Abstract

We report the first application of cavity-enhanced absorption spectroscopy (CEAS) with a ps-pulsed UV laser for sensitive and rapid gaseous species time-history measurements in a transient environment (in this study, a shock tube). The broadband nature of the ps pulses enabled instantaneous coupling of the laser beam into roughly a thousand cavity modes, which grants excellent immunity to laser-cavity coupling noise in environments with heavy vibrations, even with an on-axis alignment. In this proof-of-concept experiment, we demonstrated an absorption gain of 49, which improved the minimum detectable absorbance by ~20 compared to the conventional single-pass strategy at similar experimental conditions. For absorption measurements behind reflected shock waves, an effective time-resolution of ~2 μs was achieved, which enabled time-resolved observations of transient phenomena, such as the vibrational relaxation of O2 demonstrated here. The substantial improvement in detection sensitivity, together with microsecond measurement resolution implies excellent potential for studies of transient physical and chemical processes in nonequilibrium situations, particularly via measurements of weak absorptions of trace species in dilute reactive systems.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Time-resolved in situ detection of CO in a shock tube using cavity-enhanced absorption spectroscopy with a quantum-cascade laser near 4.6µm

Kai Sun, Shengkai Wang, Ritobrata Sur, Xing Chao, Jay B. Jeffries, and Ronald K. Hanson
Opt. Express 22(20) 24559-24565 (2014)

Sensitive and rapid laser diagnostic for shock tube kinetics studies using cavity-enhanced absorption spectroscopy

Kai Sun, Shengkai Wang, Ritobrata Sur, Xing Chao, Jay B. Jeffries, and Ronald K. Hanson
Opt. Express 22(8) 9291-9300 (2014)

Shock-tube measurements of excited oxygen atoms using cavity-enhanced absorption spectroscopy

Marcel Nations, Shengkai Wang, Christopher S. Goldenstein, Kai Sun, David F. Davidson, Jay B. Jeffries, and Ronald K. Hanson
Appl. Opt. 54(29) 8766-8775 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69(11), 3763–3769 (1998).
    [Crossref]
  2. A. O’Keefe, J. J. Scherer, and J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307(5), 343–349 (1999).
    [Crossref]
  3. M. Mazurenka, A. J. Orr-Ewing, R. Peverall, and G. A. D. Ritchie, “Cavity ring-down and cavity enhanced spectroscopy using diode lasers,” Annu. Rep. Prog. Chem. 101, 100–142 (2005).
  4. J. H. van Helden, R. Peverall, and G. A. D. Ritchie, “Cavity enhanced techniques using continuous wave lasers,” in Cavity Ring-Down Spectroscopy: Techniques and Applications, G. Berden and R. Engeln, eds. (Wiley-Blackwell, 2009), pp. 27–56.
  5. B. Ouyang and R. L. Jones, “Understanding the sensitivity of cavity-enhanced absorption spectroscopy: pathlength enhancement versus noise suppression,” Appl. Phys. B 109(4), 581–591 (2012).
    [Crossref]
  6. K. Sun, S. Wang, R. Sur, X. Chao, J. B. Jeffries, and R. K. Hanson, “Time-resolved in situ detection of CO in a shock tube using cavity-enhanced absorption spectroscopy with a quantum-cascade laser near 4.6 µm,” Opt. Express 22(20), 24559–24565 (2014).
    [Crossref] [PubMed]
  7. S. Wang, K. Sun, D. F. Davidson, J. B. Jeffries, and R. K. Hanson, “Shock-tube measurement of acetone dissociation using cavity-enhanced absorption spectroscopy of CO,” J. Phys. Chem. A 119(28), 7257–7262 (2015).
    [Crossref] [PubMed]
  8. K. Sun, S. Wang, R. Sur, X. Chao, J. B. Jeffries, and R. K. Hanson, “Sensitive and rapid laser diagnostic for shock tube kinetics studies using cavity-enhanced absorption spectroscopy,” Opt. Express 22(8), 9291–9300 (2014).
    [Crossref] [PubMed]
  9. M. Nations, S. Wang, C. S. Goldenstein, K. Sun, D. F. Davidson, J. B. Jeffries, and R. K. Hanson, “Shock-tube measurements of excited oxygen atoms using cavity-enhanced absorption spectroscopy,” Appl. Opt. 54(29), 8766–8775 (2015).
    [Crossref] [PubMed]
  10. M. Nations, High Temperature Gasdynamics Laboratory, Deptartment of Mechanical Engineering, Stanford University, Stanford, CA, 94305, and Ronald K. Hanson are preparing a manuscript to be called “Kinetics of excited oxygen formation in shock-heated O2/Ar mixtures”
  11. G. S. Engel, W. S. Drisdell, F. N. Keutsch, E. J. Moyer, and J. G. Anderson, “Ultrasensitive near-infrared integrated cavity output spectroscopy technique for detection of CO at 1.57 µm: new sensitivity limits for absorption measurements in passive optical cavities,” Appl. Opt. 45(36), 9221–9229 (2006).
    [Crossref] [PubMed]
  12. J. Ye, L. S. Ma, and J. L. Hall, “Cavity-enhanced frequency modulation spectroscopy: advancing optical detection sensitivity and laser frequency stabilization,” Proc. SPIE 3270, 308366 (1998).
  13. J. Morville, S. Kassi, M. Chenevier, and D. Romanini, “Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking,” Appl. Phys. B 80(8), 1027–1038 (2005).
    [Crossref]
  14. J. B. Paul, L. Lapson, and J. G. Anderson, “Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment,” Appl. Opt. 40(27), 4904–4910 (2001).
    [Crossref] [PubMed]
  15. B. Bakowski, L. Corner, G. Hancock, R. Kotchie, R. Peverall, and G. A. D. Ritchie, “Cavity-enhanced absorption spectroscopy with a rapidly swept diode laser,” Appl. Phys. B 75(6–7), 745–750 (2002).
    [Crossref]
  16. L. Ciaffoni, J. Couper, G. Hancock, R. Peverall, P. A. Robbins, and G. A. D. Ritchie, “RF noise induced laser perturbation for improving the performance of non-resonant cavity enhanced absorption spectroscopy,” Opt. Express 22(14), 17030–17038 (2014).
    [Crossref] [PubMed]
  17. S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy,” Chem. Phys. Lett. 371(3), 284–294 (2003).
    [Crossref]
  18. S. Vaughan, T. Gherman, A. A. Ruth, and J. Orphal, “Incoherent broad-band cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO and OIO,” Phys. Chem. Chem. Phys. 10(30), 4471–4477 (2008).
    [Crossref] [PubMed]
  19. M. Triki, P. Cermak, G. Mejean, and D. Romanini, “Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis,” Appl. Phys. B 91(1), 195–201 (2008).
    [Crossref]
  20. T. Wu, W. Zhao, W. Chen, W. Zhang, and X. Gao, “Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode,” Appl. Phys. B 94(1), 85–94 (2009).
    [Crossref]
  21. T. Gherman and D. Romanini, “Modelocked cavity-enhanced absorption spectroscopy,” Opt. Express 10(19), 1033–1042 (2002).
    [Crossref] [PubMed]
  22. M. J. Thorpe and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy,” Appl. Phys. B 91(3–4), 397–414 (2008).
    [Crossref]
  23. J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express 16(14), 10178–10188 (2008).
    [Crossref] [PubMed]
  24. C. Kappel, K. Luther, and J. Troe, “Shock wave study of the unimolecular dissociation of H2O2 in its falloff range and of its secondary reactions,” Phys. Chem. Chem. Phys. 4(18), 4392–4398 (2002).
    [Crossref]
  25. L. N. Krasnoperov and J. V. Michael, “Shock tube studies using a novel multipass absorption cell: rate constant results for OH + H2 and OH + C2H6,” J. Phys. Chem. A 108(26), 5643–5648 (2004).
    [Crossref]
  26. S. Y. Grebenkin and L. N. Krasnoperov, “Kinetics and thermochemistry of the hydroxycyclohexadienyl radical reaction with O2: C6H6OH + O2 = C6H6(OH)OO,” J. Phys. Chem. A 108(11), 1953–1963 (2004).
    [Crossref]
  27. A. O’Keefe and D. A. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544–2551 (1988).
    [Crossref]
  28. S. Wang, D. F. Davidson, and R. K. Hanson, “High temperature measurements for the rate constants of C1–C4 aldehydes with OH in a shock tub,” Proc. Combust. Inst. 35(1), 473–480 (2015).
    [Crossref]
  29. Y. Nunes, G. Martins, N. J. Mason, D. Duflot, S. V. Hoffmann, J. Delwiche, J. M. J. Hubin Franskin, and P. Limão Vieira, “Electronic state spectroscopy of methyl formate probed by high resolution VUV photoabsorption, He (I) photoelectron spectroscopy and ab initio calculations,” Phys. Chem. Chem. Phys. 12(48), 15734–15743 (2010).
  30. E. Vésine and A. Mellouki, “UV absorption cross sections for a series of formates,” J. Chim. Phys. 94(9), 1634–1641 (1997).
  31. P. Werle, “Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence,” Appl. Phys. B 102(2), 313–329 (2011).
    [Crossref]
  32. E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. St. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92(3), 467–474 (2008).
    [Crossref]
  33. A. G. Gaydon and I. R. Hurle, The Shock Tube in High-Temperature Chemical Physics (Chapman and Hall, 1963).
  34. R. K. Hanson and D. F. Davidson, “Recent advances in laser absorption and shock tube methods for studies of combustion chemistry,” Pror. Energy Combust. Sci. 44, 103–114 (2014).
    [Crossref]
  35. A. C. Allison, A. Dalgarno, and N. W. Pasachoff, “Absorption by vibrationally excited molecular oxygen in the Schumann-Runge continuum,” Planet. Space Sci. 19(11), 1463–1473 (1971).
    [Crossref]
  36. M. Camac, “O2 vibration relaxation in oxygen-argon mixtures,” J. Chem. Phys. 34(2), 448–459 (1961).
    [Crossref]
  37. D. R. White and R. C. Millikan, “Oxygen vibrational relaxation in O2–He and O2–Ar mixtures,” J. Chem. Phys. 39(7), 1807–1808 (1963).
    [Crossref]
  38. R. C. Millikan and D. R. White, “Systematics of vibrational relaxation,” J. Chem. Phys. 39(12), 3209–3213 (1963).
    [Crossref]
  39. K. Owen, “Measurements of vibrational relaxation and dissociation of oxygen with laser absorption spectroscopy with applications for energy transfer in nonequilibrium air,” Engineer Dissertation, Stanford University (2014).
  40. D. F. Davidson, A. Y. Chang, M. D. Di Rosa, and R. K. Hanson, “A cw laser absorption diagnostic for methyl radicals,” J. Quant. Spectrosc. Radiat. Transf. 49(5), 559–571 (1993).
    [Crossref]
  41. K. Y. Lam, W. Ren, S. H. Pyun, A. Farooq, D. F. Davidson, and R. K. Hanson, “Multi-species time-history measurements during high-temperature acetone and 2-butanone pyrolysis,” Proc. Combust. Inst. 34(1), 607–615 (2013).
    [Crossref]
  42. J. Dammeier and G. Friedrichs, “Thermal decomposition of NCN3 as a high-temperature NCN radical source: singlet-triplet relaxation and absorption cross section of NCN(3Σ),” J. Phys. Chem. A 114(50), 12963–12971 (2010).
    [Crossref] [PubMed]

2015 (3)

S. Wang, K. Sun, D. F. Davidson, J. B. Jeffries, and R. K. Hanson, “Shock-tube measurement of acetone dissociation using cavity-enhanced absorption spectroscopy of CO,” J. Phys. Chem. A 119(28), 7257–7262 (2015).
[Crossref] [PubMed]

S. Wang, D. F. Davidson, and R. K. Hanson, “High temperature measurements for the rate constants of C1–C4 aldehydes with OH in a shock tub,” Proc. Combust. Inst. 35(1), 473–480 (2015).
[Crossref]

M. Nations, S. Wang, C. S. Goldenstein, K. Sun, D. F. Davidson, J. B. Jeffries, and R. K. Hanson, “Shock-tube measurements of excited oxygen atoms using cavity-enhanced absorption spectroscopy,” Appl. Opt. 54(29), 8766–8775 (2015).
[Crossref] [PubMed]

2014 (4)

2013 (1)

K. Y. Lam, W. Ren, S. H. Pyun, A. Farooq, D. F. Davidson, and R. K. Hanson, “Multi-species time-history measurements during high-temperature acetone and 2-butanone pyrolysis,” Proc. Combust. Inst. 34(1), 607–615 (2013).
[Crossref]

2012 (1)

B. Ouyang and R. L. Jones, “Understanding the sensitivity of cavity-enhanced absorption spectroscopy: pathlength enhancement versus noise suppression,” Appl. Phys. B 109(4), 581–591 (2012).
[Crossref]

2011 (1)

P. Werle, “Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence,” Appl. Phys. B 102(2), 313–329 (2011).
[Crossref]

2010 (2)

Y. Nunes, G. Martins, N. J. Mason, D. Duflot, S. V. Hoffmann, J. Delwiche, J. M. J. Hubin Franskin, and P. Limão Vieira, “Electronic state spectroscopy of methyl formate probed by high resolution VUV photoabsorption, He (I) photoelectron spectroscopy and ab initio calculations,” Phys. Chem. Chem. Phys. 12(48), 15734–15743 (2010).

J. Dammeier and G. Friedrichs, “Thermal decomposition of NCN3 as a high-temperature NCN radical source: singlet-triplet relaxation and absorption cross section of NCN(3Σ),” J. Phys. Chem. A 114(50), 12963–12971 (2010).
[Crossref] [PubMed]

2009 (1)

T. Wu, W. Zhao, W. Chen, W. Zhang, and X. Gao, “Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode,” Appl. Phys. B 94(1), 85–94 (2009).
[Crossref]

2008 (5)

S. Vaughan, T. Gherman, A. A. Ruth, and J. Orphal, “Incoherent broad-band cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO and OIO,” Phys. Chem. Chem. Phys. 10(30), 4471–4477 (2008).
[Crossref] [PubMed]

M. Triki, P. Cermak, G. Mejean, and D. Romanini, “Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis,” Appl. Phys. B 91(1), 195–201 (2008).
[Crossref]

M. J. Thorpe and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy,” Appl. Phys. B 91(3–4), 397–414 (2008).
[Crossref]

J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express 16(14), 10178–10188 (2008).
[Crossref] [PubMed]

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. St. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92(3), 467–474 (2008).
[Crossref]

2006 (1)

2005 (2)

M. Mazurenka, A. J. Orr-Ewing, R. Peverall, and G. A. D. Ritchie, “Cavity ring-down and cavity enhanced spectroscopy using diode lasers,” Annu. Rep. Prog. Chem. 101, 100–142 (2005).

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, “Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking,” Appl. Phys. B 80(8), 1027–1038 (2005).
[Crossref]

2004 (2)

L. N. Krasnoperov and J. V. Michael, “Shock tube studies using a novel multipass absorption cell: rate constant results for OH + H2 and OH + C2H6,” J. Phys. Chem. A 108(26), 5643–5648 (2004).
[Crossref]

S. Y. Grebenkin and L. N. Krasnoperov, “Kinetics and thermochemistry of the hydroxycyclohexadienyl radical reaction with O2: C6H6OH + O2 = C6H6(OH)OO,” J. Phys. Chem. A 108(11), 1953–1963 (2004).
[Crossref]

2003 (1)

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy,” Chem. Phys. Lett. 371(3), 284–294 (2003).
[Crossref]

2002 (3)

C. Kappel, K. Luther, and J. Troe, “Shock wave study of the unimolecular dissociation of H2O2 in its falloff range and of its secondary reactions,” Phys. Chem. Chem. Phys. 4(18), 4392–4398 (2002).
[Crossref]

B. Bakowski, L. Corner, G. Hancock, R. Kotchie, R. Peverall, and G. A. D. Ritchie, “Cavity-enhanced absorption spectroscopy with a rapidly swept diode laser,” Appl. Phys. B 75(6–7), 745–750 (2002).
[Crossref]

T. Gherman and D. Romanini, “Modelocked cavity-enhanced absorption spectroscopy,” Opt. Express 10(19), 1033–1042 (2002).
[Crossref] [PubMed]

2001 (1)

1999 (1)

A. O’Keefe, J. J. Scherer, and J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307(5), 343–349 (1999).
[Crossref]

1998 (2)

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69(11), 3763–3769 (1998).
[Crossref]

J. Ye, L. S. Ma, and J. L. Hall, “Cavity-enhanced frequency modulation spectroscopy: advancing optical detection sensitivity and laser frequency stabilization,” Proc. SPIE 3270, 308366 (1998).

1997 (1)

E. Vésine and A. Mellouki, “UV absorption cross sections for a series of formates,” J. Chim. Phys. 94(9), 1634–1641 (1997).

1993 (1)

D. F. Davidson, A. Y. Chang, M. D. Di Rosa, and R. K. Hanson, “A cw laser absorption diagnostic for methyl radicals,” J. Quant. Spectrosc. Radiat. Transf. 49(5), 559–571 (1993).
[Crossref]

1988 (1)

A. O’Keefe and D. A. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544–2551 (1988).
[Crossref]

1971 (1)

A. C. Allison, A. Dalgarno, and N. W. Pasachoff, “Absorption by vibrationally excited molecular oxygen in the Schumann-Runge continuum,” Planet. Space Sci. 19(11), 1463–1473 (1971).
[Crossref]

1963 (2)

D. R. White and R. C. Millikan, “Oxygen vibrational relaxation in O2–He and O2–Ar mixtures,” J. Chem. Phys. 39(7), 1807–1808 (1963).
[Crossref]

R. C. Millikan and D. R. White, “Systematics of vibrational relaxation,” J. Chem. Phys. 39(12), 3209–3213 (1963).
[Crossref]

1961 (1)

M. Camac, “O2 vibration relaxation in oxygen-argon mixtures,” J. Chem. Phys. 34(2), 448–459 (1961).
[Crossref]

Allen, N. T.

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. St. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92(3), 467–474 (2008).
[Crossref]

Allison, A. C.

A. C. Allison, A. Dalgarno, and N. W. Pasachoff, “Absorption by vibrationally excited molecular oxygen in the Schumann-Runge continuum,” Planet. Space Sci. 19(11), 1463–1473 (1971).
[Crossref]

Anderson, J. G.

Bakowski, B.

B. Bakowski, L. Corner, G. Hancock, R. Kotchie, R. Peverall, and G. A. D. Ritchie, “Cavity-enhanced absorption spectroscopy with a rapidly swept diode laser,” Appl. Phys. B 75(6–7), 745–750 (2002).
[Crossref]

Berden, G.

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69(11), 3763–3769 (1998).
[Crossref]

Camac, M.

M. Camac, “O2 vibration relaxation in oxygen-argon mixtures,” J. Chem. Phys. 34(2), 448–459 (1961).
[Crossref]

Cermak, P.

M. Triki, P. Cermak, G. Mejean, and D. Romanini, “Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis,” Appl. Phys. B 91(1), 195–201 (2008).
[Crossref]

Chang, A. Y.

D. F. Davidson, A. Y. Chang, M. D. Di Rosa, and R. K. Hanson, “A cw laser absorption diagnostic for methyl radicals,” J. Quant. Spectrosc. Radiat. Transf. 49(5), 559–571 (1993).
[Crossref]

Chao, X.

Chen, W.

T. Wu, W. Zhao, W. Chen, W. Zhang, and X. Gao, “Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode,” Appl. Phys. B 94(1), 85–94 (2009).
[Crossref]

Chenevier, M.

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, “Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking,” Appl. Phys. B 80(8), 1027–1038 (2005).
[Crossref]

Ciaffoni, L.

Corner, L.

B. Bakowski, L. Corner, G. Hancock, R. Kotchie, R. Peverall, and G. A. D. Ritchie, “Cavity-enhanced absorption spectroscopy with a rapidly swept diode laser,” Appl. Phys. B 75(6–7), 745–750 (2002).
[Crossref]

Couper, J.

Dalgarno, A.

A. C. Allison, A. Dalgarno, and N. W. Pasachoff, “Absorption by vibrationally excited molecular oxygen in the Schumann-Runge continuum,” Planet. Space Sci. 19(11), 1463–1473 (1971).
[Crossref]

Dammeier, J.

J. Dammeier and G. Friedrichs, “Thermal decomposition of NCN3 as a high-temperature NCN radical source: singlet-triplet relaxation and absorption cross section of NCN(3Σ),” J. Phys. Chem. A 114(50), 12963–12971 (2010).
[Crossref] [PubMed]

Davidson, D. F.

M. Nations, S. Wang, C. S. Goldenstein, K. Sun, D. F. Davidson, J. B. Jeffries, and R. K. Hanson, “Shock-tube measurements of excited oxygen atoms using cavity-enhanced absorption spectroscopy,” Appl. Opt. 54(29), 8766–8775 (2015).
[Crossref] [PubMed]

S. Wang, K. Sun, D. F. Davidson, J. B. Jeffries, and R. K. Hanson, “Shock-tube measurement of acetone dissociation using cavity-enhanced absorption spectroscopy of CO,” J. Phys. Chem. A 119(28), 7257–7262 (2015).
[Crossref] [PubMed]

S. Wang, D. F. Davidson, and R. K. Hanson, “High temperature measurements for the rate constants of C1–C4 aldehydes with OH in a shock tub,” Proc. Combust. Inst. 35(1), 473–480 (2015).
[Crossref]

R. K. Hanson and D. F. Davidson, “Recent advances in laser absorption and shock tube methods for studies of combustion chemistry,” Pror. Energy Combust. Sci. 44, 103–114 (2014).
[Crossref]

K. Y. Lam, W. Ren, S. H. Pyun, A. Farooq, D. F. Davidson, and R. K. Hanson, “Multi-species time-history measurements during high-temperature acetone and 2-butanone pyrolysis,” Proc. Combust. Inst. 34(1), 607–615 (2013).
[Crossref]

D. F. Davidson, A. Y. Chang, M. D. Di Rosa, and R. K. Hanson, “A cw laser absorption diagnostic for methyl radicals,” J. Quant. Spectrosc. Radiat. Transf. 49(5), 559–571 (1993).
[Crossref]

Deacon, D. A.

A. O’Keefe and D. A. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544–2551 (1988).
[Crossref]

Delwiche, J.

Y. Nunes, G. Martins, N. J. Mason, D. Duflot, S. V. Hoffmann, J. Delwiche, J. M. J. Hubin Franskin, and P. Limão Vieira, “Electronic state spectroscopy of methyl formate probed by high resolution VUV photoabsorption, He (I) photoelectron spectroscopy and ab initio calculations,” Phys. Chem. Chem. Phys. 12(48), 15734–15743 (2010).

Di Rosa, M. D.

D. F. Davidson, A. Y. Chang, M. D. Di Rosa, and R. K. Hanson, “A cw laser absorption diagnostic for methyl radicals,” J. Quant. Spectrosc. Radiat. Transf. 49(5), 559–571 (1993).
[Crossref]

Drisdell, W. S.

Duflot, D.

Y. Nunes, G. Martins, N. J. Mason, D. Duflot, S. V. Hoffmann, J. Delwiche, J. M. J. Hubin Franskin, and P. Limão Vieira, “Electronic state spectroscopy of methyl formate probed by high resolution VUV photoabsorption, He (I) photoelectron spectroscopy and ab initio calculations,” Phys. Chem. Chem. Phys. 12(48), 15734–15743 (2010).

Engel, G. S.

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. St. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92(3), 467–474 (2008).
[Crossref]

G. S. Engel, W. S. Drisdell, F. N. Keutsch, E. J. Moyer, and J. G. Anderson, “Ultrasensitive near-infrared integrated cavity output spectroscopy technique for detection of CO at 1.57 µm: new sensitivity limits for absorption measurements in passive optical cavities,” Appl. Opt. 45(36), 9221–9229 (2006).
[Crossref] [PubMed]

Engeln, R.

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69(11), 3763–3769 (1998).
[Crossref]

Farooq, A.

K. Y. Lam, W. Ren, S. H. Pyun, A. Farooq, D. F. Davidson, and R. K. Hanson, “Multi-species time-history measurements during high-temperature acetone and 2-butanone pyrolysis,” Proc. Combust. Inst. 34(1), 607–615 (2013).
[Crossref]

Fiedler, S. E.

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy,” Chem. Phys. Lett. 371(3), 284–294 (2003).
[Crossref]

Friedrichs, G.

J. Dammeier and G. Friedrichs, “Thermal decomposition of NCN3 as a high-temperature NCN radical source: singlet-triplet relaxation and absorption cross section of NCN(3Σ),” J. Phys. Chem. A 114(50), 12963–12971 (2010).
[Crossref] [PubMed]

Gao, X.

T. Wu, W. Zhao, W. Chen, W. Zhang, and X. Gao, “Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode,” Appl. Phys. B 94(1), 85–94 (2009).
[Crossref]

Gherman, T.

S. Vaughan, T. Gherman, A. A. Ruth, and J. Orphal, “Incoherent broad-band cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO and OIO,” Phys. Chem. Chem. Phys. 10(30), 4471–4477 (2008).
[Crossref] [PubMed]

T. Gherman and D. Romanini, “Modelocked cavity-enhanced absorption spectroscopy,” Opt. Express 10(19), 1033–1042 (2002).
[Crossref] [PubMed]

Goldenstein, C. S.

Grebenkin, S. Y.

S. Y. Grebenkin and L. N. Krasnoperov, “Kinetics and thermochemistry of the hydroxycyclohexadienyl radical reaction with O2: C6H6OH + O2 = C6H6(OH)OO,” J. Phys. Chem. A 108(11), 1953–1963 (2004).
[Crossref]

Hall, J. L.

J. Ye, L. S. Ma, and J. L. Hall, “Cavity-enhanced frequency modulation spectroscopy: advancing optical detection sensitivity and laser frequency stabilization,” Proc. SPIE 3270, 308366 (1998).

Hancock, G.

L. Ciaffoni, J. Couper, G. Hancock, R. Peverall, P. A. Robbins, and G. A. D. Ritchie, “RF noise induced laser perturbation for improving the performance of non-resonant cavity enhanced absorption spectroscopy,” Opt. Express 22(14), 17030–17038 (2014).
[Crossref] [PubMed]

B. Bakowski, L. Corner, G. Hancock, R. Kotchie, R. Peverall, and G. A. D. Ritchie, “Cavity-enhanced absorption spectroscopy with a rapidly swept diode laser,” Appl. Phys. B 75(6–7), 745–750 (2002).
[Crossref]

Hanson, R. K.

S. Wang, K. Sun, D. F. Davidson, J. B. Jeffries, and R. K. Hanson, “Shock-tube measurement of acetone dissociation using cavity-enhanced absorption spectroscopy of CO,” J. Phys. Chem. A 119(28), 7257–7262 (2015).
[Crossref] [PubMed]

S. Wang, D. F. Davidson, and R. K. Hanson, “High temperature measurements for the rate constants of C1–C4 aldehydes with OH in a shock tub,” Proc. Combust. Inst. 35(1), 473–480 (2015).
[Crossref]

M. Nations, S. Wang, C. S. Goldenstein, K. Sun, D. F. Davidson, J. B. Jeffries, and R. K. Hanson, “Shock-tube measurements of excited oxygen atoms using cavity-enhanced absorption spectroscopy,” Appl. Opt. 54(29), 8766–8775 (2015).
[Crossref] [PubMed]

K. Sun, S. Wang, R. Sur, X. Chao, J. B. Jeffries, and R. K. Hanson, “Time-resolved in situ detection of CO in a shock tube using cavity-enhanced absorption spectroscopy with a quantum-cascade laser near 4.6 µm,” Opt. Express 22(20), 24559–24565 (2014).
[Crossref] [PubMed]

K. Sun, S. Wang, R. Sur, X. Chao, J. B. Jeffries, and R. K. Hanson, “Sensitive and rapid laser diagnostic for shock tube kinetics studies using cavity-enhanced absorption spectroscopy,” Opt. Express 22(8), 9291–9300 (2014).
[Crossref] [PubMed]

R. K. Hanson and D. F. Davidson, “Recent advances in laser absorption and shock tube methods for studies of combustion chemistry,” Pror. Energy Combust. Sci. 44, 103–114 (2014).
[Crossref]

K. Y. Lam, W. Ren, S. H. Pyun, A. Farooq, D. F. Davidson, and R. K. Hanson, “Multi-species time-history measurements during high-temperature acetone and 2-butanone pyrolysis,” Proc. Combust. Inst. 34(1), 607–615 (2013).
[Crossref]

D. F. Davidson, A. Y. Chang, M. D. Di Rosa, and R. K. Hanson, “A cw laser absorption diagnostic for methyl radicals,” J. Quant. Spectrosc. Radiat. Transf. 49(5), 559–571 (1993).
[Crossref]

Hese, A.

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy,” Chem. Phys. Lett. 371(3), 284–294 (2003).
[Crossref]

Hoffmann, S. V.

Y. Nunes, G. Martins, N. J. Mason, D. Duflot, S. V. Hoffmann, J. Delwiche, J. M. J. Hubin Franskin, and P. Limão Vieira, “Electronic state spectroscopy of methyl formate probed by high resolution VUV photoabsorption, He (I) photoelectron spectroscopy and ab initio calculations,” Phys. Chem. Chem. Phys. 12(48), 15734–15743 (2010).

Hubin Franskin, J. M. J.

Y. Nunes, G. Martins, N. J. Mason, D. Duflot, S. V. Hoffmann, J. Delwiche, J. M. J. Hubin Franskin, and P. Limão Vieira, “Electronic state spectroscopy of methyl formate probed by high resolution VUV photoabsorption, He (I) photoelectron spectroscopy and ab initio calculations,” Phys. Chem. Chem. Phys. 12(48), 15734–15743 (2010).

Hult, J.

Jeffries, J. B.

Jones, R. L.

B. Ouyang and R. L. Jones, “Understanding the sensitivity of cavity-enhanced absorption spectroscopy: pathlength enhancement versus noise suppression,” Appl. Phys. B 109(4), 581–591 (2012).
[Crossref]

J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express 16(14), 10178–10188 (2008).
[Crossref] [PubMed]

Kaminski, C. F.

Kappel, C.

C. Kappel, K. Luther, and J. Troe, “Shock wave study of the unimolecular dissociation of H2O2 in its falloff range and of its secondary reactions,” Phys. Chem. Chem. Phys. 4(18), 4392–4398 (2002).
[Crossref]

Kassi, S.

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, “Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking,” Appl. Phys. B 80(8), 1027–1038 (2005).
[Crossref]

Keutsch, F. N.

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. St. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92(3), 467–474 (2008).
[Crossref]

G. S. Engel, W. S. Drisdell, F. N. Keutsch, E. J. Moyer, and J. G. Anderson, “Ultrasensitive near-infrared integrated cavity output spectroscopy technique for detection of CO at 1.57 µm: new sensitivity limits for absorption measurements in passive optical cavities,” Appl. Opt. 45(36), 9221–9229 (2006).
[Crossref] [PubMed]

Kotchie, R.

B. Bakowski, L. Corner, G. Hancock, R. Kotchie, R. Peverall, and G. A. D. Ritchie, “Cavity-enhanced absorption spectroscopy with a rapidly swept diode laser,” Appl. Phys. B 75(6–7), 745–750 (2002).
[Crossref]

Krasnoperov, L. N.

L. N. Krasnoperov and J. V. Michael, “Shock tube studies using a novel multipass absorption cell: rate constant results for OH + H2 and OH + C2H6,” J. Phys. Chem. A 108(26), 5643–5648 (2004).
[Crossref]

S. Y. Grebenkin and L. N. Krasnoperov, “Kinetics and thermochemistry of the hydroxycyclohexadienyl radical reaction with O2: C6H6OH + O2 = C6H6(OH)OO,” J. Phys. Chem. A 108(11), 1953–1963 (2004).
[Crossref]

Kroll, J. H.

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. St. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92(3), 467–474 (2008).
[Crossref]

Lam, K. Y.

K. Y. Lam, W. Ren, S. H. Pyun, A. Farooq, D. F. Davidson, and R. K. Hanson, “Multi-species time-history measurements during high-temperature acetone and 2-butanone pyrolysis,” Proc. Combust. Inst. 34(1), 607–615 (2013).
[Crossref]

Langridge, J. M.

Lapson, L.

Laurila, T.

Limão Vieira, P.

Y. Nunes, G. Martins, N. J. Mason, D. Duflot, S. V. Hoffmann, J. Delwiche, J. M. J. Hubin Franskin, and P. Limão Vieira, “Electronic state spectroscopy of methyl formate probed by high resolution VUV photoabsorption, He (I) photoelectron spectroscopy and ab initio calculations,” Phys. Chem. Chem. Phys. 12(48), 15734–15743 (2010).

Luther, K.

C. Kappel, K. Luther, and J. Troe, “Shock wave study of the unimolecular dissociation of H2O2 in its falloff range and of its secondary reactions,” Phys. Chem. Chem. Phys. 4(18), 4392–4398 (2002).
[Crossref]

Ma, L. S.

J. Ye, L. S. Ma, and J. L. Hall, “Cavity-enhanced frequency modulation spectroscopy: advancing optical detection sensitivity and laser frequency stabilization,” Proc. SPIE 3270, 308366 (1998).

Martins, G.

Y. Nunes, G. Martins, N. J. Mason, D. Duflot, S. V. Hoffmann, J. Delwiche, J. M. J. Hubin Franskin, and P. Limão Vieira, “Electronic state spectroscopy of methyl formate probed by high resolution VUV photoabsorption, He (I) photoelectron spectroscopy and ab initio calculations,” Phys. Chem. Chem. Phys. 12(48), 15734–15743 (2010).

Mason, N. J.

Y. Nunes, G. Martins, N. J. Mason, D. Duflot, S. V. Hoffmann, J. Delwiche, J. M. J. Hubin Franskin, and P. Limão Vieira, “Electronic state spectroscopy of methyl formate probed by high resolution VUV photoabsorption, He (I) photoelectron spectroscopy and ab initio calculations,” Phys. Chem. Chem. Phys. 12(48), 15734–15743 (2010).

Mazurenka, M.

M. Mazurenka, A. J. Orr-Ewing, R. Peverall, and G. A. D. Ritchie, “Cavity ring-down and cavity enhanced spectroscopy using diode lasers,” Annu. Rep. Prog. Chem. 101, 100–142 (2005).

Meijer, G.

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69(11), 3763–3769 (1998).
[Crossref]

Mejean, G.

M. Triki, P. Cermak, G. Mejean, and D. Romanini, “Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis,” Appl. Phys. B 91(1), 195–201 (2008).
[Crossref]

Mellouki, A.

E. Vésine and A. Mellouki, “UV absorption cross sections for a series of formates,” J. Chim. Phys. 94(9), 1634–1641 (1997).

Michael, J. V.

L. N. Krasnoperov and J. V. Michael, “Shock tube studies using a novel multipass absorption cell: rate constant results for OH + H2 and OH + C2H6,” J. Phys. Chem. A 108(26), 5643–5648 (2004).
[Crossref]

Millikan, R. C.

D. R. White and R. C. Millikan, “Oxygen vibrational relaxation in O2–He and O2–Ar mixtures,” J. Chem. Phys. 39(7), 1807–1808 (1963).
[Crossref]

R. C. Millikan and D. R. White, “Systematics of vibrational relaxation,” J. Chem. Phys. 39(12), 3209–3213 (1963).
[Crossref]

Morville, J.

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, “Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking,” Appl. Phys. B 80(8), 1027–1038 (2005).
[Crossref]

Moyer, E. J.

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. St. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92(3), 467–474 (2008).
[Crossref]

G. S. Engel, W. S. Drisdell, F. N. Keutsch, E. J. Moyer, and J. G. Anderson, “Ultrasensitive near-infrared integrated cavity output spectroscopy technique for detection of CO at 1.57 µm: new sensitivity limits for absorption measurements in passive optical cavities,” Appl. Opt. 45(36), 9221–9229 (2006).
[Crossref] [PubMed]

Nations, M.

Nunes, Y.

Y. Nunes, G. Martins, N. J. Mason, D. Duflot, S. V. Hoffmann, J. Delwiche, J. M. J. Hubin Franskin, and P. Limão Vieira, “Electronic state spectroscopy of methyl formate probed by high resolution VUV photoabsorption, He (I) photoelectron spectroscopy and ab initio calculations,” Phys. Chem. Chem. Phys. 12(48), 15734–15743 (2010).

O’Keefe, A.

A. O’Keefe, J. J. Scherer, and J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307(5), 343–349 (1999).
[Crossref]

A. O’Keefe and D. A. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544–2551 (1988).
[Crossref]

Orphal, J.

S. Vaughan, T. Gherman, A. A. Ruth, and J. Orphal, “Incoherent broad-band cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO and OIO,” Phys. Chem. Chem. Phys. 10(30), 4471–4477 (2008).
[Crossref] [PubMed]

Orr-Ewing, A. J.

M. Mazurenka, A. J. Orr-Ewing, R. Peverall, and G. A. D. Ritchie, “Cavity ring-down and cavity enhanced spectroscopy using diode lasers,” Annu. Rep. Prog. Chem. 101, 100–142 (2005).

Ouyang, B.

B. Ouyang and R. L. Jones, “Understanding the sensitivity of cavity-enhanced absorption spectroscopy: pathlength enhancement versus noise suppression,” Appl. Phys. B 109(4), 581–591 (2012).
[Crossref]

Pasachoff, N. W.

A. C. Allison, A. Dalgarno, and N. W. Pasachoff, “Absorption by vibrationally excited molecular oxygen in the Schumann-Runge continuum,” Planet. Space Sci. 19(11), 1463–1473 (1971).
[Crossref]

Paul, J. B.

Peeters, R.

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69(11), 3763–3769 (1998).
[Crossref]

Peverall, R.

L. Ciaffoni, J. Couper, G. Hancock, R. Peverall, P. A. Robbins, and G. A. D. Ritchie, “RF noise induced laser perturbation for improving the performance of non-resonant cavity enhanced absorption spectroscopy,” Opt. Express 22(14), 17030–17038 (2014).
[Crossref] [PubMed]

M. Mazurenka, A. J. Orr-Ewing, R. Peverall, and G. A. D. Ritchie, “Cavity ring-down and cavity enhanced spectroscopy using diode lasers,” Annu. Rep. Prog. Chem. 101, 100–142 (2005).

B. Bakowski, L. Corner, G. Hancock, R. Kotchie, R. Peverall, and G. A. D. Ritchie, “Cavity-enhanced absorption spectroscopy with a rapidly swept diode laser,” Appl. Phys. B 75(6–7), 745–750 (2002).
[Crossref]

Pyun, S. H.

K. Y. Lam, W. Ren, S. H. Pyun, A. Farooq, D. F. Davidson, and R. K. Hanson, “Multi-species time-history measurements during high-temperature acetone and 2-butanone pyrolysis,” Proc. Combust. Inst. 34(1), 607–615 (2013).
[Crossref]

Ren, W.

K. Y. Lam, W. Ren, S. H. Pyun, A. Farooq, D. F. Davidson, and R. K. Hanson, “Multi-species time-history measurements during high-temperature acetone and 2-butanone pyrolysis,” Proc. Combust. Inst. 34(1), 607–615 (2013).
[Crossref]

Ritchie, G. A. D.

L. Ciaffoni, J. Couper, G. Hancock, R. Peverall, P. A. Robbins, and G. A. D. Ritchie, “RF noise induced laser perturbation for improving the performance of non-resonant cavity enhanced absorption spectroscopy,” Opt. Express 22(14), 17030–17038 (2014).
[Crossref] [PubMed]

M. Mazurenka, A. J. Orr-Ewing, R. Peverall, and G. A. D. Ritchie, “Cavity ring-down and cavity enhanced spectroscopy using diode lasers,” Annu. Rep. Prog. Chem. 101, 100–142 (2005).

B. Bakowski, L. Corner, G. Hancock, R. Kotchie, R. Peverall, and G. A. D. Ritchie, “Cavity-enhanced absorption spectroscopy with a rapidly swept diode laser,” Appl. Phys. B 75(6–7), 745–750 (2002).
[Crossref]

Robbins, P. A.

Romanini, D.

M. Triki, P. Cermak, G. Mejean, and D. Romanini, “Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis,” Appl. Phys. B 91(1), 195–201 (2008).
[Crossref]

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, “Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking,” Appl. Phys. B 80(8), 1027–1038 (2005).
[Crossref]

T. Gherman and D. Romanini, “Modelocked cavity-enhanced absorption spectroscopy,” Opt. Express 10(19), 1033–1042 (2002).
[Crossref] [PubMed]

Ruth, A. A.

S. Vaughan, T. Gherman, A. A. Ruth, and J. Orphal, “Incoherent broad-band cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO and OIO,” Phys. Chem. Chem. Phys. 10(30), 4471–4477 (2008).
[Crossref] [PubMed]

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy,” Chem. Phys. Lett. 371(3), 284–294 (2003).
[Crossref]

Sayres, D. S.

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. St. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92(3), 467–474 (2008).
[Crossref]

Scherer, J. J.

A. O’Keefe, J. J. Scherer, and J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307(5), 343–349 (1999).
[Crossref]

St. Clair, J. M.

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. St. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92(3), 467–474 (2008).
[Crossref]

Sun, K.

Sur, R.

Thorpe, M. J.

M. J. Thorpe and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy,” Appl. Phys. B 91(3–4), 397–414 (2008).
[Crossref]

Triki, M.

M. Triki, P. Cermak, G. Mejean, and D. Romanini, “Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis,” Appl. Phys. B 91(1), 195–201 (2008).
[Crossref]

Troe, J.

C. Kappel, K. Luther, and J. Troe, “Shock wave study of the unimolecular dissociation of H2O2 in its falloff range and of its secondary reactions,” Phys. Chem. Chem. Phys. 4(18), 4392–4398 (2002).
[Crossref]

Vaughan, S.

S. Vaughan, T. Gherman, A. A. Ruth, and J. Orphal, “Incoherent broad-band cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO and OIO,” Phys. Chem. Chem. Phys. 10(30), 4471–4477 (2008).
[Crossref] [PubMed]

Vésine, E.

E. Vésine and A. Mellouki, “UV absorption cross sections for a series of formates,” J. Chim. Phys. 94(9), 1634–1641 (1997).

Wang, S.

Watt, R. S.

Werle, P.

P. Werle, “Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence,” Appl. Phys. B 102(2), 313–329 (2011).
[Crossref]

White, D. R.

R. C. Millikan and D. R. White, “Systematics of vibrational relaxation,” J. Chem. Phys. 39(12), 3209–3213 (1963).
[Crossref]

D. R. White and R. C. Millikan, “Oxygen vibrational relaxation in O2–He and O2–Ar mixtures,” J. Chem. Phys. 39(7), 1807–1808 (1963).
[Crossref]

Wu, T.

T. Wu, W. Zhao, W. Chen, W. Zhang, and X. Gao, “Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode,” Appl. Phys. B 94(1), 85–94 (2009).
[Crossref]

Ye, J.

M. J. Thorpe and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy,” Appl. Phys. B 91(3–4), 397–414 (2008).
[Crossref]

J. Ye, L. S. Ma, and J. L. Hall, “Cavity-enhanced frequency modulation spectroscopy: advancing optical detection sensitivity and laser frequency stabilization,” Proc. SPIE 3270, 308366 (1998).

Zhang, W.

T. Wu, W. Zhao, W. Chen, W. Zhang, and X. Gao, “Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode,” Appl. Phys. B 94(1), 85–94 (2009).
[Crossref]

Zhao, W.

T. Wu, W. Zhao, W. Chen, W. Zhang, and X. Gao, “Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode,” Appl. Phys. B 94(1), 85–94 (2009).
[Crossref]

Annu. Rep. Prog. Chem. (1)

M. Mazurenka, A. J. Orr-Ewing, R. Peverall, and G. A. D. Ritchie, “Cavity ring-down and cavity enhanced spectroscopy using diode lasers,” Annu. Rep. Prog. Chem. 101, 100–142 (2005).

Appl. Opt. (3)

Appl. Phys. B (8)

M. J. Thorpe and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy,” Appl. Phys. B 91(3–4), 397–414 (2008).
[Crossref]

P. Werle, “Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence,” Appl. Phys. B 102(2), 313–329 (2011).
[Crossref]

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. St. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92(3), 467–474 (2008).
[Crossref]

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, “Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking,” Appl. Phys. B 80(8), 1027–1038 (2005).
[Crossref]

B. Bakowski, L. Corner, G. Hancock, R. Kotchie, R. Peverall, and G. A. D. Ritchie, “Cavity-enhanced absorption spectroscopy with a rapidly swept diode laser,” Appl. Phys. B 75(6–7), 745–750 (2002).
[Crossref]

B. Ouyang and R. L. Jones, “Understanding the sensitivity of cavity-enhanced absorption spectroscopy: pathlength enhancement versus noise suppression,” Appl. Phys. B 109(4), 581–591 (2012).
[Crossref]

M. Triki, P. Cermak, G. Mejean, and D. Romanini, “Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis,” Appl. Phys. B 91(1), 195–201 (2008).
[Crossref]

T. Wu, W. Zhao, W. Chen, W. Zhang, and X. Gao, “Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode,” Appl. Phys. B 94(1), 85–94 (2009).
[Crossref]

Chem. Phys. Lett. (2)

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy,” Chem. Phys. Lett. 371(3), 284–294 (2003).
[Crossref]

A. O’Keefe, J. J. Scherer, and J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307(5), 343–349 (1999).
[Crossref]

J. Chem. Phys. (3)

M. Camac, “O2 vibration relaxation in oxygen-argon mixtures,” J. Chem. Phys. 34(2), 448–459 (1961).
[Crossref]

D. R. White and R. C. Millikan, “Oxygen vibrational relaxation in O2–He and O2–Ar mixtures,” J. Chem. Phys. 39(7), 1807–1808 (1963).
[Crossref]

R. C. Millikan and D. R. White, “Systematics of vibrational relaxation,” J. Chem. Phys. 39(12), 3209–3213 (1963).
[Crossref]

J. Chim. Phys. (1)

E. Vésine and A. Mellouki, “UV absorption cross sections for a series of formates,” J. Chim. Phys. 94(9), 1634–1641 (1997).

J. Phys. Chem. A (4)

J. Dammeier and G. Friedrichs, “Thermal decomposition of NCN3 as a high-temperature NCN radical source: singlet-triplet relaxation and absorption cross section of NCN(3Σ),” J. Phys. Chem. A 114(50), 12963–12971 (2010).
[Crossref] [PubMed]

S. Wang, K. Sun, D. F. Davidson, J. B. Jeffries, and R. K. Hanson, “Shock-tube measurement of acetone dissociation using cavity-enhanced absorption spectroscopy of CO,” J. Phys. Chem. A 119(28), 7257–7262 (2015).
[Crossref] [PubMed]

L. N. Krasnoperov and J. V. Michael, “Shock tube studies using a novel multipass absorption cell: rate constant results for OH + H2 and OH + C2H6,” J. Phys. Chem. A 108(26), 5643–5648 (2004).
[Crossref]

S. Y. Grebenkin and L. N. Krasnoperov, “Kinetics and thermochemistry of the hydroxycyclohexadienyl radical reaction with O2: C6H6OH + O2 = C6H6(OH)OO,” J. Phys. Chem. A 108(11), 1953–1963 (2004).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

D. F. Davidson, A. Y. Chang, M. D. Di Rosa, and R. K. Hanson, “A cw laser absorption diagnostic for methyl radicals,” J. Quant. Spectrosc. Radiat. Transf. 49(5), 559–571 (1993).
[Crossref]

Opt. Express (5)

Phys. Chem. Chem. Phys. (3)

Y. Nunes, G. Martins, N. J. Mason, D. Duflot, S. V. Hoffmann, J. Delwiche, J. M. J. Hubin Franskin, and P. Limão Vieira, “Electronic state spectroscopy of methyl formate probed by high resolution VUV photoabsorption, He (I) photoelectron spectroscopy and ab initio calculations,” Phys. Chem. Chem. Phys. 12(48), 15734–15743 (2010).

C. Kappel, K. Luther, and J. Troe, “Shock wave study of the unimolecular dissociation of H2O2 in its falloff range and of its secondary reactions,” Phys. Chem. Chem. Phys. 4(18), 4392–4398 (2002).
[Crossref]

S. Vaughan, T. Gherman, A. A. Ruth, and J. Orphal, “Incoherent broad-band cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO and OIO,” Phys. Chem. Chem. Phys. 10(30), 4471–4477 (2008).
[Crossref] [PubMed]

Planet. Space Sci. (1)

A. C. Allison, A. Dalgarno, and N. W. Pasachoff, “Absorption by vibrationally excited molecular oxygen in the Schumann-Runge continuum,” Planet. Space Sci. 19(11), 1463–1473 (1971).
[Crossref]

Proc. Combust. Inst. (2)

K. Y. Lam, W. Ren, S. H. Pyun, A. Farooq, D. F. Davidson, and R. K. Hanson, “Multi-species time-history measurements during high-temperature acetone and 2-butanone pyrolysis,” Proc. Combust. Inst. 34(1), 607–615 (2013).
[Crossref]

S. Wang, D. F. Davidson, and R. K. Hanson, “High temperature measurements for the rate constants of C1–C4 aldehydes with OH in a shock tub,” Proc. Combust. Inst. 35(1), 473–480 (2015).
[Crossref]

Proc. SPIE (1)

J. Ye, L. S. Ma, and J. L. Hall, “Cavity-enhanced frequency modulation spectroscopy: advancing optical detection sensitivity and laser frequency stabilization,” Proc. SPIE 3270, 308366 (1998).

Pror. Energy Combust. Sci. (1)

R. K. Hanson and D. F. Davidson, “Recent advances in laser absorption and shock tube methods for studies of combustion chemistry,” Pror. Energy Combust. Sci. 44, 103–114 (2014).
[Crossref]

Rev. Sci. Instrum. (2)

A. O’Keefe and D. A. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544–2551 (1988).
[Crossref]

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69(11), 3763–3769 (1998).
[Crossref]

Other (4)

J. H. van Helden, R. Peverall, and G. A. D. Ritchie, “Cavity enhanced techniques using continuous wave lasers,” in Cavity Ring-Down Spectroscopy: Techniques and Applications, G. Berden and R. Engeln, eds. (Wiley-Blackwell, 2009), pp. 27–56.

M. Nations, High Temperature Gasdynamics Laboratory, Deptartment of Mechanical Engineering, Stanford University, Stanford, CA, 94305, and Ronald K. Hanson are preparing a manuscript to be called “Kinetics of excited oxygen formation in shock-heated O2/Ar mixtures”

A. G. Gaydon and I. R. Hurle, The Shock Tube in High-Temperature Chemical Physics (Chapman and Hall, 1963).

K. Owen, “Measurements of vibrational relaxation and dissociation of oxygen with laser absorption spectroscopy with applications for energy transfer in nonequilibrium air,” Engineer Dissertation, Stanford University (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the experimental setup.

Fig. 2
Fig. 2

Snapshot of the pulsed laser output spectrum measured with a Bristol 721 spectrometer.

Fig. 3
Fig. 3

Gain characterization. Left panel (a): Single-pass absorption of 1% methyl formate. Right panel (b): CEAS absorption of 250ppm methyl formate.

Fig. 4
Fig. 4

Performance of the current CEAS method.

Fig. 5
Fig. 5

Proof-of-concept experiment in a shock tube. Left panel (a): Example absorbance traces of O2 vibrational relaxation in argon. Right panel (b): O2-Ar vibrational relaxation time measured at 1273 K, 2.09 atm.

Fig. 6
Fig. 6

Landau-Teller plot of the O2-Ar vibrational relaxation time.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α SP ( I 0 I 1 )(1R)

Metrics