F. Sols, F. Calle, and F. Guinea, “Coupling light into graphene plasmons through surface acoustic waves,” Phys. Rev. Lett. 111(23), 237405 (2013).
[Crossref] [PubMed]

Tanaka, T.

A. Ishikawa and T. Tanaka, “Plasmon hybridization in graphene metamaterials,” Appl. Phys. Lett. 102(25), 253110 (2013).
[Crossref]

Tanenbaum, D. M.

J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Electromechanical resonators from graphene sheets,” Science 315(5811), 490–493 (2007).
[Crossref] [PubMed]

Thongrattanasiri, S.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

Torrisi, F.

J. H. Ahn, B. H. Hong, F. Torrisi, J. N. Coleman, J. Liu, S. Böhm, M. Drndić, K. Kostarelos, K. S. Novoselov, and E. J. Siochi, “Things you could do with graphene,” Nat. Nanotechnol. 9, 737–747 (2014).
[Crossref] [PubMed]

van der Zande, A. M.

J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Electromechanical resonators from graphene sheets,” Science 315(5811), 490–493 (2007).
[Crossref] [PubMed]

Verbridge, S. S.

J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Electromechanical resonators from graphene sheets,” Science 315(5811), 490–493 (2007).
[Crossref] [PubMed]

Wang, F.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Wang, L.

S. Xia, X. Zhai, L. Wang, H. Li, Z. Huang, and Q. Lin, “Dynamically tuning the optical coupling of surface plasmons in coplanar graphene nanoribbons,” Opt. Commun. 352, 110–115 (2015).
[Crossref]

Wang, Y.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Wei, X.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

Wu, Y.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Xia, F.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Xia, S.

S. Xia, X. Zhai, L. Wang, H. Li, Z. Huang, and Q. Lin, “Dynamically tuning the optical coupling of surface plasmons in coplanar graphene nanoribbons,” Opt. Commun. 352, 110–115 (2015).
[Crossref]

Xu, Q.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

Yan, H.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Zettl, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Zhai, X.

S. Xia, X. Zhai, L. Wang, H. Li, Z. Huang, and Q. Lin, “Dynamically tuning the optical coupling of surface plasmons in coplanar graphene nanoribbons,” Opt. Commun. 352, 110–115 (2015).
[Crossref]

Zhang, X.

Zhu, W.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

ACS Nano (3)

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

A. Ishikawa and T. Tanaka, “Plasmon hybridization in graphene metamaterials,” Appl. Phys. Lett. 102(25), 253110 (2013).
[Crossref]

J. Opt. (1)

T. M. Slipchenko, M. L. Nesterov, L. Martin-Moreno, and A. Y. Nikitin, “Analytical solution for the diffraction of an electromagnetic wave by a graphene grating,” J. Opt. 15(11), 114008 (2013).
[Crossref]

Nano Lett. (1)

F. H. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Nanophotonics (1)

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: a dynamic platform for electrical control of plasmonic resonance,” Nanophotonics 4(1), 214-223 (2015).
[Crossref]

Nat. Mater. (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

J. H. Ahn, B. H. Hong, F. Torrisi, J. N. Coleman, J. Liu, S. Böhm, M. Drndić, K. Kostarelos, K. S. Novoselov, and E. J. Siochi, “Things you could do with graphene,” Nat. Nanotechnol. 9, 737–747 (2014).
[Crossref] [PubMed]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Opt. Commun. (1)

S. Xia, X. Zhai, L. Wang, H. Li, Z. Huang, and Q. Lin, “Dynamically tuning the optical coupling of surface plasmons in coplanar graphene nanoribbons,” Opt. Commun. 352, 110–115 (2015).
[Crossref]

Opt. Express (2)

Phys. Rev. B (2)

V. Atanasov and A. Saxena, “Helicoidal graphene nanoribbons: chiraltronics,” Phys. Rev. B 92(3), 035440 (2015).
[Crossref]

A. Y. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84(16), 161407 (2011).
[Crossref]

Phys. Rev. Lett. (3)

M. Farhat, S. Guenneau, and H. Bağcı, “Exciting graphene surface plasmon polaritons through light and sound interplay,” Phys. Rev. Lett. 111(23), 237404 (2013).
[Crossref] [PubMed]

D. K. Efetov and P. Kim, “Controlling electron-phonon interactions in graphene at ultrahigh carrier densities,” Phys. Rev. Lett. 105(25), 256805 (2010).
[Crossref] [PubMed]

J. Schiefele, J. Pedrós, F. Sols, F. Calle, and F. Guinea, “Coupling light into graphene plasmons through surface acoustic waves,” Phys. Rev. Lett. 111(23), 237405 (2013).
[Crossref] [PubMed]

Science (2)

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Electromechanical resonators from graphene sheets,” Science 315(5811), 490–493 (2007).
[Crossref] [PubMed]

Other (1)

K. F. Graff, Wave Motion in Elastic Solids in Courier Corporation, (Academic, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Geometry under investigation: a layer of coplanar graphene nanoribbons, which lie in the x-y plane while extend along the x direction, are located on top of a substrate with permittivity εd = 2.25 and are simultaneously excited in the y direction from one end by a mechanical vibrator with wave number βb , forming in-plan bended gratings with period Λ. The period of the nanoribbons is fixed as P = 100 nm unless otherwise specified. The inset shows the top view of one period sinusoidal grating of the in-plane BGNRs in the x-y plane and the direction of electromagnetic excitation. Note: the incident light is polarized in the y-direction.
Fig. 2
Fig. 2 (a) Transmission, reflection, and absorption spectra of the BGNRs. The inset shows the polarization direction of electromagnetic excitation and the two effective ribbon widths of the C-M and T-M. Electric (b), magnetic field norms (c) and Hz components (d) in a unit cell for the C-M 1 mode. Hz components of the magnetic field for C-M 2 (e), C-M 3 (f) and C-M 4 (g), respectively. Electric (h), magnetic field norms (i) and Hz components (j) in a unit cell for the T-M 1 mode. Hz components of the magnetic field for T-M 2 (k), T-M 3 (l) and T-M 4 (m), respectively. The parameters are set as W = 50 nm, Ef = 1.0 eV, A = 10 nm, and Λ = 100 nm (ωb /2π = 1.31 GHz).
Fig. 3
Fig. 3 Mechanically tuning of the GSPs. (a) Transmission spectra with different A for Ef = 1 eV, W = 50 nm and Λ = 100 nm (when the flexural wave frequency ωb /2π is 1.31 GHz). (b) Plasmon resonance frequency for the fundamental modes of the C-M and T-M vs. A. The dots are simulated results from FDTD, and the line is calculated from Eq. (2). (c) FWHM of the transmission spectra in (b) as a function of A. The blue dot is corresponding to the still ribbon (A = 0) in (b) and (c). (d) Transmission spectra with different Λ for Ef = 1 eV, W = 50 nm and A = 15 nm. (e) Scaling rule of plasmon resonance frequency for the fundamental modes of the C-M and T-M with respect to Λ, the insert shows the FWHM of the transmission spectra in (d) as a function of Λ.
Fig. 4
Fig. 4 Electrostatic tuning of the GSPs. (a, b) Transmission spectra with different Fermi energy level in graphene when W = 50 nm, A = 15 nm, and Λ = 100 nm (when the flexural wave frequency ωb /2π is 1.31 GHz) (a) for C-M 1 and T-M 1 and (b) for C-M 2 and T-M 2. (c) Scaling rule of plasmon resonance frequency for the first two modes of the C-M and T-M vs. Ef . (d) The FWHM of the transmission spectra in (a) as a function of Ef .
Fig. 5
Fig. 5 Geometrically tuning of the GSPs. (a) Transmission spectra with different ribbon width of graphene when Ef = 1 eV, A = 15 nm, Λ = 100 nm and P = 100 nm. (b) Scaling rule of plasmon resonance frequency for the fundamental modes of the C-M and T-M vs. W, the insert shows the FWHM of the transmission spectra in (a) as a function of W.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ω p = e h E f π η ε a v g W e f f = e h E f π η ε a v g ( W ± A ) .
η = I m [ σ ( ω p ) ] ε a v g W e f f ω p .
ω p , C - M = - 0 . 9 7 3 × A + 5 7 . 0 3 0 , ω p , T - M = 0 . 7 9 6 × A + 5 8 . 2 7 4 .

Metrics