Abstract

We compare and contrast novel techniques for the fabrication of chirped broadband fiber Bragg gratings by ultrafast laser inscription. These methods enable the inscription of gratings with flexible period profiles and thus tailored reflection and dispersion characteristics in non-photosensitive optical fibers. Up to 19.5 cm long chirped gratings with a spectral bandwidth of up to 30 nm were fabricated and the grating dispersion was characterized. A maximum group delay of almost 2 ns was obtained for linearly chirped gratings with either normal or anomalous group velocity dispersion, demonstrating the potential for using these gratings for dispersion compensation. Coupling to cladding modes was reduced by careful design of the inscribed modification features.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask

Stephen J. Mihailov, Dan Grobnic, Christopher W. Smelser, Ping Lu, Robert B. Walker, and Huimin Ding
Opt. Mater. Express 1(4) 754-765 (2011)

Femtosecond inscription of fiber Bragg gratings through the coating with a Low-NA lens

Aviran Halstuch, Avishay Shamir, and Amiel A. Ishaaya
Opt. Express 27(12) 16935-16944 (2019)

Point-by-point written fiber-Bragg gratings and their application in complex grating designs

Graham D. Marshall, Robert J. Williams, Nemanja Jovanovic, M. J. Steel, and Michael J. Withford
Opt. Express 18(19) 19844-19859 (2010)

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection fiber fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
    [Crossref]
  2. W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic Bragg grating sensors,” Proc. SPIE 1169, 98–107 (1990).
    [Crossref]
  3. K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Thériault, D. C. Johnson, J. Albert, and K. Takiguchi, “Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion,” Opt. Lett. 19(17), 1314–1316 (1994).
    [Crossref] [PubMed]
  4. M. E. Fermann, K. Sugden, and I. Bennion, “High-power soliton fiber laser based on pulse width control with chirped fiber Bragg gratings,” Opt. Lett. 20(2), 172–174 (1995).
    [Crossref] [PubMed]
  5. R. R. Gattas and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  6. M. Beker, T. Elemann, I. Latka, M. Rothhardt, and H. Bartelt, “Chirped phase mask interferometer for fiber Bragg grating array inscription,” J. Lightwave Technol. 33(10), 2093–2098 (2015).
    [Crossref]
  7. M. Becker, T. Elsmann, A. Schwuchow, M. Rothhardt, S. Dochow, and H. Bartelt, “First order fiber Bragg grating inscription with femtosecond laser and reflection wavelengths from visible to infrared,” Proc. SPIE 9157, 91572T (2015).
  8. D. Grobnic, S. J. Mihailov, J. Ballato, and P. D. Dragic, “Type I and II Bragg gratings made with infrared femtosecond radiation in high and low alumina content aluminosilicate optical fibers,” Optica 2(4), 313–322 (2015).
    [Crossref]
  9. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
    [Crossref]
  10. R. Goto, R. J. Williams, N. Jovanovic, G. D. Marshall, M. J. Withford, and S. D. Jackson, “Linearly polarized fiber laser using a point-by-point Bragg grating in a single-polarization photonic bandgap fiber,” Opt. Lett. 36(10), 1872–1874 (2011).
    [Crossref] [PubMed]
  11. D. D. Hudson, R. J. Williams, M. J. Withford, and S. D. Jackson, “Single-frequency fiber laser operating at 2.9 μm,” Opt. Lett. 38(14), 2388–2390 (2013).
    [Crossref] [PubMed]
  12. K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-Line Fiber Bragg Grating Made by Femtosecond Laser,” IEEE Photonics Technol. Lett. 22(16), 1190–1192 (2010).
    [Crossref]
  13. M. Bernier, D. Faucher, R. Vallée, A. Saliminia, G. Androz, Y. Sheng, and S. L. Chin, “Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm,” Opt. Lett. 32(5), 454–456 (2007).
    [Crossref] [PubMed]
  14. D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, C. Lafond, and A. Croteau, “Bragg gratings made with a femtosecond laser in heavily doped Er-Yb phosphate glass fiber,” IEEE Photonics Technol. Lett. 19(12), 943–945 (2007).
    [Crossref]
  15. C. Voigtländer, R. G. Krämer, A. Liem, T. Schreiber, A. Tünnermann, and S. Nolte, “1 kW fiber laser oscillator with fs-written fiber Bragg gratings” in Proceedings of CLEO/EUROPE – EQEC (2015), pp. 176–178.
  16. G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18(19), 19844–19859 (2010).
    [Crossref] [PubMed]
  17. R. J. Williams, C. Voigtländer, G. D. Marshall, A. Tünnermann, S. Nolte, M. J. Steel, and M. J. Withford, “Point-by-point inscription of apodized fiber Bragg gratings,” Opt. Lett. 36(15), 2988–2990 (2011).
    [Crossref] [PubMed]
  18. J. Thomas, C. Voigtländer, D. Schimpf, F. Stutzki, E. Wikszak, J. Limpert, S. Nolte, and A. Tünnermann, “Continuously chirped fiber Bragg gratings by femtosecond laser structuring,” Opt. Lett. 33(14), 1560–1562 (2008).
    [Crossref] [PubMed]
  19. C. Voigtländer, R. G. Becker, J. Thomas, D. Richter, A. Singh, A. Tünnermann, and S. Nolte, “Ultrashort pulse inscription of tailored fiber Bragg gratings with a phase mask and a deformed wavefront,” Opt. Mater. Express 1(4), 633–642 (2011).
    [Crossref]
  20. C. Voigtländer, R. G. Kramer, J. U. Thomas, D. Richter, and S. Nolte, “Tuning the FBG period with a spatial light modulator,” in Advanced Photonics Congress (The Optical Society, 2014), paper BM2D.4.
    [Crossref]
  21. M. Bernier, Y. Sheng, and R. Vallée, “Ultrabroadband fiber Bragg gratings written with a highly chirped phase mask and infrared femtosecond pulses,” Opt. Express 17(5), 3285–3290 (2009).
    [Crossref] [PubMed]
  22. L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3-6), 333–339 (2001).
    [Crossref]
  23. C. Smelser, S. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005).
    [Crossref] [PubMed]
  24. J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photonics Rev. 6(6), 709–723 (2012).
    [Crossref]
  25. S. Gross, M. Dubov, and M. J. Withford, “On the use of the Type I and II scheme for classifying ultrafast laser direct-write photonics,” Opt. Express 23(6), 7767–7770 (2015).
    [Crossref] [PubMed]
  26. M. L. Aslund, N. Nemanja, N. Groothoff, J. Canning, G. D. Marshall, S. D. Jackson, A. Fuerbach, and M. J. Withford, “Optical loss mechanisms in femtosecond laser-written point-by-point fibre Bragg gratings,” Opt. Express 16(18), 14248–14254 (2008).
    [Crossref] [PubMed]
  27. R. J. Williams, N. Jovanovic, G. D. Marshall, G. N. Smith, M. J. Steel, and M. J. Withford, “Optimizing the net reflectivity of point-by-point fiber Bragg gratings: The role of scattering loss,” Opt. Express 20(12), 13451–13456 (2012).
    [Crossref] [PubMed]
  28. R. J. Williams, R. G. Krämer, S. Nolte, and M. J. Withford, “Femtosecond direct-writing of low-loss fiber Bragg gratings using a continuous core-scanning technique,” Opt. Lett. 38(11), 1918–1920 (2013).
    [Crossref] [PubMed]
  29. G. D. Marshall and M. J. Withford, “Annealing Properties of Femtosecond Laser Inscribed Point-by-Point Fiber Bragg Gratings,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (CD) (Optical Society of America, 2007), paper JWA30.
  30. R. J. Williams, R. G. Krämer, S. Nolte, M. J. Withford, and M. J. Steel, “Detuning in apodized point-by-point fiber Bragg gratings: insights into the grating morphology,” Opt. Express 21(22), 26854–26867 (2013).
    [Crossref] [PubMed]
  31. N. Jovanovic, M. Aslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100 W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32(19), 2804–2806 (2007).
    [Crossref] [PubMed]
  32. S. Gilbertson, S. I. Jackson, S. W. Vincent, and G. Rosdriguez, “Detection of high explosive detonation across material interfaces with chirped fiber Bragg gratings,” Appl. Opt. 54(13), 3849–3854 (2015).
    [Crossref]
  33. M. Ams, A. Pal, R. J. Williams, R. Sen, M. J. Withford, T. Sun, and K. T. V. Grattan, “Optical Bragg grating sensors for nuclear environments,” presented at the Light, Energy and the Environment Congress, Canberra, Australia, 2–5 Dec. 2014.
    [Crossref]
  34. J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
    [Crossref]
  35. J. Thomas, N. Jovanovic, R. G. Becker, G. D. Marshall, M. J. Withford, A. Tünnermann, S. Nolte, and M. J. Steel, “Cladding mode coupling in highly localized fiber Bragg gratings: modal properties and transmission spectra,” Opt. Express 19(1), 325–341 (2011).
    [Crossref] [PubMed]
  36. R. G. Krämer, C. Voigtländer, E. Freier, A. Liem, J. U. Thomas, D. Richter, T. Schreiber, A. Tünnermann, and S. Nolte, “Femtosecond pulse inscription of a selective mode filter in large mode area fibers,” Proc. SPIE 8601, 86010S (2013).
    [Crossref]

2015 (5)

2013 (5)

2012 (2)

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photonics Rev. 6(6), 709–723 (2012).
[Crossref]

R. J. Williams, N. Jovanovic, G. D. Marshall, G. N. Smith, M. J. Steel, and M. J. Withford, “Optimizing the net reflectivity of point-by-point fiber Bragg gratings: The role of scattering loss,” Opt. Express 20(12), 13451–13456 (2012).
[Crossref] [PubMed]

2011 (4)

2010 (2)

G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18(19), 19844–19859 (2010).
[Crossref] [PubMed]

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-Line Fiber Bragg Grating Made by Femtosecond Laser,” IEEE Photonics Technol. Lett. 22(16), 1190–1192 (2010).
[Crossref]

2009 (1)

2008 (3)

2007 (3)

2005 (1)

2004 (1)

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

2001 (1)

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3-6), 333–339 (2001).
[Crossref]

1995 (1)

1994 (1)

1990 (1)

W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic Bragg grating sensors,” Proc. SPIE 1169, 98–107 (1990).
[Crossref]

1978 (1)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection fiber fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

Albert, J.

Androz, G.

Aslund, M.

Aslund, M. L.

Ballato, J.

Bartelt, H.

M. Beker, T. Elemann, I. Latka, M. Rothhardt, and H. Bartelt, “Chirped phase mask interferometer for fiber Bragg grating array inscription,” J. Lightwave Technol. 33(10), 2093–2098 (2015).
[Crossref]

M. Becker, T. Elsmann, A. Schwuchow, M. Rothhardt, S. Dochow, and H. Bartelt, “First order fiber Bragg grating inscription with femtosecond laser and reflection wavelengths from visible to infrared,” Proc. SPIE 9157, 91572T (2015).

Becker, M.

M. Becker, T. Elsmann, A. Schwuchow, M. Rothhardt, S. Dochow, and H. Bartelt, “First order fiber Bragg grating inscription with femtosecond laser and reflection wavelengths from visible to infrared,” Proc. SPIE 9157, 91572T (2015).

Becker, R. G.

Beker, M.

Bennion, I.

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-Line Fiber Bragg Grating Made by Femtosecond Laser,” IEEE Photonics Technol. Lett. 22(16), 1190–1192 (2010).
[Crossref]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

M. E. Fermann, K. Sugden, and I. Bennion, “High-power soliton fiber laser based on pulse width control with chirped fiber Bragg gratings,” Opt. Lett. 20(2), 172–174 (1995).
[Crossref] [PubMed]

Bernier, M.

Bilodeau, F.

Canning, J.

Caucheteur, C.

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

Chin, S. L.

Croteau, A.

D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, C. Lafond, and A. Croteau, “Bragg gratings made with a femtosecond laser in heavily doped Er-Yb phosphate glass fiber,” IEEE Photonics Technol. Lett. 19(12), 943–945 (2007).
[Crossref]

Dochow, S.

M. Becker, T. Elsmann, A. Schwuchow, M. Rothhardt, S. Dochow, and H. Bartelt, “First order fiber Bragg grating inscription with femtosecond laser and reflection wavelengths from visible to infrared,” Proc. SPIE 9157, 91572T (2015).

Dragic, P. D.

Dubov, M.

S. Gross, M. Dubov, and M. J. Withford, “On the use of the Type I and II scheme for classifying ultrafast laser direct-write photonics,” Opt. Express 23(6), 7767–7770 (2015).
[Crossref] [PubMed]

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-Line Fiber Bragg Grating Made by Femtosecond Laser,” IEEE Photonics Technol. Lett. 22(16), 1190–1192 (2010).
[Crossref]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

Elemann, T.

Elsmann, T.

M. Becker, T. Elsmann, A. Schwuchow, M. Rothhardt, S. Dochow, and H. Bartelt, “First order fiber Bragg grating inscription with femtosecond laser and reflection wavelengths from visible to infrared,” Proc. SPIE 9157, 91572T (2015).

Faucher, D.

Fermann, M. E.

Franco, M.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3-6), 333–339 (2001).
[Crossref]

Freier, E.

R. G. Krämer, C. Voigtländer, E. Freier, A. Liem, J. U. Thomas, D. Richter, T. Schreiber, A. Tünnermann, and S. Nolte, “Femtosecond pulse inscription of a selective mode filter in large mode area fibers,” Proc. SPIE 8601, 86010S (2013).
[Crossref]

Fuerbach, A.

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection fiber fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

Gattas, R. R.

R. R. Gattas and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Gilbertson, S.

Glenn, W. H.

W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic Bragg grating sensors,” Proc. SPIE 1169, 98–107 (1990).
[Crossref]

Goto, R.

Grobnic, D.

Groothoff, N.

Gross, S.

Hill, K. O.

K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Thériault, D. C. Johnson, J. Albert, and K. Takiguchi, “Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion,” Opt. Lett. 19(17), 1314–1316 (1994).
[Crossref] [PubMed]

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection fiber fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

Hudson, D. D.

Jackson, S. D.

Jackson, S. I.

Johnson, D. C.

K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Thériault, D. C. Johnson, J. Albert, and K. Takiguchi, “Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion,” Opt. Lett. 19(17), 1314–1316 (1994).
[Crossref] [PubMed]

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection fiber fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

Jovanovic, N.

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection fiber fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

Khrushchev, I.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

Kitagawa, T.

Krämer, R. G.

Lafond, C.

D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, C. Lafond, and A. Croteau, “Bragg gratings made with a femtosecond laser in heavily doped Er-Yb phosphate glass fiber,” IEEE Photonics Technol. Lett. 19(12), 943–945 (2007).
[Crossref]

Latka, I.

Liem, A.

R. G. Krämer, C. Voigtländer, E. Freier, A. Liem, J. U. Thomas, D. Richter, T. Schreiber, A. Tünnermann, and S. Nolte, “Femtosecond pulse inscription of a selective mode filter in large mode area fibers,” Proc. SPIE 8601, 86010S (2013).
[Crossref]

Limpert, J.

Malo, B.

Marshall, G. D.

R. J. Williams, N. Jovanovic, G. D. Marshall, G. N. Smith, M. J. Steel, and M. J. Withford, “Optimizing the net reflectivity of point-by-point fiber Bragg gratings: The role of scattering loss,” Opt. Express 20(12), 13451–13456 (2012).
[Crossref] [PubMed]

R. Goto, R. J. Williams, N. Jovanovic, G. D. Marshall, M. J. Withford, and S. D. Jackson, “Linearly polarized fiber laser using a point-by-point Bragg grating in a single-polarization photonic bandgap fiber,” Opt. Lett. 36(10), 1872–1874 (2011).
[Crossref] [PubMed]

R. J. Williams, C. Voigtländer, G. D. Marshall, A. Tünnermann, S. Nolte, M. J. Steel, and M. J. Withford, “Point-by-point inscription of apodized fiber Bragg gratings,” Opt. Lett. 36(15), 2988–2990 (2011).
[Crossref] [PubMed]

J. Thomas, N. Jovanovic, R. G. Becker, G. D. Marshall, M. J. Withford, A. Tünnermann, S. Nolte, and M. J. Steel, “Cladding mode coupling in highly localized fiber Bragg gratings: modal properties and transmission spectra,” Opt. Express 19(1), 325–341 (2011).
[Crossref] [PubMed]

G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18(19), 19844–19859 (2010).
[Crossref] [PubMed]

M. L. Aslund, N. Nemanja, N. Groothoff, J. Canning, G. D. Marshall, S. D. Jackson, A. Fuerbach, and M. J. Withford, “Optical loss mechanisms in femtosecond laser-written point-by-point fibre Bragg gratings,” Opt. Express 16(18), 14248–14254 (2008).
[Crossref] [PubMed]

N. Jovanovic, M. Aslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100 W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32(19), 2804–2806 (2007).
[Crossref] [PubMed]

Martinez, A.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

Mazur, E.

R. R. Gattas and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Meltz, G.

W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic Bragg grating sensors,” Proc. SPIE 1169, 98–107 (1990).
[Crossref]

Mezentsev, V. K.

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-Line Fiber Bragg Grating Made by Femtosecond Laser,” IEEE Photonics Technol. Lett. 22(16), 1190–1192 (2010).
[Crossref]

Mihailov, S.

Mihailov, S. J.

D. Grobnic, S. J. Mihailov, J. Ballato, and P. D. Dragic, “Type I and II Bragg gratings made with infrared femtosecond radiation in high and low alumina content aluminosilicate optical fibers,” Optica 2(4), 313–322 (2015).
[Crossref]

D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, C. Lafond, and A. Croteau, “Bragg gratings made with a femtosecond laser in heavily doped Er-Yb phosphate glass fiber,” IEEE Photonics Technol. Lett. 19(12), 943–945 (2007).
[Crossref]

Morey, W. W.

W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic Bragg grating sensors,” Proc. SPIE 1169, 98–107 (1990).
[Crossref]

Mou, C.

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-Line Fiber Bragg Grating Made by Femtosecond Laser,” IEEE Photonics Technol. Lett. 22(16), 1190–1192 (2010).
[Crossref]

Mysyrowicz, A.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3-6), 333–339 (2001).
[Crossref]

Nemanja, N.

Nolte, S.

R. J. Williams, R. G. Krämer, S. Nolte, and M. J. Withford, “Femtosecond direct-writing of low-loss fiber Bragg gratings using a continuous core-scanning technique,” Opt. Lett. 38(11), 1918–1920 (2013).
[Crossref] [PubMed]

R. J. Williams, R. G. Krämer, S. Nolte, M. J. Withford, and M. J. Steel, “Detuning in apodized point-by-point fiber Bragg gratings: insights into the grating morphology,” Opt. Express 21(22), 26854–26867 (2013).
[Crossref] [PubMed]

R. G. Krämer, C. Voigtländer, E. Freier, A. Liem, J. U. Thomas, D. Richter, T. Schreiber, A. Tünnermann, and S. Nolte, “Femtosecond pulse inscription of a selective mode filter in large mode area fibers,” Proc. SPIE 8601, 86010S (2013).
[Crossref]

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photonics Rev. 6(6), 709–723 (2012).
[Crossref]

R. J. Williams, C. Voigtländer, G. D. Marshall, A. Tünnermann, S. Nolte, M. J. Steel, and M. J. Withford, “Point-by-point inscription of apodized fiber Bragg gratings,” Opt. Lett. 36(15), 2988–2990 (2011).
[Crossref] [PubMed]

C. Voigtländer, R. G. Becker, J. Thomas, D. Richter, A. Singh, A. Tünnermann, and S. Nolte, “Ultrashort pulse inscription of tailored fiber Bragg gratings with a phase mask and a deformed wavefront,” Opt. Mater. Express 1(4), 633–642 (2011).
[Crossref]

J. Thomas, N. Jovanovic, R. G. Becker, G. D. Marshall, M. J. Withford, A. Tünnermann, S. Nolte, and M. J. Steel, “Cladding mode coupling in highly localized fiber Bragg gratings: modal properties and transmission spectra,” Opt. Express 19(1), 325–341 (2011).
[Crossref] [PubMed]

J. Thomas, C. Voigtländer, D. Schimpf, F. Stutzki, E. Wikszak, J. Limpert, S. Nolte, and A. Tünnermann, “Continuously chirped fiber Bragg gratings by femtosecond laser structuring,” Opt. Lett. 33(14), 1560–1562 (2008).
[Crossref] [PubMed]

Prade, B.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3-6), 333–339 (2001).
[Crossref]

Richter, D.

R. G. Krämer, C. Voigtländer, E. Freier, A. Liem, J. U. Thomas, D. Richter, T. Schreiber, A. Tünnermann, and S. Nolte, “Femtosecond pulse inscription of a selective mode filter in large mode area fibers,” Proc. SPIE 8601, 86010S (2013).
[Crossref]

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photonics Rev. 6(6), 709–723 (2012).
[Crossref]

C. Voigtländer, R. G. Becker, J. Thomas, D. Richter, A. Singh, A. Tünnermann, and S. Nolte, “Ultrashort pulse inscription of tailored fiber Bragg gratings with a phase mask and a deformed wavefront,” Opt. Mater. Express 1(4), 633–642 (2011).
[Crossref]

Rosdriguez, G.

Rothhardt, M.

M. Beker, T. Elemann, I. Latka, M. Rothhardt, and H. Bartelt, “Chirped phase mask interferometer for fiber Bragg grating array inscription,” J. Lightwave Technol. 33(10), 2093–2098 (2015).
[Crossref]

M. Becker, T. Elsmann, A. Schwuchow, M. Rothhardt, S. Dochow, and H. Bartelt, “First order fiber Bragg grating inscription with femtosecond laser and reflection wavelengths from visible to infrared,” Proc. SPIE 9157, 91572T (2015).

Saliminia, A.

Schimpf, D.

Schreiber, T.

R. G. Krämer, C. Voigtländer, E. Freier, A. Liem, J. U. Thomas, D. Richter, T. Schreiber, A. Tünnermann, and S. Nolte, “Femtosecond pulse inscription of a selective mode filter in large mode area fibers,” Proc. SPIE 8601, 86010S (2013).
[Crossref]

Schwuchow, A.

M. Becker, T. Elsmann, A. Schwuchow, M. Rothhardt, S. Dochow, and H. Bartelt, “First order fiber Bragg grating inscription with femtosecond laser and reflection wavelengths from visible to infrared,” Proc. SPIE 9157, 91572T (2015).

Shao, L. Y.

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

Sheng, Y.

Singh, A.

Smelser, C.

Smelser, C. W.

D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, C. Lafond, and A. Croteau, “Bragg gratings made with a femtosecond laser in heavily doped Er-Yb phosphate glass fiber,” IEEE Photonics Technol. Lett. 19(12), 943–945 (2007).
[Crossref]

Smith, G. N.

Steel, M. J.

Stutzki, F.

Sudrie, L.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3-6), 333–339 (2001).
[Crossref]

Sugden, K.

Takiguchi, K.

Thériault, S.

Thomas, J.

Thomas, J. U.

R. G. Krämer, C. Voigtländer, E. Freier, A. Liem, J. U. Thomas, D. Richter, T. Schreiber, A. Tünnermann, and S. Nolte, “Femtosecond pulse inscription of a selective mode filter in large mode area fibers,” Proc. SPIE 8601, 86010S (2013).
[Crossref]

Tünnermann, A.

R. G. Krämer, C. Voigtländer, E. Freier, A. Liem, J. U. Thomas, D. Richter, T. Schreiber, A. Tünnermann, and S. Nolte, “Femtosecond pulse inscription of a selective mode filter in large mode area fibers,” Proc. SPIE 8601, 86010S (2013).
[Crossref]

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photonics Rev. 6(6), 709–723 (2012).
[Crossref]

J. Thomas, N. Jovanovic, R. G. Becker, G. D. Marshall, M. J. Withford, A. Tünnermann, S. Nolte, and M. J. Steel, “Cladding mode coupling in highly localized fiber Bragg gratings: modal properties and transmission spectra,” Opt. Express 19(1), 325–341 (2011).
[Crossref] [PubMed]

C. Voigtländer, R. G. Becker, J. Thomas, D. Richter, A. Singh, A. Tünnermann, and S. Nolte, “Ultrashort pulse inscription of tailored fiber Bragg gratings with a phase mask and a deformed wavefront,” Opt. Mater. Express 1(4), 633–642 (2011).
[Crossref]

R. J. Williams, C. Voigtländer, G. D. Marshall, A. Tünnermann, S. Nolte, M. J. Steel, and M. J. Withford, “Point-by-point inscription of apodized fiber Bragg gratings,” Opt. Lett. 36(15), 2988–2990 (2011).
[Crossref] [PubMed]

J. Thomas, C. Voigtländer, D. Schimpf, F. Stutzki, E. Wikszak, J. Limpert, S. Nolte, and A. Tünnermann, “Continuously chirped fiber Bragg gratings by femtosecond laser structuring,” Opt. Lett. 33(14), 1560–1562 (2008).
[Crossref] [PubMed]

Vallée, R.

Vincent, S. W.

Voigtländer, C.

Walker, R. B.

D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, C. Lafond, and A. Croteau, “Bragg gratings made with a femtosecond laser in heavily doped Er-Yb phosphate glass fiber,” IEEE Photonics Technol. Lett. 19(12), 943–945 (2007).
[Crossref]

Wikszak, E.

Williams, R. J.

R. J. Williams, R. G. Krämer, S. Nolte, M. J. Withford, and M. J. Steel, “Detuning in apodized point-by-point fiber Bragg gratings: insights into the grating morphology,” Opt. Express 21(22), 26854–26867 (2013).
[Crossref] [PubMed]

D. D. Hudson, R. J. Williams, M. J. Withford, and S. D. Jackson, “Single-frequency fiber laser operating at 2.9 μm,” Opt. Lett. 38(14), 2388–2390 (2013).
[Crossref] [PubMed]

R. J. Williams, R. G. Krämer, S. Nolte, and M. J. Withford, “Femtosecond direct-writing of low-loss fiber Bragg gratings using a continuous core-scanning technique,” Opt. Lett. 38(11), 1918–1920 (2013).
[Crossref] [PubMed]

R. J. Williams, N. Jovanovic, G. D. Marshall, G. N. Smith, M. J. Steel, and M. J. Withford, “Optimizing the net reflectivity of point-by-point fiber Bragg gratings: The role of scattering loss,” Opt. Express 20(12), 13451–13456 (2012).
[Crossref] [PubMed]

R. Goto, R. J. Williams, N. Jovanovic, G. D. Marshall, M. J. Withford, and S. D. Jackson, “Linearly polarized fiber laser using a point-by-point Bragg grating in a single-polarization photonic bandgap fiber,” Opt. Lett. 36(10), 1872–1874 (2011).
[Crossref] [PubMed]

R. J. Williams, C. Voigtländer, G. D. Marshall, A. Tünnermann, S. Nolte, M. J. Steel, and M. J. Withford, “Point-by-point inscription of apodized fiber Bragg gratings,” Opt. Lett. 36(15), 2988–2990 (2011).
[Crossref] [PubMed]

G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18(19), 19844–19859 (2010).
[Crossref] [PubMed]

Withford, M. J.

S. Gross, M. Dubov, and M. J. Withford, “On the use of the Type I and II scheme for classifying ultrafast laser direct-write photonics,” Opt. Express 23(6), 7767–7770 (2015).
[Crossref] [PubMed]

D. D. Hudson, R. J. Williams, M. J. Withford, and S. D. Jackson, “Single-frequency fiber laser operating at 2.9 μm,” Opt. Lett. 38(14), 2388–2390 (2013).
[Crossref] [PubMed]

R. J. Williams, R. G. Krämer, S. Nolte, and M. J. Withford, “Femtosecond direct-writing of low-loss fiber Bragg gratings using a continuous core-scanning technique,” Opt. Lett. 38(11), 1918–1920 (2013).
[Crossref] [PubMed]

R. J. Williams, R. G. Krämer, S. Nolte, M. J. Withford, and M. J. Steel, “Detuning in apodized point-by-point fiber Bragg gratings: insights into the grating morphology,” Opt. Express 21(22), 26854–26867 (2013).
[Crossref] [PubMed]

R. J. Williams, N. Jovanovic, G. D. Marshall, G. N. Smith, M. J. Steel, and M. J. Withford, “Optimizing the net reflectivity of point-by-point fiber Bragg gratings: The role of scattering loss,” Opt. Express 20(12), 13451–13456 (2012).
[Crossref] [PubMed]

R. J. Williams, C. Voigtländer, G. D. Marshall, A. Tünnermann, S. Nolte, M. J. Steel, and M. J. Withford, “Point-by-point inscription of apodized fiber Bragg gratings,” Opt. Lett. 36(15), 2988–2990 (2011).
[Crossref] [PubMed]

R. Goto, R. J. Williams, N. Jovanovic, G. D. Marshall, M. J. Withford, and S. D. Jackson, “Linearly polarized fiber laser using a point-by-point Bragg grating in a single-polarization photonic bandgap fiber,” Opt. Lett. 36(10), 1872–1874 (2011).
[Crossref] [PubMed]

J. Thomas, N. Jovanovic, R. G. Becker, G. D. Marshall, M. J. Withford, A. Tünnermann, S. Nolte, and M. J. Steel, “Cladding mode coupling in highly localized fiber Bragg gratings: modal properties and transmission spectra,” Opt. Express 19(1), 325–341 (2011).
[Crossref] [PubMed]

G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18(19), 19844–19859 (2010).
[Crossref] [PubMed]

M. L. Aslund, N. Nemanja, N. Groothoff, J. Canning, G. D. Marshall, S. D. Jackson, A. Fuerbach, and M. J. Withford, “Optical loss mechanisms in femtosecond laser-written point-by-point fibre Bragg gratings,” Opt. Express 16(18), 14248–14254 (2008).
[Crossref] [PubMed]

N. Jovanovic, M. Aslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100 W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32(19), 2804–2806 (2007).
[Crossref] [PubMed]

Zhang, L.

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-Line Fiber Bragg Grating Made by Femtosecond Laser,” IEEE Photonics Technol. Lett. 22(16), 1190–1192 (2010).
[Crossref]

Zhou, K.

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-Line Fiber Bragg Grating Made by Femtosecond Laser,” IEEE Photonics Technol. Lett. 22(16), 1190–1192 (2010).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection fiber fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

Electron. Lett. (1)

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (2)

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-Line Fiber Bragg Grating Made by Femtosecond Laser,” IEEE Photonics Technol. Lett. 22(16), 1190–1192 (2010).
[Crossref]

D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, C. Lafond, and A. Croteau, “Bragg gratings made with a femtosecond laser in heavily doped Er-Yb phosphate glass fiber,” IEEE Photonics Technol. Lett. 19(12), 943–945 (2007).
[Crossref]

J. Lightwave Technol. (1)

Laser Photonics Rev. (2)

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photonics Rev. 6(6), 709–723 (2012).
[Crossref]

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

Nat. Photonics (1)

R. R. Gattas and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Opt. Commun. (1)

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3-6), 333–339 (2001).
[Crossref]

Opt. Express (8)

M. L. Aslund, N. Nemanja, N. Groothoff, J. Canning, G. D. Marshall, S. D. Jackson, A. Fuerbach, and M. J. Withford, “Optical loss mechanisms in femtosecond laser-written point-by-point fibre Bragg gratings,” Opt. Express 16(18), 14248–14254 (2008).
[Crossref] [PubMed]

M. Bernier, Y. Sheng, and R. Vallée, “Ultrabroadband fiber Bragg gratings written with a highly chirped phase mask and infrared femtosecond pulses,” Opt. Express 17(5), 3285–3290 (2009).
[Crossref] [PubMed]

G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18(19), 19844–19859 (2010).
[Crossref] [PubMed]

J. Thomas, N. Jovanovic, R. G. Becker, G. D. Marshall, M. J. Withford, A. Tünnermann, S. Nolte, and M. J. Steel, “Cladding mode coupling in highly localized fiber Bragg gratings: modal properties and transmission spectra,” Opt. Express 19(1), 325–341 (2011).
[Crossref] [PubMed]

R. J. Williams, N. Jovanovic, G. D. Marshall, G. N. Smith, M. J. Steel, and M. J. Withford, “Optimizing the net reflectivity of point-by-point fiber Bragg gratings: The role of scattering loss,” Opt. Express 20(12), 13451–13456 (2012).
[Crossref] [PubMed]

R. J. Williams, R. G. Krämer, S. Nolte, M. J. Withford, and M. J. Steel, “Detuning in apodized point-by-point fiber Bragg gratings: insights into the grating morphology,” Opt. Express 21(22), 26854–26867 (2013).
[Crossref] [PubMed]

S. Gross, M. Dubov, and M. J. Withford, “On the use of the Type I and II scheme for classifying ultrafast laser direct-write photonics,” Opt. Express 23(6), 7767–7770 (2015).
[Crossref] [PubMed]

C. Smelser, S. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005).
[Crossref] [PubMed]

Opt. Lett. (9)

M. Bernier, D. Faucher, R. Vallée, A. Saliminia, G. Androz, Y. Sheng, and S. L. Chin, “Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm,” Opt. Lett. 32(5), 454–456 (2007).
[Crossref] [PubMed]

N. Jovanovic, M. Aslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100 W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32(19), 2804–2806 (2007).
[Crossref] [PubMed]

J. Thomas, C. Voigtländer, D. Schimpf, F. Stutzki, E. Wikszak, J. Limpert, S. Nolte, and A. Tünnermann, “Continuously chirped fiber Bragg gratings by femtosecond laser structuring,” Opt. Lett. 33(14), 1560–1562 (2008).
[Crossref] [PubMed]

R. J. Williams, R. G. Krämer, S. Nolte, and M. J. Withford, “Femtosecond direct-writing of low-loss fiber Bragg gratings using a continuous core-scanning technique,” Opt. Lett. 38(11), 1918–1920 (2013).
[Crossref] [PubMed]

D. D. Hudson, R. J. Williams, M. J. Withford, and S. D. Jackson, “Single-frequency fiber laser operating at 2.9 μm,” Opt. Lett. 38(14), 2388–2390 (2013).
[Crossref] [PubMed]

R. Goto, R. J. Williams, N. Jovanovic, G. D. Marshall, M. J. Withford, and S. D. Jackson, “Linearly polarized fiber laser using a point-by-point Bragg grating in a single-polarization photonic bandgap fiber,” Opt. Lett. 36(10), 1872–1874 (2011).
[Crossref] [PubMed]

R. J. Williams, C. Voigtländer, G. D. Marshall, A. Tünnermann, S. Nolte, M. J. Steel, and M. J. Withford, “Point-by-point inscription of apodized fiber Bragg gratings,” Opt. Lett. 36(15), 2988–2990 (2011).
[Crossref] [PubMed]

K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Thériault, D. C. Johnson, J. Albert, and K. Takiguchi, “Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion,” Opt. Lett. 19(17), 1314–1316 (1994).
[Crossref] [PubMed]

M. E. Fermann, K. Sugden, and I. Bennion, “High-power soliton fiber laser based on pulse width control with chirped fiber Bragg gratings,” Opt. Lett. 20(2), 172–174 (1995).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Optica (1)

Proc. SPIE (3)

R. G. Krämer, C. Voigtländer, E. Freier, A. Liem, J. U. Thomas, D. Richter, T. Schreiber, A. Tünnermann, and S. Nolte, “Femtosecond pulse inscription of a selective mode filter in large mode area fibers,” Proc. SPIE 8601, 86010S (2013).
[Crossref]

M. Becker, T. Elsmann, A. Schwuchow, M. Rothhardt, S. Dochow, and H. Bartelt, “First order fiber Bragg grating inscription with femtosecond laser and reflection wavelengths from visible to infrared,” Proc. SPIE 9157, 91572T (2015).

W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic Bragg grating sensors,” Proc. SPIE 1169, 98–107 (1990).
[Crossref]

Other (4)

C. Voigtländer, R. G. Krämer, A. Liem, T. Schreiber, A. Tünnermann, and S. Nolte, “1 kW fiber laser oscillator with fs-written fiber Bragg gratings” in Proceedings of CLEO/EUROPE – EQEC (2015), pp. 176–178.

C. Voigtländer, R. G. Kramer, J. U. Thomas, D. Richter, and S. Nolte, “Tuning the FBG period with a spatial light modulator,” in Advanced Photonics Congress (The Optical Society, 2014), paper BM2D.4.
[Crossref]

G. D. Marshall and M. J. Withford, “Annealing Properties of Femtosecond Laser Inscribed Point-by-Point Fiber Bragg Gratings,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (CD) (Optical Society of America, 2007), paper JWA30.

M. Ams, A. Pal, R. J. Williams, R. Sen, M. J. Withford, T. Sun, and K. T. V. Grattan, “Optical Bragg grating sensors for nuclear environments,” presented at the Light, Energy and the Environment Congress, Canberra, Australia, 2–5 Dec. 2014.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic representation of a chirped fiber Bragg grating. As the Bragg period is varied along the length of the fiber, different spectral components of the injected signal are reflected off different sections within the core of the fiber which can result in a high group delay dispersion and a broadband reflectivity spectrum.
Fig. 2
Fig. 2 Schematic (left) and DIC image (right) of the femtosecond laser inscribed patterns within the fiber for the three different inscription methods: (a) point-by-point, (b) continuous core-scanned and (c) modified core-scanned.
Fig. 3
Fig. 3 Schematic of the modified core-scanned inscription setup. 1: focusing objective; 2: glass substrate with V-grove to hold the fiber and a 100µm thick glass coverslip on top; 3: Aerotech FA130 US translation stage, controlling the movement of the x- and z-axis; 4: Aerotech ABL2000 air-bearing translation stage, controlling the movement of the y-axis; 5: silica glass fiber with protective coating removed.
Fig. 4
Fig. 4 Reflection spectrum of a 1.8 cm long nonlinearly chirped point-by-point grating with a 12 nm bandwidth. The black trace shows the reflection response measured from the short-period side, while the red trace shows the response measured from the long-period side. Also shown is the dispersion characteristic of the grating with clearly visible higher-order dispersion.
Fig. 5
Fig. 5 Reflection spectrum of a 19.5 cm long linearly chirped continuous core-scanned grating with a 10 nm bandwidth, which exhibits properties that are independent of the injection side of the grating. Also shown are the measured total group delays for the short and the long-period injection sides showing that the FBG can selectively introduce normal or anomalous dispersion.
Fig. 6
Fig. 6 Reflection spectra for a 10 mm long 4th-order chirped FBG inscribed with the modified core-scanned technique with light injected at either ends of the grating.
Fig. 7
Fig. 7 Cladding mode resonances in the transmission spectrum of a modified core-scanned grating with vertical planes (red trace) and a continuous core-scanned grating with tilted planes (black trace). Both gratings are 10 mm long uniform gratings and have been inscribed with identical pulse energy and overlap.

Tables (2)

Tables Icon

Table 1 Inscription parameters

Tables Icon

Table 2 Results for chirped core-scanned gratings

Metrics