Abstract

We demonstrate the use of focused ion beam milling to machine optical structures directly into the core of microstructured optical fibers. The particular fiber used was exposed-core microstructured optical fiber, which allowed direct access to the optically guiding core. Two different designs of Fabry-Perot cavity were fabricated and optically characterized. The first cavity was formed by completely removing a section of the fiber core, while the second cavity consisted of a shallow slot milled into the core, leaving the majority of the core intact. This work highlights the possibility of machining complex optical devices directly onto the core of microstructured optical fibers using focused ion beam milling for applications including environmental, chemical, and biological sensing.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Focused ion beam post-processing of optical fiber Fabry-Perot cavities for sensing applications

Ricardo M. André, Simon Pevec, Martin Becker, Jan Dellith, Manfred Rothhardt, Manuel B. Marques, Denis Donlagic, Hartmut Bartelt, and Orlando Frazão
Opt. Express 22(11) 13102-13108 (2014)

Exposed core microstructured optical fiber Bragg gratings: refractive index sensing

Stephen C. Warren-Smith and Tanya M. Monro
Opt. Express 22(2) 1480-1489 (2014)

Enzyme activity assays within microstructured optical fibers enabled by automated alignment

Stephen C. Warren-Smith, Guiying Nie, Erik P. Schartner, Lois A. Salamonsen, and Tanya M. Monro
Biomed. Opt. Express 3(12) 3304-3313 (2012)

References

  • View by:
  • |
  • |
  • |

  1. P. Kaiser and H. W. Astle, “Low-loss single-material fibers made from pure fused silica,” Bell Syst. Tech. J. 53(6), 1021–1039 (1974).
    [Crossref]
  2. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [Crossref] [PubMed]
  3. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
    [Crossref] [PubMed]
  4. T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
    [Crossref] [PubMed]
  5. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
    [Crossref] [PubMed]
  6. S. Afshar V, W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett. 34(22), 3577–3579 (2009).
    [Crossref] [PubMed]
  7. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  8. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000).
    [Crossref] [PubMed]
  9. W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photonic. Tech. L. 16, 843–845 (2004).
    [Crossref]
  10. K. Furusawa, A. Malinowski, J. Price, T. Monro, J. Sahu, J. Nilsson, and D. Richardson, “Cladding pumped ytterbium-doped fiber laser with holey inner and outer cladding,” Opt. Express 9(13), 714–720 (2001).
    [Crossref] [PubMed]
  11. J. K. Sahu, C. C. Renaud, K. Furusawa, R. Selvas, J. A. Alvarez-Chavez, D. J. Richardson, and J. Nilsson, “Jacketed air-clad cladding pumped ytterbium-doped fibre laser with wide tuning range,” Electron. Lett. 37(18), 1116–1117 (2001).
    [Crossref]
  12. T. M. Monro, S. Warren-Smith, E. P. Schartner, A. Francois, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
    [Crossref]
  13. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
    [Crossref]
  14. S. Silva, P. Roriz, and O. Frazao, “Refractive index measurements of liquids based on microstructured optical fibers,” Photonics 1(4), 516–529 (2014).
    [Crossref]
  15. Y. Zhu, H. Du, and R. Bise, “Design of solid-core microstructured optical fiber with steering-wheel air cladding for optimal evanescent-field sensing,” Opt. Express 14(8), 3541–3546 (2006).
    [Crossref] [PubMed]
  16. S. Afshar, S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express 15(26), 17891–17901 (2007).
    [Crossref] [PubMed]
  17. F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Opt. Express 14(9), 4135–4140 (2006).
    [Crossref] [PubMed]
  18. J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15(6), 1120–1128 (2004).
    [Crossref]
  19. G. Tsiminis, F. Chu, S. C. Warren-Smith, N. A. Spooner, and T. M. Monro, “Identification and quantification of explosives in nanolitre solution volumes by Raman spectroscopy in suspended core optical fibers,” Sensors (Basel) 13(10), 13163–13177 (2013).
    [Crossref] [PubMed]
  20. S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-based aluminum ion sensing using a surface-functionalized microstructured optical fiber,” Langmuir 27(9), 5680–5685 (2011).
    [Crossref] [PubMed]
  21. S. Heng, A. M. Mak, D. B. Stubing, T. M. Monro, and A. D. Abell, “Dual sensor for Cd(II) and Ca(II): selective nanoliter-scale sensing of metal ions,” Anal. Chem. 86(7), 3268–3272 (2014).
    [Crossref] [PubMed]
  22. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett. 29(17), 1974–1976 (2004).
    [Crossref] [PubMed]
  23. J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
    [Crossref] [PubMed]
  24. Y. Ruan, T. C. Foo, S. Warren-Smith, P. Hoffmann, R. C. Moore, H. Ebendorff-Heidepriem, and T. M. Monro, “Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors,” Opt. Express 16(22), 18514–18523 (2008).
    [Crossref] [PubMed]
  25. L. V. Nguyen, K. Hill, S. C. Warren-Smith, and T. M. Monro, “Interferometric-type optical biosensor based on exposed-core microstructured optical fiber,” Sensor. Actuat. Biol. Chem. 211, 320–327 (2015).
  26. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
    [Crossref] [PubMed]
  27. M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express 16(12), 8427–8432 (2008).
    [Crossref] [PubMed]
  28. A. Wang, A. Docherty, B. T. Kuhlmey, F. M. Cox, and M. C. J. Large, “Side-hole fiber sensor based on surface plasmon resonance,” Opt. Lett. 34(24), 3890–3892 (2009).
    [Crossref] [PubMed]
  29. A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14(24), 11616–11621 (2006).
    [Crossref] [PubMed]
  30. B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based Surface Plasmon Resonance sensors,” Opt. Express 15(18), 11413–11426 (2007).
    [Crossref] [PubMed]
  31. M. C. Phan Huy, G. Laffont, V. Dewynter, P. Ferdinand, P. Roy, J.-L. Auguste, D. Pagnoux, W. Blanc, and B. Dussardier, “Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer,” Opt. Lett. 32(16), 2390–2392 (2007).
    [Crossref] [PubMed]
  32. A. Candiani, A. Bertucci, S. Giannetti, M. Konstantaki, A. Manicardi, S. Pissadakis, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating,” J. Biomed. Opt. 18(5), 057004 (2013).
    [Crossref] [PubMed]
  33. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express 14(18), 8224–8231 (2006).
    [Crossref] [PubMed]
  34. T. Wieduwilt, J. Dellith, F. Talkenberg, H. Bartelt, and M. A. Schmidt, “Reflectivity enhanced refractive index sensor based on a fiber-integrated Fabry-Perot microresonator,” Opt. Express 22(21), 25333–25346 (2014).
    [Crossref] [PubMed]
  35. R. M. André, S. Pevec, M. Becker, J. Dellith, M. Rothhardt, M. B. Marques, D. Donlagic, H. Bartelt, and O. Frazão, “Focused ion beam post-processing of optical fiber Fabry-Perot cavities for sensing applications,” Opt. Express 22(11), 13102–13108 (2014).
    [Crossref] [PubMed]
  36. W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Note: optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
    [Crossref] [PubMed]
  37. J. Feng, M. Ding, J.-L. Kou, F. Xu, and Y.-Q. Lu, “An optical fiber tip micrograting thermometer,” IEEE Photonics J. 3(5), 810–814 (2011).
    [Crossref]
  38. K. P. Nayak, F. Le Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express 19(15), 14040–14050 (2011).
    [Crossref] [PubMed]
  39. Y. Liu, C. Meng, A. P. Zhang, Y. Xiao, H. Yu, and L. Tong, “Compact microfiber Bragg gratings with high-index contrast,” Opt. Lett. 36(16), 3115–3117 (2011).
    [Crossref] [PubMed]
  40. C. Martelli, P. Olivero, J. Canning, N. Groothoff, B. Gibson, and S. Huntington, “Micromachining structured optical fibers using focused ion beam milling,” Opt. Lett. 32(11), 1575–1577 (2007).
    [Crossref] [PubMed]
  41. C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. Brito Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol. 18(10), 3075–3081 (2007).
    [Crossref]
  42. F. Wang, W. Yuan, O. Hansen, and O. Bang, “Selective filling of photonic crystal fibers using focused ion beam milled microchannels,” Opt. Express 19(18), 17585–17590 (2011).
    [Crossref] [PubMed]
  43. S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express 17(21), 18533–18542 (2009).
    [Crossref] [PubMed]
  44. R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Predicting the drawing conditions for microstructured optical fiber fabrication,” Opt. Mater. Express 4(1), 29–40 (2014).
    [Crossref]
  45. R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, and T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express 2(11), 1538–1547 (2012).
    [Crossref]
  46. F. M. Cox, R. Lwin, M. C. J. Large, and C. M. B. Cordeiro, “Opening up optical fibres,” Opt. Express 15(19), 11843–11848 (2007).
    [Crossref] [PubMed]
  47. P. Toupin, L. Brilland, C. Boussard-Pledel, B. Bureau, D. Mechin, J.-L. Adam, and J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013).
    [Crossref]
  48. C. Perrella, H. P. Griesser, P. S. Light, R. Kostecki, T. M. Stace, H. Ebendorff-Heidepriem, T. M. Monro, A. G. White, and A. N. Luiten, “Demonstration of an exposed-core fiber platform for two-photon rubidium spectroscopy,” Phys. Rev. Appl. 4(1), 014013 (2015).
    [Crossref]
  49. S. C. Warren-Smith and T. M. Monro, “Exposed core microstructured optical fiber Bragg gratings: refractive index sensing,” Opt. Express 22(2), 1480–1489 (2014).
    [Crossref] [PubMed]
  50. S. C. Warren-Smith, R. Kostecki, L. V. Nguyen, and T. M. Monro, “Fabrication, splicing, Bragg grating writing, and polyelectrolyte functionalization of exposed-core microstructured optical fibers,” Opt. Express 22(24), 29493–29504 (2014).
    [Crossref] [PubMed]
  51. C. A. Volkert and A. M. Minor, “Focused ion beam microscopy and micromachining,” MRS Bull. 32(05), 389–399 (2007).
    [Crossref]
  52. Heraeus, “Quartz glass for optics - data and properties”, retrieved 9 July 2015, http://heraeus-quarzglas.com/media/webmedia_local/downloads/broschren_mo/DataandProperties_Optics_fusedsilica.pdf .

2015 (2)

L. V. Nguyen, K. Hill, S. C. Warren-Smith, and T. M. Monro, “Interferometric-type optical biosensor based on exposed-core microstructured optical fiber,” Sensor. Actuat. Biol. Chem. 211, 320–327 (2015).

C. Perrella, H. P. Griesser, P. S. Light, R. Kostecki, T. M. Stace, H. Ebendorff-Heidepriem, T. M. Monro, A. G. White, and A. N. Luiten, “Demonstration of an exposed-core fiber platform for two-photon rubidium spectroscopy,” Phys. Rev. Appl. 4(1), 014013 (2015).
[Crossref]

2014 (7)

S. Heng, A. M. Mak, D. B. Stubing, T. M. Monro, and A. D. Abell, “Dual sensor for Cd(II) and Ca(II): selective nanoliter-scale sensing of metal ions,” Anal. Chem. 86(7), 3268–3272 (2014).
[Crossref] [PubMed]

S. Silva, P. Roriz, and O. Frazao, “Refractive index measurements of liquids based on microstructured optical fibers,” Photonics 1(4), 516–529 (2014).
[Crossref]

R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Predicting the drawing conditions for microstructured optical fiber fabrication,” Opt. Mater. Express 4(1), 29–40 (2014).
[Crossref]

S. C. Warren-Smith and T. M. Monro, “Exposed core microstructured optical fiber Bragg gratings: refractive index sensing,” Opt. Express 22(2), 1480–1489 (2014).
[Crossref] [PubMed]

R. M. André, S. Pevec, M. Becker, J. Dellith, M. Rothhardt, M. B. Marques, D. Donlagic, H. Bartelt, and O. Frazão, “Focused ion beam post-processing of optical fiber Fabry-Perot cavities for sensing applications,” Opt. Express 22(11), 13102–13108 (2014).
[Crossref] [PubMed]

T. Wieduwilt, J. Dellith, F. Talkenberg, H. Bartelt, and M. A. Schmidt, “Reflectivity enhanced refractive index sensor based on a fiber-integrated Fabry-Perot microresonator,” Opt. Express 22(21), 25333–25346 (2014).
[Crossref] [PubMed]

S. C. Warren-Smith, R. Kostecki, L. V. Nguyen, and T. M. Monro, “Fabrication, splicing, Bragg grating writing, and polyelectrolyte functionalization of exposed-core microstructured optical fibers,” Opt. Express 22(24), 29493–29504 (2014).
[Crossref] [PubMed]

2013 (3)

G. Tsiminis, F. Chu, S. C. Warren-Smith, N. A. Spooner, and T. M. Monro, “Identification and quantification of explosives in nanolitre solution volumes by Raman spectroscopy in suspended core optical fibers,” Sensors (Basel) 13(10), 13163–13177 (2013).
[Crossref] [PubMed]

A. Candiani, A. Bertucci, S. Giannetti, M. Konstantaki, A. Manicardi, S. Pissadakis, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating,” J. Biomed. Opt. 18(5), 057004 (2013).
[Crossref] [PubMed]

P. Toupin, L. Brilland, C. Boussard-Pledel, B. Bureau, D. Mechin, J.-L. Adam, and J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013).
[Crossref]

2012 (1)

2011 (6)

K. P. Nayak, F. Le Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express 19(15), 14040–14050 (2011).
[Crossref] [PubMed]

Y. Liu, C. Meng, A. P. Zhang, Y. Xiao, H. Yu, and L. Tong, “Compact microfiber Bragg gratings with high-index contrast,” Opt. Lett. 36(16), 3115–3117 (2011).
[Crossref] [PubMed]

F. Wang, W. Yuan, O. Hansen, and O. Bang, “Selective filling of photonic crystal fibers using focused ion beam milled microchannels,” Opt. Express 19(18), 17585–17590 (2011).
[Crossref] [PubMed]

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Note: optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
[Crossref] [PubMed]

J. Feng, M. Ding, J.-L. Kou, F. Xu, and Y.-Q. Lu, “An optical fiber tip micrograting thermometer,” IEEE Photonics J. 3(5), 810–814 (2011).
[Crossref]

S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-based aluminum ion sensing using a surface-functionalized microstructured optical fiber,” Langmuir 27(9), 5680–5685 (2011).
[Crossref] [PubMed]

2010 (1)

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. Francois, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

2009 (4)

2008 (2)

2007 (7)

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. Brito Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol. 18(10), 3075–3081 (2007).
[Crossref]

C. A. Volkert and A. M. Minor, “Focused ion beam microscopy and micromachining,” MRS Bull. 32(05), 389–399 (2007).
[Crossref]

C. Martelli, P. Olivero, J. Canning, N. Groothoff, B. Gibson, and S. Huntington, “Micromachining structured optical fibers using focused ion beam milling,” Opt. Lett. 32(11), 1575–1577 (2007).
[Crossref] [PubMed]

M. C. Phan Huy, G. Laffont, V. Dewynter, P. Ferdinand, P. Roy, J.-L. Auguste, D. Pagnoux, W. Blanc, and B. Dussardier, “Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer,” Opt. Lett. 32(16), 2390–2392 (2007).
[Crossref] [PubMed]

B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based Surface Plasmon Resonance sensors,” Opt. Express 15(18), 11413–11426 (2007).
[Crossref] [PubMed]

F. M. Cox, R. Lwin, M. C. J. Large, and C. M. B. Cordeiro, “Opening up optical fibres,” Opt. Express 15(19), 11843–11848 (2007).
[Crossref] [PubMed]

S. Afshar, S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express 15(26), 17891–17901 (2007).
[Crossref] [PubMed]

2006 (5)

2005 (1)

2004 (3)

J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett. 29(17), 1974–1976 (2004).
[Crossref] [PubMed]

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photonic. Tech. L. 16, 843–845 (2004).
[Crossref]

J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15(6), 1120–1128 (2004).
[Crossref]

2003 (1)

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

2001 (3)

J. K. Sahu, C. C. Renaud, K. Furusawa, R. Selvas, J. A. Alvarez-Chavez, D. J. Richardson, and J. Nilsson, “Jacketed air-clad cladding pumped ytterbium-doped fibre laser with wide tuning range,” Electron. Lett. 37(18), 1116–1117 (2001).
[Crossref]

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[Crossref]

K. Furusawa, A. Malinowski, J. Price, T. Monro, J. Sahu, J. Nilsson, and D. Richardson, “Cladding pumped ytterbium-doped fiber laser with holey inner and outer cladding,” Opt. Express 9(13), 714–720 (2001).
[Crossref] [PubMed]

2000 (1)

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

1997 (1)

1996 (1)

1974 (1)

P. Kaiser and H. W. Astle, “Low-loss single-material fibers made from pure fused silica,” Bell Syst. Tech. J. 53(6), 1021–1039 (1974).
[Crossref]

Abell, A. D.

S. Heng, A. M. Mak, D. B. Stubing, T. M. Monro, and A. D. Abell, “Dual sensor for Cd(II) and Ca(II): selective nanoliter-scale sensing of metal ions,” Anal. Chem. 86(7), 3268–3272 (2014).
[Crossref] [PubMed]

S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-based aluminum ion sensing using a surface-functionalized microstructured optical fiber,” Langmuir 27(9), 5680–5685 (2011).
[Crossref] [PubMed]

Adam, J.-L.

P. Toupin, L. Brilland, C. Boussard-Pledel, B. Bureau, D. Mechin, J.-L. Adam, and J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013).
[Crossref]

Afshar, S.

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. Francois, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

S. Afshar, S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express 15(26), 17891–17901 (2007).
[Crossref] [PubMed]

Afshar V, S.

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Alvarez-Chavez, J. A.

J. K. Sahu, C. C. Renaud, K. Furusawa, R. Selvas, J. A. Alvarez-Chavez, D. J. Richardson, and J. Nilsson, “Jacketed air-clad cladding pumped ytterbium-doped fibre laser with wide tuning range,” Electron. Lett. 37(18), 1116–1117 (2001).
[Crossref]

André, R. M.

Argyros, A.

Astle, H. W.

P. Kaiser and H. W. Astle, “Low-loss single-material fibers made from pure fused silica,” Bell Syst. Tech. J. 53(6), 1021–1039 (1974).
[Crossref]

Atkin, D. M.

Auguste, J.-L.

Baggett, J. C.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[Crossref]

Bang, O.

Bartelt, H.

Becker, M.

Belardi, W.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[Crossref]

Bertucci, A.

A. Candiani, A. Bertucci, S. Giannetti, M. Konstantaki, A. Manicardi, S. Pissadakis, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating,” J. Biomed. Opt. 18(5), 057004 (2013).
[Crossref] [PubMed]

Birks, T. A.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photonic. Tech. L. 16, 843–845 (2004).
[Crossref]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
[Crossref] [PubMed]

J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
[Crossref] [PubMed]

Bise, R.

Bjarklev, A.

Blanc, W.

Boussard-Pledel, C.

P. Toupin, L. Brilland, C. Boussard-Pledel, B. Bureau, D. Mechin, J.-L. Adam, and J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013).
[Crossref]

Bouwmans, G.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photonic. Tech. L. 16, 843–845 (2004).
[Crossref]

Bozolan, A.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. Brito Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol. 18(10), 3075–3081 (2007).
[Crossref]

Brilland, L.

P. Toupin, L. Brilland, C. Boussard-Pledel, B. Bureau, D. Mechin, J.-L. Adam, and J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013).
[Crossref]

Brito Cruz, C. H.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. Brito Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol. 18(10), 3075–3081 (2007).
[Crossref]

Broderick, N. G. R.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[Crossref]

Bureau, B.

P. Toupin, L. Brilland, C. Boussard-Pledel, B. Bureau, D. Mechin, J.-L. Adam, and J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013).
[Crossref]

Candiani, A.

A. Candiani, A. Bertucci, S. Giannetti, M. Konstantaki, A. Manicardi, S. Pissadakis, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating,” J. Biomed. Opt. 18(5), 057004 (2013).
[Crossref] [PubMed]

Canning, J.

Carlsen, A.

Chesini, G.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. Brito Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol. 18(10), 3075–3081 (2007).
[Crossref]

Chu, F.

G. Tsiminis, F. Chu, S. C. Warren-Smith, N. A. Spooner, and T. M. Monro, “Identification and quantification of explosives in nanolitre solution volumes by Raman spectroscopy in suspended core optical fibers,” Sensors (Basel) 13(10), 13163–13177 (2013).
[Crossref] [PubMed]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Cordeiro, C. M. B.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. Brito Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol. 18(10), 3075–3081 (2007).
[Crossref]

F. M. Cox, R. Lwin, M. C. J. Large, and C. M. B. Cordeiro, “Opening up optical fibres,” Opt. Express 15(19), 11843–11848 (2007).
[Crossref] [PubMed]

Corradini, R.

A. Candiani, A. Bertucci, S. Giannetti, M. Konstantaki, A. Manicardi, S. Pissadakis, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating,” J. Biomed. Opt. 18(5), 057004 (2013).
[Crossref] [PubMed]

Cox, F. M.

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Cucinotta, A.

A. Candiani, A. Bertucci, S. Giannetti, M. Konstantaki, A. Manicardi, S. Pissadakis, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating,” J. Biomed. Opt. 18(5), 057004 (2013).
[Crossref] [PubMed]

Davis, C.

de Matos, C. J. S.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. Brito Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol. 18(10), 3075–3081 (2007).
[Crossref]

Dellith, J.

Dewynter, V.

Ding, M.

J. Feng, M. Ding, J.-L. Kou, F. Xu, and Y.-Q. Lu, “An optical fiber tip micrograting thermometer,” IEEE Photonics J. 3(5), 810–814 (2011).
[Crossref]

Docherty, A.

Donlagic, D.

dos Santos, E. M.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. Brito Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol. 18(10), 3075–3081 (2007).
[Crossref]

Du, H.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Dufva, M.

Dussardier, B.

Ebendorff-Heidepriem, H.

C. Perrella, H. P. Griesser, P. S. Light, R. Kostecki, T. M. Stace, H. Ebendorff-Heidepriem, T. M. Monro, A. G. White, and A. N. Luiten, “Demonstration of an exposed-core fiber platform for two-photon rubidium spectroscopy,” Phys. Rev. Appl. 4(1), 014013 (2015).
[Crossref]

R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Predicting the drawing conditions for microstructured optical fiber fabrication,” Opt. Mater. Express 4(1), 29–40 (2014).
[Crossref]

R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, and T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express 2(11), 1538–1547 (2012).
[Crossref]

S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-based aluminum ion sensing using a surface-functionalized microstructured optical fiber,” Langmuir 27(9), 5680–5685 (2011).
[Crossref] [PubMed]

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. Francois, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

S. Afshar V, W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett. 34(22), 3577–3579 (2009).
[Crossref] [PubMed]

S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express 17(21), 18533–18542 (2009).
[Crossref] [PubMed]

Y. Ruan, T. C. Foo, S. Warren-Smith, P. Hoffmann, R. C. Moore, H. Ebendorff-Heidepriem, and T. M. Monro, “Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors,” Opt. Express 16(22), 18514–18523 (2008).
[Crossref] [PubMed]

Eggleton, B. J.

Emiliyanov, G.

Facincani, T.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. Brito Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol. 18(10), 3075–3081 (2007).
[Crossref]

Fassi Fehri, M.

Feng, J.

J. Feng, M. Ding, J.-L. Kou, F. Xu, and Y.-Q. Lu, “An optical fiber tip micrograting thermometer,” IEEE Photonics J. 3(5), 810–814 (2011).
[Crossref]

Ferdinand, P.

Fini, J. M.

J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15(6), 1120–1128 (2004).
[Crossref]

Folkenberg, J. R.

Foo, T. C.

Francois, A.

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. Francois, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Frazao, O.

S. Silva, P. Roriz, and O. Frazao, “Refractive index measurements of liquids based on microstructured optical fibers,” Photonics 1(4), 516–529 (2014).
[Crossref]

Frazão, O.

Furusawa, K.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[Crossref]

J. K. Sahu, C. C. Renaud, K. Furusawa, R. Selvas, J. A. Alvarez-Chavez, D. J. Richardson, and J. Nilsson, “Jacketed air-clad cladding pumped ytterbium-doped fibre laser with wide tuning range,” Electron. Lett. 37(18), 1116–1117 (2001).
[Crossref]

K. Furusawa, A. Malinowski, J. Price, T. Monro, J. Sahu, J. Nilsson, and D. Richardson, “Cladding pumped ytterbium-doped fiber laser with holey inner and outer cladding,” Opt. Express 9(13), 714–720 (2001).
[Crossref] [PubMed]

Gauvreau, B.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Giannetti, S.

A. Candiani, A. Bertucci, S. Giannetti, M. Konstantaki, A. Manicardi, S. Pissadakis, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating,” J. Biomed. Opt. 18(5), 057004 (2013).
[Crossref] [PubMed]

Gibson, B.

Griesser, H. P.

C. Perrella, H. P. Griesser, P. S. Light, R. Kostecki, T. M. Stace, H. Ebendorff-Heidepriem, T. M. Monro, A. G. White, and A. N. Luiten, “Demonstration of an exposed-core fiber platform for two-photon rubidium spectroscopy,” Phys. Rev. Appl. 4(1), 014013 (2015).
[Crossref]

Groothoff, N.

Hakuta, K.

Hansen, O.

Hansen, T. P.

Hassani, A.

Hautakorpi, M.

Hedley, T. D.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photonic. Tech. L. 16, 843–845 (2004).
[Crossref]

Heng, S.

S. Heng, A. M. Mak, D. B. Stubing, T. M. Monro, and A. D. Abell, “Dual sensor for Cd(II) and Ca(II): selective nanoliter-scale sensing of metal ions,” Anal. Chem. 86(7), 3268–3272 (2014).
[Crossref] [PubMed]

S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-based aluminum ion sensing using a surface-functionalized microstructured optical fiber,” Langmuir 27(9), 5680–5685 (2011).
[Crossref] [PubMed]

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. Francois, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Hill, K.

L. V. Nguyen, K. Hill, S. C. Warren-Smith, and T. M. Monro, “Interferometric-type optical biosensor based on exposed-core microstructured optical fiber,” Sensor. Actuat. Biol. Chem. 211, 320–327 (2015).

Hoffmann, P.

Hoiby, P.

Hoiby, P. E.

Høiby, P. E.

Huntington, S.

Jensen, J.

Jensen, J. B.

Kabashin, A.

Kaiser, P.

P. Kaiser and H. W. Astle, “Low-loss single-material fibers made from pure fused silica,” Bell Syst. Tech. J. 53(6), 1021–1039 (1974).
[Crossref]

Kawai, Y.

Knight, J. C.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photonic. Tech. L. 16, 843–845 (2004).
[Crossref]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
[Crossref] [PubMed]

J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
[Crossref] [PubMed]

Konstantaki, M.

A. Candiani, A. Bertucci, S. Giannetti, M. Konstantaki, A. Manicardi, S. Pissadakis, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating,” J. Biomed. Opt. 18(5), 057004 (2013).
[Crossref] [PubMed]

Kostecki, R.

Kou, J.-L.

J. Feng, M. Ding, J.-L. Kou, F. Xu, and Y.-Q. Lu, “An optical fiber tip micrograting thermometer,” IEEE Photonics J. 3(5), 810–814 (2011).
[Crossref]

Kuhlmey, B. T.

Laffont, G.

Large, M. C. J.

Le Kien, F.

Light, P. S.

C. Perrella, H. P. Griesser, P. S. Light, R. Kostecki, T. M. Stace, H. Ebendorff-Heidepriem, T. M. Monro, A. G. White, and A. N. Luiten, “Demonstration of an exposed-core fiber platform for two-photon rubidium spectroscopy,” Phys. Rev. Appl. 4(1), 014013 (2015).
[Crossref]

Liu, Y.

Lu, Y.-Q.

J. Feng, M. Ding, J.-L. Kou, F. Xu, and Y.-Q. Lu, “An optical fiber tip micrograting thermometer,” IEEE Photonics J. 3(5), 810–814 (2011).
[Crossref]

Ludvigsen, H.

Luiten, A. N.

C. Perrella, H. P. Griesser, P. S. Light, R. Kostecki, T. M. Stace, H. Ebendorff-Heidepriem, T. M. Monro, A. G. White, and A. N. Luiten, “Demonstration of an exposed-core fiber platform for two-photon rubidium spectroscopy,” Phys. Rev. Appl. 4(1), 014013 (2015).
[Crossref]

Lwin, R.

Mak, A. M.

S. Heng, A. M. Mak, D. B. Stubing, T. M. Monro, and A. D. Abell, “Dual sensor for Cd(II) and Ca(II): selective nanoliter-scale sensing of metal ions,” Anal. Chem. 86(7), 3268–3272 (2014).
[Crossref] [PubMed]

Malinowski, A.

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Manicardi, A.

A. Candiani, A. Bertucci, S. Giannetti, M. Konstantaki, A. Manicardi, S. Pissadakis, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating,” J. Biomed. Opt. 18(5), 057004 (2013).
[Crossref] [PubMed]

Marques, M. B.

Martelli, C.

Mattinen, M.

McAdam, G.

Mechin, D.

P. Toupin, L. Brilland, C. Boussard-Pledel, B. Bureau, D. Mechin, J.-L. Adam, and J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013).
[Crossref]

Meng, C.

Minor, A. M.

C. A. Volkert and A. M. Minor, “Focused ion beam microscopy and micromachining,” MRS Bull. 32(05), 389–399 (2007).
[Crossref]

Miyazaki, H. T.

Monro, T.

Monro, T. M.

C. Perrella, H. P. Griesser, P. S. Light, R. Kostecki, T. M. Stace, H. Ebendorff-Heidepriem, T. M. Monro, A. G. White, and A. N. Luiten, “Demonstration of an exposed-core fiber platform for two-photon rubidium spectroscopy,” Phys. Rev. Appl. 4(1), 014013 (2015).
[Crossref]

L. V. Nguyen, K. Hill, S. C. Warren-Smith, and T. M. Monro, “Interferometric-type optical biosensor based on exposed-core microstructured optical fiber,” Sensor. Actuat. Biol. Chem. 211, 320–327 (2015).

S. Heng, A. M. Mak, D. B. Stubing, T. M. Monro, and A. D. Abell, “Dual sensor for Cd(II) and Ca(II): selective nanoliter-scale sensing of metal ions,” Anal. Chem. 86(7), 3268–3272 (2014).
[Crossref] [PubMed]

S. C. Warren-Smith and T. M. Monro, “Exposed core microstructured optical fiber Bragg gratings: refractive index sensing,” Opt. Express 22(2), 1480–1489 (2014).
[Crossref] [PubMed]

R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Predicting the drawing conditions for microstructured optical fiber fabrication,” Opt. Mater. Express 4(1), 29–40 (2014).
[Crossref]

S. C. Warren-Smith, R. Kostecki, L. V. Nguyen, and T. M. Monro, “Fabrication, splicing, Bragg grating writing, and polyelectrolyte functionalization of exposed-core microstructured optical fibers,” Opt. Express 22(24), 29493–29504 (2014).
[Crossref] [PubMed]

G. Tsiminis, F. Chu, S. C. Warren-Smith, N. A. Spooner, and T. M. Monro, “Identification and quantification of explosives in nanolitre solution volumes by Raman spectroscopy in suspended core optical fibers,” Sensors (Basel) 13(10), 13163–13177 (2013).
[Crossref] [PubMed]

R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, and T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express 2(11), 1538–1547 (2012).
[Crossref]

S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-based aluminum ion sensing using a surface-functionalized microstructured optical fiber,” Langmuir 27(9), 5680–5685 (2011).
[Crossref] [PubMed]

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. Francois, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

S. Afshar V, W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett. 34(22), 3577–3579 (2009).
[Crossref] [PubMed]

S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express 17(21), 18533–18542 (2009).
[Crossref] [PubMed]

Y. Ruan, T. C. Foo, S. Warren-Smith, P. Hoffmann, R. C. Moore, H. Ebendorff-Heidepriem, and T. M. Monro, “Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors,” Opt. Express 16(22), 18514–18523 (2008).
[Crossref] [PubMed]

S. Afshar, S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express 15(26), 17891–17901 (2007).
[Crossref] [PubMed]

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[Crossref]

Moore, R.

Moore, R. C.

Nakajima, K.

Nayak, K. P.

Nguyen, L. V.

L. V. Nguyen, K. Hill, S. C. Warren-Smith, and T. M. Monro, “Interferometric-type optical biosensor based on exposed-core microstructured optical fiber,” Sensor. Actuat. Biol. Chem. 211, 320–327 (2015).

S. C. Warren-Smith, R. Kostecki, L. V. Nguyen, and T. M. Monro, “Fabrication, splicing, Bragg grating writing, and polyelectrolyte functionalization of exposed-core microstructured optical fibers,” Opt. Express 22(24), 29493–29504 (2014).
[Crossref] [PubMed]

Nielsen, K.

Nielsen, L. B.

Nilsson, J.

K. Furusawa, A. Malinowski, J. Price, T. Monro, J. Sahu, J. Nilsson, and D. Richardson, “Cladding pumped ytterbium-doped fiber laser with holey inner and outer cladding,” Opt. Express 9(13), 714–720 (2001).
[Crossref] [PubMed]

J. K. Sahu, C. C. Renaud, K. Furusawa, R. Selvas, J. A. Alvarez-Chavez, D. J. Richardson, and J. Nilsson, “Jacketed air-clad cladding pumped ytterbium-doped fibre laser with wide tuning range,” Electron. Lett. 37(18), 1116–1117 (2001).
[Crossref]

Noordegraaf, D.

Olivero, P.

Ong, J. S. K.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. Brito Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol. 18(10), 3075–3081 (2007).
[Crossref]

Pagnoux, D.

Pedersen, L.

Pedersen, L. H.

Percival, R. M.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photonic. Tech. L. 16, 843–845 (2004).
[Crossref]

Perrella, C.

C. Perrella, H. P. Griesser, P. S. Light, R. Kostecki, T. M. Stace, H. Ebendorff-Heidepriem, T. M. Monro, A. G. White, and A. N. Luiten, “Demonstration of an exposed-core fiber platform for two-photon rubidium spectroscopy,” Phys. Rev. Appl. 4(1), 014013 (2015).
[Crossref]

Petersen, D. H.

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Note: optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
[Crossref] [PubMed]

Pevec, S.

Phan Huy, M. C.

Pissadakis, S.

A. Candiani, A. Bertucci, S. Giannetti, M. Konstantaki, A. Manicardi, S. Pissadakis, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating,” J. Biomed. Opt. 18(5), 057004 (2013).
[Crossref] [PubMed]

Price, J.

Ranka, J. K.

Renaud, C. C.

J. K. Sahu, C. C. Renaud, K. Furusawa, R. Selvas, J. A. Alvarez-Chavez, D. J. Richardson, and J. Nilsson, “Jacketed air-clad cladding pumped ytterbium-doped fibre laser with wide tuning range,” Electron. Lett. 37(18), 1116–1117 (2001).
[Crossref]

Richardson, D.

Richardson, D. J.

J. K. Sahu, C. C. Renaud, K. Furusawa, R. Selvas, J. A. Alvarez-Chavez, D. J. Richardson, and J. Nilsson, “Jacketed air-clad cladding pumped ytterbium-doped fibre laser with wide tuning range,” Electron. Lett. 37(18), 1116–1117 (2001).
[Crossref]

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[Crossref]

Riishede, J.

Rindorf, L.

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Roriz, P.

S. Silva, P. Roriz, and O. Frazao, “Refractive index measurements of liquids based on microstructured optical fibers,” Photonics 1(4), 516–529 (2014).
[Crossref]

Rothhardt, M.

Roy, P.

Ruan, Y.

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Russell, P. S. J.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photonic. Tech. L. 16, 843–845 (2004).
[Crossref]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
[Crossref] [PubMed]

J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
[Crossref] [PubMed]

Sahu, J.

Sahu, J. K.

J. K. Sahu, C. C. Renaud, K. Furusawa, R. Selvas, J. A. Alvarez-Chavez, D. J. Richardson, and J. Nilsson, “Jacketed air-clad cladding pumped ytterbium-doped fibre laser with wide tuning range,” Electron. Lett. 37(18), 1116–1117 (2001).
[Crossref]

Savenko, A.

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Note: optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
[Crossref] [PubMed]

Schartner, E. P.

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. Francois, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Schmidt, M. A.

Selleri, S.

A. Candiani, A. Bertucci, S. Giannetti, M. Konstantaki, A. Manicardi, S. Pissadakis, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating,” J. Biomed. Opt. 18(5), 057004 (2013).
[Crossref] [PubMed]

Selvas, R.

J. K. Sahu, C. C. Renaud, K. Furusawa, R. Selvas, J. A. Alvarez-Chavez, D. J. Richardson, and J. Nilsson, “Jacketed air-clad cladding pumped ytterbium-doped fibre laser with wide tuning range,” Electron. Lett. 37(18), 1116–1117 (2001).
[Crossref]

Silva, S.

S. Silva, P. Roriz, and O. Frazao, “Refractive index measurements of liquids based on microstructured optical fibers,” Photonics 1(4), 516–529 (2014).
[Crossref]

Skorobogatiy, M.

Skorobogatiy, M. A.

Spooner, N. A.

G. Tsiminis, F. Chu, S. C. Warren-Smith, N. A. Spooner, and T. M. Monro, “Identification and quantification of explosives in nanolitre solution volumes by Raman spectroscopy in suspended core optical fibers,” Sensors (Basel) 13(10), 13163–13177 (2013).
[Crossref] [PubMed]

Stace, T. M.

C. Perrella, H. P. Griesser, P. S. Light, R. Kostecki, T. M. Stace, H. Ebendorff-Heidepriem, T. M. Monro, A. G. White, and A. N. Luiten, “Demonstration of an exposed-core fiber platform for two-photon rubidium spectroscopy,” Phys. Rev. Appl. 4(1), 014013 (2015).
[Crossref]

Stentz, A. J.

Stubing, D. B.

S. Heng, A. M. Mak, D. B. Stubing, T. M. Monro, and A. D. Abell, “Dual sensor for Cd(II) and Ca(II): selective nanoliter-scale sensing of metal ions,” Anal. Chem. 86(7), 3268–3272 (2014).
[Crossref] [PubMed]

Sugimoto, Y.

Talkenberg, F.

Tong, L.

Toupin, P.

P. Toupin, L. Brilland, C. Boussard-Pledel, B. Bureau, D. Mechin, J.-L. Adam, and J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013).
[Crossref]

Troles, J.

P. Toupin, L. Brilland, C. Boussard-Pledel, B. Bureau, D. Mechin, J.-L. Adam, and J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013).
[Crossref]

Tsiminis, G.

G. Tsiminis, F. Chu, S. C. Warren-Smith, N. A. Spooner, and T. M. Monro, “Identification and quantification of explosives in nanolitre solution volumes by Raman spectroscopy in suspended core optical fibers,” Sensors (Basel) 13(10), 13163–13177 (2013).
[Crossref] [PubMed]

Vaz, A. R.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. Brito Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol. 18(10), 3075–3081 (2007).
[Crossref]

Volkert, C. A.

C. A. Volkert and A. M. Minor, “Focused ion beam microscopy and micromachining,” MRS Bull. 32(05), 389–399 (2007).
[Crossref]

Wadsworth, W. J.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photonic. Tech. L. 16, 843–845 (2004).
[Crossref]

Wang, A.

Wang, F.

F. Wang, W. Yuan, O. Hansen, and O. Bang, “Selective filling of photonic crystal fibers using focused ion beam milled microchannels,” Opt. Express 19(18), 17585–17590 (2011).
[Crossref] [PubMed]

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Note: optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
[Crossref] [PubMed]

Warren-Smith, S.

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. Francois, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Y. Ruan, T. C. Foo, S. Warren-Smith, P. Hoffmann, R. C. Moore, H. Ebendorff-Heidepriem, and T. M. Monro, “Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors,” Opt. Express 16(22), 18514–18523 (2008).
[Crossref] [PubMed]

Warren-Smith, S. C.

L. V. Nguyen, K. Hill, S. C. Warren-Smith, and T. M. Monro, “Interferometric-type optical biosensor based on exposed-core microstructured optical fiber,” Sensor. Actuat. Biol. Chem. 211, 320–327 (2015).

S. C. Warren-Smith and T. M. Monro, “Exposed core microstructured optical fiber Bragg gratings: refractive index sensing,” Opt. Express 22(2), 1480–1489 (2014).
[Crossref] [PubMed]

R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Predicting the drawing conditions for microstructured optical fiber fabrication,” Opt. Mater. Express 4(1), 29–40 (2014).
[Crossref]

S. C. Warren-Smith, R. Kostecki, L. V. Nguyen, and T. M. Monro, “Fabrication, splicing, Bragg grating writing, and polyelectrolyte functionalization of exposed-core microstructured optical fibers,” Opt. Express 22(24), 29493–29504 (2014).
[Crossref] [PubMed]

G. Tsiminis, F. Chu, S. C. Warren-Smith, N. A. Spooner, and T. M. Monro, “Identification and quantification of explosives in nanolitre solution volumes by Raman spectroscopy in suspended core optical fibers,” Sensors (Basel) 13(10), 13163–13177 (2013).
[Crossref] [PubMed]

R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, and T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express 2(11), 1538–1547 (2012).
[Crossref]

S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-based aluminum ion sensing using a surface-functionalized microstructured optical fiber,” Langmuir 27(9), 5680–5685 (2011).
[Crossref] [PubMed]

S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express 17(21), 18533–18542 (2009).
[Crossref] [PubMed]

S. Afshar, S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express 15(26), 17891–17901 (2007).
[Crossref] [PubMed]

White, A. G.

C. Perrella, H. P. Griesser, P. S. Light, R. Kostecki, T. M. Stace, H. Ebendorff-Heidepriem, T. M. Monro, A. G. White, and A. N. Luiten, “Demonstration of an exposed-core fiber platform for two-photon rubidium spectroscopy,” Phys. Rev. Appl. 4(1), 014013 (2015).
[Crossref]

Wieduwilt, T.

Windeler, R. S.

Wu, D. K. C.

Xiao, Y.

Xu, F.

J. Feng, M. Ding, J.-L. Kou, F. Xu, and Y.-Q. Lu, “An optical fiber tip micrograting thermometer,” IEEE Photonics J. 3(5), 810–814 (2011).
[Crossref]

Yu, H.

Yuan, W.

F. Wang, W. Yuan, O. Hansen, and O. Bang, “Selective filling of photonic crystal fibers using focused ion beam milled microchannels,” Opt. Express 19(18), 17585–17590 (2011).
[Crossref] [PubMed]

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Note: optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
[Crossref] [PubMed]

Zhang, A. P.

Zhang, W. Q.

Zhu, Y.

Anal. Chem. (1)

S. Heng, A. M. Mak, D. B. Stubing, T. M. Monro, and A. D. Abell, “Dual sensor for Cd(II) and Ca(II): selective nanoliter-scale sensing of metal ions,” Anal. Chem. 86(7), 3268–3272 (2014).
[Crossref] [PubMed]

Bell Syst. Tech. J. (1)

P. Kaiser and H. W. Astle, “Low-loss single-material fibers made from pure fused silica,” Bell Syst. Tech. J. 53(6), 1021–1039 (1974).
[Crossref]

Electron. Lett. (1)

J. K. Sahu, C. C. Renaud, K. Furusawa, R. Selvas, J. A. Alvarez-Chavez, D. J. Richardson, and J. Nilsson, “Jacketed air-clad cladding pumped ytterbium-doped fibre laser with wide tuning range,” Electron. Lett. 37(18), 1116–1117 (2001).
[Crossref]

IEEE Photonic. Tech. L. (1)

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photonic. Tech. L. 16, 843–845 (2004).
[Crossref]

IEEE Photonics J. (1)

J. Feng, M. Ding, J.-L. Kou, F. Xu, and Y.-Q. Lu, “An optical fiber tip micrograting thermometer,” IEEE Photonics J. 3(5), 810–814 (2011).
[Crossref]

J. Biomed. Opt. (1)

A. Candiani, A. Bertucci, S. Giannetti, M. Konstantaki, A. Manicardi, S. Pissadakis, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating,” J. Biomed. Opt. 18(5), 057004 (2013).
[Crossref] [PubMed]

J. Non-Cryst. Solids (1)

P. Toupin, L. Brilland, C. Boussard-Pledel, B. Bureau, D. Mechin, J.-L. Adam, and J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013).
[Crossref]

Langmuir (1)

S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-based aluminum ion sensing using a surface-functionalized microstructured optical fiber,” Langmuir 27(9), 5680–5685 (2011).
[Crossref] [PubMed]

Meas. Sci. Technol. (3)

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[Crossref]

J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15(6), 1120–1128 (2004).
[Crossref]

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. Brito Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol. 18(10), 3075–3081 (2007).
[Crossref]

MRS Bull. (1)

C. A. Volkert and A. M. Minor, “Focused ion beam microscopy and micromachining,” MRS Bull. 32(05), 389–399 (2007).
[Crossref]

Opt. Express (18)

S. C. Warren-Smith and T. M. Monro, “Exposed core microstructured optical fiber Bragg gratings: refractive index sensing,” Opt. Express 22(2), 1480–1489 (2014).
[Crossref] [PubMed]

S. C. Warren-Smith, R. Kostecki, L. V. Nguyen, and T. M. Monro, “Fabrication, splicing, Bragg grating writing, and polyelectrolyte functionalization of exposed-core microstructured optical fibers,” Opt. Express 22(24), 29493–29504 (2014).
[Crossref] [PubMed]

F. Wang, W. Yuan, O. Hansen, and O. Bang, “Selective filling of photonic crystal fibers using focused ion beam milled microchannels,” Opt. Express 19(18), 17585–17590 (2011).
[Crossref] [PubMed]

S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express 17(21), 18533–18542 (2009).
[Crossref] [PubMed]

A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14(24), 11616–11621 (2006).
[Crossref] [PubMed]

B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based Surface Plasmon Resonance sensors,” Opt. Express 15(18), 11413–11426 (2007).
[Crossref] [PubMed]

F. M. Cox, R. Lwin, M. C. J. Large, and C. M. B. Cordeiro, “Opening up optical fibres,” Opt. Express 15(19), 11843–11848 (2007).
[Crossref] [PubMed]

Y. Zhu, H. Du, and R. Bise, “Design of solid-core microstructured optical fiber with steering-wheel air cladding for optimal evanescent-field sensing,” Opt. Express 14(8), 3541–3546 (2006).
[Crossref] [PubMed]

S. Afshar, S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express 15(26), 17891–17901 (2007).
[Crossref] [PubMed]

F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Opt. Express 14(9), 4135–4140 (2006).
[Crossref] [PubMed]

K. Furusawa, A. Malinowski, J. Price, T. Monro, J. Sahu, J. Nilsson, and D. Richardson, “Cladding pumped ytterbium-doped fiber laser with holey inner and outer cladding,” Opt. Express 9(13), 714–720 (2001).
[Crossref] [PubMed]

J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
[Crossref] [PubMed]

Y. Ruan, T. C. Foo, S. Warren-Smith, P. Hoffmann, R. C. Moore, H. Ebendorff-Heidepriem, and T. M. Monro, “Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors,” Opt. Express 16(22), 18514–18523 (2008).
[Crossref] [PubMed]

M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express 16(12), 8427–8432 (2008).
[Crossref] [PubMed]

L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express 14(18), 8224–8231 (2006).
[Crossref] [PubMed]

T. Wieduwilt, J. Dellith, F. Talkenberg, H. Bartelt, and M. A. Schmidt, “Reflectivity enhanced refractive index sensor based on a fiber-integrated Fabry-Perot microresonator,” Opt. Express 22(21), 25333–25346 (2014).
[Crossref] [PubMed]

R. M. André, S. Pevec, M. Becker, J. Dellith, M. Rothhardt, M. B. Marques, D. Donlagic, H. Bartelt, and O. Frazão, “Focused ion beam post-processing of optical fiber Fabry-Perot cavities for sensing applications,” Opt. Express 22(11), 13102–13108 (2014).
[Crossref] [PubMed]

K. P. Nayak, F. Le Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express 19(15), 14040–14050 (2011).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. Francois, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Opt. Lett. (10)

S. Afshar V, W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett. 34(22), 3577–3579 (2009).
[Crossref] [PubMed]

J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
[Crossref] [PubMed]

T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
[Crossref] [PubMed]

Y. Liu, C. Meng, A. P. Zhang, Y. Xiao, H. Yu, and L. Tong, “Compact microfiber Bragg gratings with high-index contrast,” Opt. Lett. 36(16), 3115–3117 (2011).
[Crossref] [PubMed]

C. Martelli, P. Olivero, J. Canning, N. Groothoff, B. Gibson, and S. Huntington, “Micromachining structured optical fibers using focused ion beam milling,” Opt. Lett. 32(11), 1575–1577 (2007).
[Crossref] [PubMed]

A. Wang, A. Docherty, B. T. Kuhlmey, F. M. Cox, and M. C. J. Large, “Side-hole fiber sensor based on surface plasmon resonance,” Opt. Lett. 34(24), 3890–3892 (2009).
[Crossref] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000).
[Crossref] [PubMed]

J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett. 29(17), 1974–1976 (2004).
[Crossref] [PubMed]

D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
[Crossref] [PubMed]

M. C. Phan Huy, G. Laffont, V. Dewynter, P. Ferdinand, P. Roy, J.-L. Auguste, D. Pagnoux, W. Blanc, and B. Dussardier, “Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer,” Opt. Lett. 32(16), 2390–2392 (2007).
[Crossref] [PubMed]

Opt. Mater. Express (2)

Photonics (1)

S. Silva, P. Roriz, and O. Frazao, “Refractive index measurements of liquids based on microstructured optical fibers,” Photonics 1(4), 516–529 (2014).
[Crossref]

Phys. Rev. Appl. (1)

C. Perrella, H. P. Griesser, P. S. Light, R. Kostecki, T. M. Stace, H. Ebendorff-Heidepriem, T. M. Monro, A. G. White, and A. N. Luiten, “Demonstration of an exposed-core fiber platform for two-photon rubidium spectroscopy,” Phys. Rev. Appl. 4(1), 014013 (2015).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Rev. Sci. Instrum. (1)

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Note: optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
[Crossref] [PubMed]

Science (2)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Sensor. Actuat. Biol. Chem. (1)

L. V. Nguyen, K. Hill, S. C. Warren-Smith, and T. M. Monro, “Interferometric-type optical biosensor based on exposed-core microstructured optical fiber,” Sensor. Actuat. Biol. Chem. 211, 320–327 (2015).

Sensors (Basel) (1)

G. Tsiminis, F. Chu, S. C. Warren-Smith, N. A. Spooner, and T. M. Monro, “Identification and quantification of explosives in nanolitre solution volumes by Raman spectroscopy in suspended core optical fibers,” Sensors (Basel) 13(10), 13163–13177 (2013).
[Crossref] [PubMed]

Other (1)

Heraeus, “Quartz glass for optics - data and properties”, retrieved 9 July 2015, http://heraeus-quarzglas.com/media/webmedia_local/downloads/broschren_mo/DataandProperties_Optics_fusedsilica.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Scanning electron microscope (SEM) images of the entire microstructured exposed-core fiber (ECF) cross-sectional geometry (a) and of the core region (b).
Fig. 2
Fig. 2 Scanning electron microscope (SEM) image of the splice between the ECF and a conventional single mode fiber (SMF28e). (a) Viewed perpendicularly to the optical axis, directly into the cladding opening. (b) Viewed at a 45° angle. For reference, the diameter of the ECF (left) is 160 µm while the SMF28e (right) is 125 µm.
Fig. 3
Fig. 3 The procedure used for fabricating Fabry-Perot cavities that cut through the entire core of the ECF, viewing down into the slot of the ECF. Images (a)-(c) were taken with a 45° viewing angle while (d) and (e) were taken perpendicularly to the fiber core. (a) A square milling pattern was used first to open the geometry with high current (I ≈2 nA). (b) The two end faces were polished with lower current (I ≈600 pA). (c) The remaining central material was removed. (d) The final Fabry-Perot cavity was measured to be 34.6 µm long. (e) The length of the ECF from the splice to the cavity was measured to be 434 µm.
Fig. 4
Fig. 4 (a) The shallow Fabry-Perot cavity in the core of the ECF. The upper and lower horizontal lines are a result of the walls of the open wedge structure of the ECF (see Fig. 1). (b) The left hand side cavity wall in (a), but viewed at an angle of 45° in order to measure the cavity depth. The measurement of 2.0 µm was after multiplying by √2 to take into account the viewing angle. (c) The length of the ECF from the splice to the cavity was measured to be 524 µm.
Fig. 5
Fig. 5 Reflection of the Fabry-Perot cavity shown in (a) Fig. 3 and (b) Fig. 4. The reflectivity was normalized to the reflection of a cleaved single-mode fiber. That is, approximately 3.3% on the graph (just above the top) corresponds to reflection from a single glass-air interface. The reflection is shown for the case where the 50 nm tantalum coating is present (red) and after it was removed using the focused ion beam (black).
Fig. 6
Fig. 6 Fast Fourier transform (FFT) of the spectra measured from the cavities in (a) Fig. 3 and (b) Fig. 4. The x-axis is displayed as optical path difference (OPD) using Eq. (2).

Tables (1)

Tables Icon

Table 1 Cavity Length: Comparison of Optical Measurements with SEM Measurementsa

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

FS R λ =Δλ= λ 2 2nl = λ 2 OPD ,
FS R ν =Δν= c 2nl = c OPD ,

Metrics