Abstract

Sensors based on whispering gallery resonators have minute footprints and can push achievable sensitivities and resolutions to their limits. Here, we use a microbubble resonator, with a wall thickness of 500 nm and an intrinsic Q-factor of 107 in the telecommunications C-band, to investigate aerostatic pressure sensing via stress and strain of the material. The microbubble is made using two counter-propagating CO2 laser beams focused onto a microcapillary. The measured sensitivity is 19 GHz/bar at 1.55 μm. We show that this can be further improved to 38 GHz/bar when tested at the 780 nm wavelength range. In this case, the resolution for pressure sensing can reach 0.17 mbar with a Q-factor higher than 5 × 107.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quasi-droplet microbubbles for high resolution sensing applications

Yong Yang, Jonathan Ward, and Síle Nic Chormaic
Opt. Express 22(6) 6881-6898 (2014)

Coupled-mode-induced transparency in aerostatically tuned microbubble whispering-gallery resonators

Yong Yang, Sunny Saurabh, Jonathan Ward, and Síle Nic Chormaic
Opt. Lett. 40(8) 1834-1837 (2015)

Tunable erbium-doped microbubble laser fabricated by sol-gel coating

Yong Yang, Fuchuan Lei, Sho Kasumie, Linhua Xu, Jonathan M. Ward, Lan Yang, and Síle Nic Chormaic
Opt. Express 25(2) 1308-1313 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
    [Crossref]
  2. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
    [Crossref] [PubMed]
  3. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
    [Crossref]
  4. B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Nat. Acad. Sci. 111, 14657–14662 (2014).
    [Crossref] [PubMed]
  5. M. Sumetsky, Y. Dulashko, and R. S. Windeler, “Optical microbubble resonator,” Opt. Lett. 35, 898–900 (2010).
    [Crossref] [PubMed]
  6. H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97, 011105 (2010).
    [Crossref]
  7. K. Han, K. Zhu, and G. Bahl, “Opto-mechano-fluidic viscometer,” Appl. Phys. Lett. 105, 014103 (2014).
    [Crossref]
  8. A. Watkins, J. Ward, Y. Wu, and S. Nic Chormaic, “Single-input spherical microbubble resonator,” Opt. Lett. 36, 2113–2115 (2011).
    [Crossref] [PubMed]
  9. J. Ward, N. Dhasmana, and S. Nic Chormaic, “Hollow core, whispering gallery resonator sensors,” Eur. Phys. J. Special Topics 223, 1917–1935 (2014).
    [Crossref]
  10. H. Li, Y. Guo, Y. Sun, K. Reddy, and X. Fan, “Analysis of single nanoparticle detection by using 3-dimensionally confined optofluidic ring resonators,” Opt. Express 18, 25081–25088 (2010).
    [Crossref] [PubMed]
  11. Y. Yang, J. Ward, and S. Nic Chormaic, “Quasi-droplet microbubbles for high resolution sensing applications,” Opt. Express 22, 6881 (2014).
    [Crossref] [PubMed]
  12. Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal. Chem. 399, 205–211 (2011).
    [Crossref]
  13. J. M. Ward, Y. Yang, and S. Nic Chormaic, “Highly sensitive temperature measurements with liquid-core microbubble resonators,” IEEE Photonics Technol. Lett. 25, 2350–2353 (2013).
    [Crossref]
  14. W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99, 091102 (2011).
    [Crossref]
  15. S. Berneschi, D. Farnesi, F. Cosi, G. N. Conti, S. Pelli, G. C. Righini, and S. Soria, “High Q silica microbubble resonators fabricated by arc discharge,” Opt. Lett. 36, 3521–3523 (2011).
    [Crossref] [PubMed]
  16. R. Henze, T. Seifert, J. Ward, and O. Benson, “Tuning whispering gallery modes using internal aerostatic pressure,,” Opt. Lett. 36, 4536–4538 (2011).
    [Crossref] [PubMed]
  17. L. Martin, S. León-Luis, C. Pérez-Rodríguez, I. Martín, U. Rodríguez-Mendoza, and V. Lavín, “High pressure tuning of whispering gallery mode resonances in a neodymium-doped glass microsphere,” J. Opt. Soc. Am B 30, 3254–3259 (2013).
    [Crossref]
  18. T. Weigel, C. Esen, G. Schweiger, and A. Ostendorf, “Whispering gallery mode pressure sensing,” SPIE PhotonicsEurope p. 84390T (2012).
  19. T. Ioppolo and M. V. Ötügen, “Pressure tuning of whispering gallery mode resonators,” J. Opt. Soc. Am B 24, 2721–2726 (2007).
    [Crossref]
  20. Y. Yang, S. Saurabh, J. M. Ward, and S. Nic Chormaic, “Coupled-mode induced transparency in aerostatically-tuned microbubble whispering gallery resonators,” Opt. Lett. 40, 1834 (2015).
    [Crossref] [PubMed]

2015 (1)

2014 (4)

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Nat. Acad. Sci. 111, 14657–14662 (2014).
[Crossref] [PubMed]

K. Han, K. Zhu, and G. Bahl, “Opto-mechano-fluidic viscometer,” Appl. Phys. Lett. 105, 014103 (2014).
[Crossref]

J. Ward, N. Dhasmana, and S. Nic Chormaic, “Hollow core, whispering gallery resonator sensors,” Eur. Phys. J. Special Topics 223, 1917–1935 (2014).
[Crossref]

Y. Yang, J. Ward, and S. Nic Chormaic, “Quasi-droplet microbubbles for high resolution sensing applications,” Opt. Express 22, 6881 (2014).
[Crossref] [PubMed]

2013 (2)

L. Martin, S. León-Luis, C. Pérez-Rodríguez, I. Martín, U. Rodríguez-Mendoza, and V. Lavín, “High pressure tuning of whispering gallery mode resonances in a neodymium-doped glass microsphere,” J. Opt. Soc. Am B 30, 3254–3259 (2013).
[Crossref]

J. M. Ward, Y. Yang, and S. Nic Chormaic, “Highly sensitive temperature measurements with liquid-core microbubble resonators,” IEEE Photonics Technol. Lett. 25, 2350–2353 (2013).
[Crossref]

2011 (5)

2010 (3)

2009 (2)

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[Crossref]

2008 (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref] [PubMed]

2007 (1)

T. Ioppolo and M. V. Ötügen, “Pressure tuning of whispering gallery mode resonators,” J. Opt. Soc. Am B 24, 2721–2726 (2007).
[Crossref]

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref] [PubMed]

Bahl, G.

K. Han, K. Zhu, and G. Bahl, “Opto-mechano-fluidic viscometer,” Appl. Phys. Lett. 105, 014103 (2014).
[Crossref]

Benson, O.

Berneschi, S.

Chen, D.-R.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[Crossref]

Clements, W. R.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Nat. Acad. Sci. 111, 14657–14662 (2014).
[Crossref] [PubMed]

Conti, G. N.

Cosi, F.

Dhasmana, N.

J. Ward, N. Dhasmana, and S. Nic Chormaic, “Hollow core, whispering gallery resonator sensors,” Eur. Phys. J. Special Topics 223, 1917–1935 (2014).
[Crossref]

Dong, C.-H.

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[Crossref]

Dulashko, Y.

Esen, C.

T. Weigel, C. Esen, G. Schweiger, and A. Ostendorf, “Whispering gallery mode pressure sensing,” SPIE PhotonicsEurope p. 84390T (2012).

Fan, X.

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99, 091102 (2011).
[Crossref]

Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal. Chem. 399, 205–211 (2011).
[Crossref]

H. Li, Y. Guo, Y. Sun, K. Reddy, and X. Fan, “Analysis of single nanoparticle detection by using 3-dimensionally confined optofluidic ring resonators,” Opt. Express 18, 25081–25088 (2010).
[Crossref] [PubMed]

H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97, 011105 (2010).
[Crossref]

Farnesi, D.

Gaddam, V. R.

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[Crossref]

Gong, Q.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Nat. Acad. Sci. 111, 14657–14662 (2014).
[Crossref] [PubMed]

Guo, G.-C.

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[Crossref]

Guo, Y.

Han, K.

K. Han, K. Zhu, and G. Bahl, “Opto-mechano-fluidic viscometer,” Appl. Phys. Lett. 105, 014103 (2014).
[Crossref]

Han, Z.-F.

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[Crossref]

He, L.

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[Crossref]

Henze, R.

Ioppolo, T.

T. Ioppolo and M. V. Ötügen, “Pressure tuning of whispering gallery mode resonators,” J. Opt. Soc. Am B 24, 2721–2726 (2007).
[Crossref]

Lavín, V.

L. Martin, S. León-Luis, C. Pérez-Rodríguez, I. Martín, U. Rodríguez-Mendoza, and V. Lavín, “High pressure tuning of whispering gallery mode resonances in a neodymium-doped glass microsphere,” J. Opt. Soc. Am B 30, 3254–3259 (2013).
[Crossref]

Lee, W.

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99, 091102 (2011).
[Crossref]

León-Luis, S.

L. Martin, S. León-Luis, C. Pérez-Rodríguez, I. Martín, U. Rodríguez-Mendoza, and V. Lavín, “High pressure tuning of whispering gallery mode resonances in a neodymium-doped glass microsphere,” J. Opt. Soc. Am B 30, 3254–3259 (2013).
[Crossref]

Li, B.-B.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Nat. Acad. Sci. 111, 14657–14662 (2014).
[Crossref] [PubMed]

Li, H.

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99, 091102 (2011).
[Crossref]

H. Li, Y. Guo, Y. Sun, K. Reddy, and X. Fan, “Analysis of single nanoparticle detection by using 3-dimensionally confined optofluidic ring resonators,” Opt. Express 18, 25081–25088 (2010).
[Crossref] [PubMed]

H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97, 011105 (2010).
[Crossref]

Li, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[Crossref]

Martin, L.

L. Martin, S. León-Luis, C. Pérez-Rodríguez, I. Martín, U. Rodríguez-Mendoza, and V. Lavín, “High pressure tuning of whispering gallery mode resonances in a neodymium-doped glass microsphere,” J. Opt. Soc. Am B 30, 3254–3259 (2013).
[Crossref]

Martín, I.

L. Martin, S. León-Luis, C. Pérez-Rodríguez, I. Martín, U. Rodríguez-Mendoza, and V. Lavín, “High pressure tuning of whispering gallery mode resonances in a neodymium-doped glass microsphere,” J. Opt. Soc. Am B 30, 3254–3259 (2013).
[Crossref]

Nic Chormaic, S.

Ostendorf, A.

T. Weigel, C. Esen, G. Schweiger, and A. Ostendorf, “Whispering gallery mode pressure sensing,” SPIE PhotonicsEurope p. 84390T (2012).

Ötügen, M. V.

T. Ioppolo and M. V. Ötügen, “Pressure tuning of whispering gallery mode resonators,” J. Opt. Soc. Am B 24, 2721–2726 (2007).
[Crossref]

Ozdemir, S. K.

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[Crossref]

Pelli, S.

Pérez-Rodríguez, C.

L. Martin, S. León-Luis, C. Pérez-Rodríguez, I. Martín, U. Rodríguez-Mendoza, and V. Lavín, “High pressure tuning of whispering gallery mode resonances in a neodymium-doped glass microsphere,” J. Opt. Soc. Am B 30, 3254–3259 (2013).
[Crossref]

Reddy, K.

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99, 091102 (2011).
[Crossref]

H. Li, Y. Guo, Y. Sun, K. Reddy, and X. Fan, “Analysis of single nanoparticle detection by using 3-dimensionally confined optofluidic ring resonators,” Opt. Express 18, 25081–25088 (2010).
[Crossref] [PubMed]

Righini, G. C.

Rodríguez-Mendoza, U.

L. Martin, S. León-Luis, C. Pérez-Rodríguez, I. Martín, U. Rodríguez-Mendoza, and V. Lavín, “High pressure tuning of whispering gallery mode resonances in a neodymium-doped glass microsphere,” J. Opt. Soc. Am B 30, 3254–3259 (2013).
[Crossref]

Saurabh, S.

Schweiger, G.

T. Weigel, C. Esen, G. Schweiger, and A. Ostendorf, “Whispering gallery mode pressure sensing,” SPIE PhotonicsEurope p. 84390T (2012).

Seifert, T.

Shi, K.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Nat. Acad. Sci. 111, 14657–14662 (2014).
[Crossref] [PubMed]

Soria, S.

Sumetsky, M.

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99, 091102 (2011).
[Crossref]

M. Sumetsky, Y. Dulashko, and R. S. Windeler, “Optical microbubble resonator,” Opt. Lett. 35, 898–900 (2010).
[Crossref] [PubMed]

Sun, Y.

Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal. Chem. 399, 205–211 (2011).
[Crossref]

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99, 091102 (2011).
[Crossref]

H. Li, Y. Guo, Y. Sun, K. Reddy, and X. Fan, “Analysis of single nanoparticle detection by using 3-dimensionally confined optofluidic ring resonators,” Opt. Express 18, 25081–25088 (2010).
[Crossref] [PubMed]

Vollmer, F.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref] [PubMed]

Ward, J.

Ward, J. M.

Y. Yang, S. Saurabh, J. M. Ward, and S. Nic Chormaic, “Coupled-mode induced transparency in aerostatically-tuned microbubble whispering gallery resonators,” Opt. Lett. 40, 1834 (2015).
[Crossref] [PubMed]

J. M. Ward, Y. Yang, and S. Nic Chormaic, “Highly sensitive temperature measurements with liquid-core microbubble resonators,” IEEE Photonics Technol. Lett. 25, 2350–2353 (2013).
[Crossref]

Watkins, A.

Weigel, T.

T. Weigel, C. Esen, G. Schweiger, and A. Ostendorf, “Whispering gallery mode pressure sensing,” SPIE PhotonicsEurope p. 84390T (2012).

Windeler, R. S.

Wu, Y.

Xiao, Y.-F.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Nat. Acad. Sci. 111, 14657–14662 (2014).
[Crossref] [PubMed]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[Crossref]

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[Crossref]

Yang, L.

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[Crossref]

Yang, Y.

Yu, X.-C.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Nat. Acad. Sci. 111, 14657–14662 (2014).
[Crossref] [PubMed]

Zhu, J.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[Crossref]

Zhu, K.

K. Han, K. Zhu, and G. Bahl, “Opto-mechano-fluidic viscometer,” Appl. Phys. Lett. 105, 014103 (2014).
[Crossref]

Anal. Bioanal. Chem. (1)

Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal. Chem. 399, 205–211 (2011).
[Crossref]

Appl. Phys. Lett. (4)

H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97, 011105 (2010).
[Crossref]

K. Han, K. Zhu, and G. Bahl, “Opto-mechano-fluidic viscometer,” Appl. Phys. Lett. 105, 014103 (2014).
[Crossref]

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[Crossref]

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99, 091102 (2011).
[Crossref]

Eur. Phys. J. Special Topics (1)

J. Ward, N. Dhasmana, and S. Nic Chormaic, “Hollow core, whispering gallery resonator sensors,” Eur. Phys. J. Special Topics 223, 1917–1935 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. M. Ward, Y. Yang, and S. Nic Chormaic, “Highly sensitive temperature measurements with liquid-core microbubble resonators,” IEEE Photonics Technol. Lett. 25, 2350–2353 (2013).
[Crossref]

J. Opt. Soc. Am B (2)

L. Martin, S. León-Luis, C. Pérez-Rodríguez, I. Martín, U. Rodríguez-Mendoza, and V. Lavín, “High pressure tuning of whispering gallery mode resonances in a neodymium-doped glass microsphere,” J. Opt. Soc. Am B 30, 3254–3259 (2013).
[Crossref]

T. Ioppolo and M. V. Ötügen, “Pressure tuning of whispering gallery mode resonators,” J. Opt. Soc. Am B 24, 2721–2726 (2007).
[Crossref]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[Crossref]

Opt. Express (2)

Opt. Lett. (5)

Proc. Nat. Acad. Sci. (1)

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Nat. Acad. Sci. 111, 14657–14662 (2014).
[Crossref] [PubMed]

Other (1)

T. Weigel, C. Esen, G. Schweiger, and A. Ostendorf, “Whispering gallery mode pressure sensing,” SPIE PhotonicsEurope p. 84390T (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of the microbubble fabrication setup. M:mirror, L:CO2 lens, BS:beamsplitter; (b) An SEM image of a microbubble snapped in the middle. This is Sample A in the main text. The measured minimum wall thickness is 507 nm.

Fig. 2
Fig. 2

Experimental setup for aerostatic pressure sensing. P:electronic pressure sensor, PD:photon detector, DSO:digital oscilloscope, TLS:tunable laser source.

Fig. 3
Fig. 3

Q-factor measurements for two microbubble samples having similar geometrical parameters, A (upper) and B (lower). (a) Sample A at 1.55 μm; (b) Sample A at 780 nm; (c) Sample B at 1.55 μm; (d) Sample B at 780 nm. Note that modal coupling occurs for Sample A at 780 nm and for Sample B at 1.55 μm.

Fig. 4
Fig. 4

Theoretical Q-factor of a 170 μm microbubble calculated for different wall thicknesses using a finite element method at 1.55 μm. The dashed line represents a wall thickness of 550 nm. The red line is a guide for the eye.

Fig. 5
Fig. 5

Pressure sensing sensitivity for Sample A and Sample B at two different wavelengths. Sample A at (a) 1.55 μm and (b) at 780 nm. Sample B at (c) 1.55 μm and (d) 780 nm. The insets show the transmission spectra through the fiber coupler for increasing internal pressure. The arrows are the directions of the mode frequency shifts.

Tables (1)

Tables Icon

Table 1 FOMs FOR thin-walled microbubbles for different fabrication methods.

Metrics