Abstract

Phenomena of the radiation coupling to the field effect transistors based terahertz (THz) detectors are studied. We show that in the case of planar metal antennas a significant portion of incoming radiation, instead of being coupled to the transistors, is coupled to an antenna substrate leading to responsivity losses and/or cross-talk effects in the field effect based THz detector arrays. Experimental and theoretical investigations of the responsivity versus substrate thickness are performed. They clearly show how to minimize the losses by the detector/ array substrate thinning. In conclusion simple quantitative rules of losses minimization by choosing a proper substrate thickness of field effect transistor THz detectors are presented for common materials (Si, GaAs, InP, GaN) used in semiconductor technologies.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband terahertz imaging with highly sensitive silicon CMOS detectors

Franz Schuster, Dominique Coquillat, Hadley Videlier, Maciej Sakowicz, Frédéric Teppe, Laurent Dussopt, Benoît Giffard, Thomas Skotnicki, and Wojciech Knap
Opt. Express 19(8) 7827-7832 (2011)

Nanowire Terahertz detectors with a resonant four-leaf-clover-shaped antenna

Leonardo Viti, Dominique Coquillat, Daniele Ercolani, Lucia Sorba, Wojciech Knap, and Miriam S. Vitiello
Opt. Express 22(8) 8996-9003 (2014)

Broadband THz detection from 0.1 to 22 THz with large area field-effect transistors

Stefan Regensburger, Martin Mittendorff, Stephan Winnerl, Hong Lu, Arthur C. Gossard, and Sascha Preu
Opt. Express 23(16) 20732-20742 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Dyakonov and M. Shur, “Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by dc current,” Phys. Rev. Lett. 71(15), 2465–2468 (1993).
    [Crossref] [PubMed]
  2. M. Dyakonov and M. Shur, “Detection, mixing, and frequency multiplication of terahertz radiation by two dimensional electronic fluid,” IEEE Trans. Electron. Dev. 43(3), 380–387 (1996).
    [Crossref]
  3. W. Knap, S. Nadar, H. Videlier, S. Boubanga-Tombet, D. Coquillat, N. Dyakonova, F. Teppe, K. Karpierz, J. Lusakowski, M. Sakowicz, I. Kasalynas, D. Seliuta, G. Valusis, T. Otsuji, Y. Meziani, A. El Fatimy, S. Vandenbrouk, K. Madjour, D. Théron, and C. Gaquière, “Field effect transistors for terahertz detection and emission,” J. Infrared Millim. Terahertz Waves 32(5), 618–628 (2011).
    [Crossref]
  4. S. Blin, L. Tohme, D. Coquillat, S. Horiguchi, Y. Minamikata, S. Hisatake, P. Nouvel, T. Cohen, A. Pénarier, F. Cano, L. Varani, W. Knap, and T. Nagatsuma, “Wireless communication at 310 GHz using GaAs high-electron-mobility transistors for detection,” J. Commun. Netw. 15(6), 559–568 (2013).
    [Crossref]
  5. T. Nagatsuma, P. Nouvel, L. Tohmé, W. Knap, D. Coquillat, A. Pénarier, S. Blin, J.-F. Lampin, L. Varani, S. Hisatake, and G. Ducournau, “Terahertz wireless communication using GaAs transistors as detectors,” Electron. Lett. 50(4), 323–325 (2014).
    [Crossref]
  6. R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, and M. S. Shur, “Plasma wave detection of terahertz radiation by silicon field effect transistors: responsivity and noise equivalent power,” Appl. Phys. Lett. 89(25), 253511 (2006).
    [Crossref]
  7. F. Schuster, D. Coquillat, H. Videlier, M. Sakowicz, F. Teppe, L. Dussopt, B. Giffard, T. Skotnicki, and W. Knap, “Broadband terahertz imaging with highly sensitive silicon CMOS detectors,” Opt. Express 19(8), 7827–7832 (2011).
    [Crossref] [PubMed]
  8. R. E. Collin, “Field Theory of Guided Waves”, McGraw-Hill, 470–474 (1960).
  9. D. M. Pozar, “Considerations for millimeter wave printed antennas,” IEEE Trans. Antenn. Propag. 31(5), 740–747 (1983).
    [Crossref]
  10. M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, “Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors,” Nano Lett. 12(1), 96–101 (2012).
    [Crossref] [PubMed]
  11. M. Sakowicz, M. B. Lifshits, O. A. Klimenko, F. Schuster, D. Coquillat, F. Teppe, and W. Knap, “Terahertz responsivity of field effect transistors versus their static channel conductivity and loading effects,” J. Appl. Phys. 110(5), 054512 (2011).
    [Crossref]
  12. W. K. Gwarek, M. Celuch, M. Sypniewski, and A. Wieckowski, QuickWave-3D Manual v.2015, (QWED Poland, 2015).
  13. P. Kopyt, P. Zagrajek, J. Marczewski, K. Kucharski, B. Salski, J. Lusakowski, W. Knap, and W. K. Gwarek, “Analysis of sub-THz radiation detector built of planar antenna integrated with MOSFET,” Microelectronics J. 45(9), 1168–1176 (2014).
    [Crossref]
  14. D. Coquillat, V. Nodjiadjim, A. Konczykowska, M. Riet, N. Dyakonova, C. Consejo, F. Teppe, J. Godin, and W. Knap, “InP double heterojunction bipolar transistor as sub-terahertz detector,” IRMMW-THz: Int. Conf. on Infrared, Millimeter, and Terahertz Waves, Tucson, AZ, USA, 15–19 Sept. 2014, 1–2 (2014).
    [Crossref]

2014 (2)

T. Nagatsuma, P. Nouvel, L. Tohmé, W. Knap, D. Coquillat, A. Pénarier, S. Blin, J.-F. Lampin, L. Varani, S. Hisatake, and G. Ducournau, “Terahertz wireless communication using GaAs transistors as detectors,” Electron. Lett. 50(4), 323–325 (2014).
[Crossref]

P. Kopyt, P. Zagrajek, J. Marczewski, K. Kucharski, B. Salski, J. Lusakowski, W. Knap, and W. K. Gwarek, “Analysis of sub-THz radiation detector built of planar antenna integrated with MOSFET,” Microelectronics J. 45(9), 1168–1176 (2014).
[Crossref]

2013 (1)

S. Blin, L. Tohme, D. Coquillat, S. Horiguchi, Y. Minamikata, S. Hisatake, P. Nouvel, T. Cohen, A. Pénarier, F. Cano, L. Varani, W. Knap, and T. Nagatsuma, “Wireless communication at 310 GHz using GaAs high-electron-mobility transistors for detection,” J. Commun. Netw. 15(6), 559–568 (2013).
[Crossref]

2012 (1)

M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, “Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors,” Nano Lett. 12(1), 96–101 (2012).
[Crossref] [PubMed]

2011 (3)

M. Sakowicz, M. B. Lifshits, O. A. Klimenko, F. Schuster, D. Coquillat, F. Teppe, and W. Knap, “Terahertz responsivity of field effect transistors versus their static channel conductivity and loading effects,” J. Appl. Phys. 110(5), 054512 (2011).
[Crossref]

W. Knap, S. Nadar, H. Videlier, S. Boubanga-Tombet, D. Coquillat, N. Dyakonova, F. Teppe, K. Karpierz, J. Lusakowski, M. Sakowicz, I. Kasalynas, D. Seliuta, G. Valusis, T. Otsuji, Y. Meziani, A. El Fatimy, S. Vandenbrouk, K. Madjour, D. Théron, and C. Gaquière, “Field effect transistors for terahertz detection and emission,” J. Infrared Millim. Terahertz Waves 32(5), 618–628 (2011).
[Crossref]

F. Schuster, D. Coquillat, H. Videlier, M. Sakowicz, F. Teppe, L. Dussopt, B. Giffard, T. Skotnicki, and W. Knap, “Broadband terahertz imaging with highly sensitive silicon CMOS detectors,” Opt. Express 19(8), 7827–7832 (2011).
[Crossref] [PubMed]

2006 (1)

R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, and M. S. Shur, “Plasma wave detection of terahertz radiation by silicon field effect transistors: responsivity and noise equivalent power,” Appl. Phys. Lett. 89(25), 253511 (2006).
[Crossref]

1996 (1)

M. Dyakonov and M. Shur, “Detection, mixing, and frequency multiplication of terahertz radiation by two dimensional electronic fluid,” IEEE Trans. Electron. Dev. 43(3), 380–387 (1996).
[Crossref]

1993 (1)

M. Dyakonov and M. Shur, “Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by dc current,” Phys. Rev. Lett. 71(15), 2465–2468 (1993).
[Crossref] [PubMed]

1983 (1)

D. M. Pozar, “Considerations for millimeter wave printed antennas,” IEEE Trans. Antenn. Propag. 31(5), 740–747 (1983).
[Crossref]

Beltram, F.

M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, “Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors,” Nano Lett. 12(1), 96–101 (2012).
[Crossref] [PubMed]

Blin, S.

T. Nagatsuma, P. Nouvel, L. Tohmé, W. Knap, D. Coquillat, A. Pénarier, S. Blin, J.-F. Lampin, L. Varani, S. Hisatake, and G. Ducournau, “Terahertz wireless communication using GaAs transistors as detectors,” Electron. Lett. 50(4), 323–325 (2014).
[Crossref]

S. Blin, L. Tohme, D. Coquillat, S. Horiguchi, Y. Minamikata, S. Hisatake, P. Nouvel, T. Cohen, A. Pénarier, F. Cano, L. Varani, W. Knap, and T. Nagatsuma, “Wireless communication at 310 GHz using GaAs high-electron-mobility transistors for detection,” J. Commun. Netw. 15(6), 559–568 (2013).
[Crossref]

Boeuf, F.

R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, and M. S. Shur, “Plasma wave detection of terahertz radiation by silicon field effect transistors: responsivity and noise equivalent power,” Appl. Phys. Lett. 89(25), 253511 (2006).
[Crossref]

Boubanga, S.

R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, and M. S. Shur, “Plasma wave detection of terahertz radiation by silicon field effect transistors: responsivity and noise equivalent power,” Appl. Phys. Lett. 89(25), 253511 (2006).
[Crossref]

Boubanga-Tombet, S.

W. Knap, S. Nadar, H. Videlier, S. Boubanga-Tombet, D. Coquillat, N. Dyakonova, F. Teppe, K. Karpierz, J. Lusakowski, M. Sakowicz, I. Kasalynas, D. Seliuta, G. Valusis, T. Otsuji, Y. Meziani, A. El Fatimy, S. Vandenbrouk, K. Madjour, D. Théron, and C. Gaquière, “Field effect transistors for terahertz detection and emission,” J. Infrared Millim. Terahertz Waves 32(5), 618–628 (2011).
[Crossref]

Cano, F.

S. Blin, L. Tohme, D. Coquillat, S. Horiguchi, Y. Minamikata, S. Hisatake, P. Nouvel, T. Cohen, A. Pénarier, F. Cano, L. Varani, W. Knap, and T. Nagatsuma, “Wireless communication at 310 GHz using GaAs high-electron-mobility transistors for detection,” J. Commun. Netw. 15(6), 559–568 (2013).
[Crossref]

Cohen, T.

S. Blin, L. Tohme, D. Coquillat, S. Horiguchi, Y. Minamikata, S. Hisatake, P. Nouvel, T. Cohen, A. Pénarier, F. Cano, L. Varani, W. Knap, and T. Nagatsuma, “Wireless communication at 310 GHz using GaAs high-electron-mobility transistors for detection,” J. Commun. Netw. 15(6), 559–568 (2013).
[Crossref]

Coquillat, D.

T. Nagatsuma, P. Nouvel, L. Tohmé, W. Knap, D. Coquillat, A. Pénarier, S. Blin, J.-F. Lampin, L. Varani, S. Hisatake, and G. Ducournau, “Terahertz wireless communication using GaAs transistors as detectors,” Electron. Lett. 50(4), 323–325 (2014).
[Crossref]

S. Blin, L. Tohme, D. Coquillat, S. Horiguchi, Y. Minamikata, S. Hisatake, P. Nouvel, T. Cohen, A. Pénarier, F. Cano, L. Varani, W. Knap, and T. Nagatsuma, “Wireless communication at 310 GHz using GaAs high-electron-mobility transistors for detection,” J. Commun. Netw. 15(6), 559–568 (2013).
[Crossref]

M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, “Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors,” Nano Lett. 12(1), 96–101 (2012).
[Crossref] [PubMed]

W. Knap, S. Nadar, H. Videlier, S. Boubanga-Tombet, D. Coquillat, N. Dyakonova, F. Teppe, K. Karpierz, J. Lusakowski, M. Sakowicz, I. Kasalynas, D. Seliuta, G. Valusis, T. Otsuji, Y. Meziani, A. El Fatimy, S. Vandenbrouk, K. Madjour, D. Théron, and C. Gaquière, “Field effect transistors for terahertz detection and emission,” J. Infrared Millim. Terahertz Waves 32(5), 618–628 (2011).
[Crossref]

M. Sakowicz, M. B. Lifshits, O. A. Klimenko, F. Schuster, D. Coquillat, F. Teppe, and W. Knap, “Terahertz responsivity of field effect transistors versus their static channel conductivity and loading effects,” J. Appl. Phys. 110(5), 054512 (2011).
[Crossref]

F. Schuster, D. Coquillat, H. Videlier, M. Sakowicz, F. Teppe, L. Dussopt, B. Giffard, T. Skotnicki, and W. Knap, “Broadband terahertz imaging with highly sensitive silicon CMOS detectors,” Opt. Express 19(8), 7827–7832 (2011).
[Crossref] [PubMed]

R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, and M. S. Shur, “Plasma wave detection of terahertz radiation by silicon field effect transistors: responsivity and noise equivalent power,” Appl. Phys. Lett. 89(25), 253511 (2006).
[Crossref]

Ducournau, G.

T. Nagatsuma, P. Nouvel, L. Tohmé, W. Knap, D. Coquillat, A. Pénarier, S. Blin, J.-F. Lampin, L. Varani, S. Hisatake, and G. Ducournau, “Terahertz wireless communication using GaAs transistors as detectors,” Electron. Lett. 50(4), 323–325 (2014).
[Crossref]

Dussopt, L.

Dyakonov, M.

M. Dyakonov and M. Shur, “Detection, mixing, and frequency multiplication of terahertz radiation by two dimensional electronic fluid,” IEEE Trans. Electron. Dev. 43(3), 380–387 (1996).
[Crossref]

M. Dyakonov and M. Shur, “Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by dc current,” Phys. Rev. Lett. 71(15), 2465–2468 (1993).
[Crossref] [PubMed]

Dyakonova, N.

W. Knap, S. Nadar, H. Videlier, S. Boubanga-Tombet, D. Coquillat, N. Dyakonova, F. Teppe, K. Karpierz, J. Lusakowski, M. Sakowicz, I. Kasalynas, D. Seliuta, G. Valusis, T. Otsuji, Y. Meziani, A. El Fatimy, S. Vandenbrouk, K. Madjour, D. Théron, and C. Gaquière, “Field effect transistors for terahertz detection and emission,” J. Infrared Millim. Terahertz Waves 32(5), 618–628 (2011).
[Crossref]

El Fatimy, A.

W. Knap, S. Nadar, H. Videlier, S. Boubanga-Tombet, D. Coquillat, N. Dyakonova, F. Teppe, K. Karpierz, J. Lusakowski, M. Sakowicz, I. Kasalynas, D. Seliuta, G. Valusis, T. Otsuji, Y. Meziani, A. El Fatimy, S. Vandenbrouk, K. Madjour, D. Théron, and C. Gaquière, “Field effect transistors for terahertz detection and emission,” J. Infrared Millim. Terahertz Waves 32(5), 618–628 (2011).
[Crossref]

Ercolani, D.

M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, “Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors,” Nano Lett. 12(1), 96–101 (2012).
[Crossref] [PubMed]

Fenouillet-Beranger, C.

R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, and M. S. Shur, “Plasma wave detection of terahertz radiation by silicon field effect transistors: responsivity and noise equivalent power,” Appl. Phys. Lett. 89(25), 253511 (2006).
[Crossref]

Gallon, C.

R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, and M. S. Shur, “Plasma wave detection of terahertz radiation by silicon field effect transistors: responsivity and noise equivalent power,” Appl. Phys. Lett. 89(25), 253511 (2006).
[Crossref]

Gaquière, C.

W. Knap, S. Nadar, H. Videlier, S. Boubanga-Tombet, D. Coquillat, N. Dyakonova, F. Teppe, K. Karpierz, J. Lusakowski, M. Sakowicz, I. Kasalynas, D. Seliuta, G. Valusis, T. Otsuji, Y. Meziani, A. El Fatimy, S. Vandenbrouk, K. Madjour, D. Théron, and C. Gaquière, “Field effect transistors for terahertz detection and emission,” J. Infrared Millim. Terahertz Waves 32(5), 618–628 (2011).
[Crossref]

Giffard, B.

Gwarek, W. K.

P. Kopyt, P. Zagrajek, J. Marczewski, K. Kucharski, B. Salski, J. Lusakowski, W. Knap, and W. K. Gwarek, “Analysis of sub-THz radiation detector built of planar antenna integrated with MOSFET,” Microelectronics J. 45(9), 1168–1176 (2014).
[Crossref]

Hisatake, S.

T. Nagatsuma, P. Nouvel, L. Tohmé, W. Knap, D. Coquillat, A. Pénarier, S. Blin, J.-F. Lampin, L. Varani, S. Hisatake, and G. Ducournau, “Terahertz wireless communication using GaAs transistors as detectors,” Electron. Lett. 50(4), 323–325 (2014).
[Crossref]

S. Blin, L. Tohme, D. Coquillat, S. Horiguchi, Y. Minamikata, S. Hisatake, P. Nouvel, T. Cohen, A. Pénarier, F. Cano, L. Varani, W. Knap, and T. Nagatsuma, “Wireless communication at 310 GHz using GaAs high-electron-mobility transistors for detection,” J. Commun. Netw. 15(6), 559–568 (2013).
[Crossref]

Horiguchi, S.

S. Blin, L. Tohme, D. Coquillat, S. Horiguchi, Y. Minamikata, S. Hisatake, P. Nouvel, T. Cohen, A. Pénarier, F. Cano, L. Varani, W. Knap, and T. Nagatsuma, “Wireless communication at 310 GHz using GaAs high-electron-mobility transistors for detection,” J. Commun. Netw. 15(6), 559–568 (2013).
[Crossref]

Karpierz, K.

W. Knap, S. Nadar, H. Videlier, S. Boubanga-Tombet, D. Coquillat, N. Dyakonova, F. Teppe, K. Karpierz, J. Lusakowski, M. Sakowicz, I. Kasalynas, D. Seliuta, G. Valusis, T. Otsuji, Y. Meziani, A. El Fatimy, S. Vandenbrouk, K. Madjour, D. Théron, and C. Gaquière, “Field effect transistors for terahertz detection and emission,” J. Infrared Millim. Terahertz Waves 32(5), 618–628 (2011).
[Crossref]

Kasalynas, I.

W. Knap, S. Nadar, H. Videlier, S. Boubanga-Tombet, D. Coquillat, N. Dyakonova, F. Teppe, K. Karpierz, J. Lusakowski, M. Sakowicz, I. Kasalynas, D. Seliuta, G. Valusis, T. Otsuji, Y. Meziani, A. El Fatimy, S. Vandenbrouk, K. Madjour, D. Théron, and C. Gaquière, “Field effect transistors for terahertz detection and emission,” J. Infrared Millim. Terahertz Waves 32(5), 618–628 (2011).
[Crossref]

Klimenko, O. A.

M. Sakowicz, M. B. Lifshits, O. A. Klimenko, F. Schuster, D. Coquillat, F. Teppe, and W. Knap, “Terahertz responsivity of field effect transistors versus their static channel conductivity and loading effects,” J. Appl. Phys. 110(5), 054512 (2011).
[Crossref]

Knap, W.

P. Kopyt, P. Zagrajek, J. Marczewski, K. Kucharski, B. Salski, J. Lusakowski, W. Knap, and W. K. Gwarek, “Analysis of sub-THz radiation detector built of planar antenna integrated with MOSFET,” Microelectronics J. 45(9), 1168–1176 (2014).
[Crossref]

T. Nagatsuma, P. Nouvel, L. Tohmé, W. Knap, D. Coquillat, A. Pénarier, S. Blin, J.-F. Lampin, L. Varani, S. Hisatake, and G. Ducournau, “Terahertz wireless communication using GaAs transistors as detectors,” Electron. Lett. 50(4), 323–325 (2014).
[Crossref]

S. Blin, L. Tohme, D. Coquillat, S. Horiguchi, Y. Minamikata, S. Hisatake, P. Nouvel, T. Cohen, A. Pénarier, F. Cano, L. Varani, W. Knap, and T. Nagatsuma, “Wireless communication at 310 GHz using GaAs high-electron-mobility transistors for detection,” J. Commun. Netw. 15(6), 559–568 (2013).
[Crossref]

M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, “Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors,” Nano Lett. 12(1), 96–101 (2012).
[Crossref] [PubMed]

W. Knap, S. Nadar, H. Videlier, S. Boubanga-Tombet, D. Coquillat, N. Dyakonova, F. Teppe, K. Karpierz, J. Lusakowski, M. Sakowicz, I. Kasalynas, D. Seliuta, G. Valusis, T. Otsuji, Y. Meziani, A. El Fatimy, S. Vandenbrouk, K. Madjour, D. Théron, and C. Gaquière, “Field effect transistors for terahertz detection and emission,” J. Infrared Millim. Terahertz Waves 32(5), 618–628 (2011).
[Crossref]

M. Sakowicz, M. B. Lifshits, O. A. Klimenko, F. Schuster, D. Coquillat, F. Teppe, and W. Knap, “Terahertz responsivity of field effect transistors versus their static channel conductivity and loading effects,” J. Appl. Phys. 110(5), 054512 (2011).
[Crossref]

F. Schuster, D. Coquillat, H. Videlier, M. Sakowicz, F. Teppe, L. Dussopt, B. Giffard, T. Skotnicki, and W. Knap, “Broadband terahertz imaging with highly sensitive silicon CMOS detectors,” Opt. Express 19(8), 7827–7832 (2011).
[Crossref] [PubMed]

R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, and M. S. Shur, “Plasma wave detection of terahertz radiation by silicon field effect transistors: responsivity and noise equivalent power,” Appl. Phys. Lett. 89(25), 253511 (2006).
[Crossref]

Kopyt, P.

P. Kopyt, P. Zagrajek, J. Marczewski, K. Kucharski, B. Salski, J. Lusakowski, W. Knap, and W. K. Gwarek, “Analysis of sub-THz radiation detector built of planar antenna integrated with MOSFET,” Microelectronics J. 45(9), 1168–1176 (2014).
[Crossref]

Kucharski, K.

P. Kopyt, P. Zagrajek, J. Marczewski, K. Kucharski, B. Salski, J. Lusakowski, W. Knap, and W. K. Gwarek, “Analysis of sub-THz radiation detector built of planar antenna integrated with MOSFET,” Microelectronics J. 45(9), 1168–1176 (2014).
[Crossref]

Lampin, J.-F.

T. Nagatsuma, P. Nouvel, L. Tohmé, W. Knap, D. Coquillat, A. Pénarier, S. Blin, J.-F. Lampin, L. Varani, S. Hisatake, and G. Ducournau, “Terahertz wireless communication using GaAs transistors as detectors,” Electron. Lett. 50(4), 323–325 (2014).
[Crossref]

Lifshits, M. B.

M. Sakowicz, M. B. Lifshits, O. A. Klimenko, F. Schuster, D. Coquillat, F. Teppe, and W. Knap, “Terahertz responsivity of field effect transistors versus their static channel conductivity and loading effects,” J. Appl. Phys. 110(5), 054512 (2011).
[Crossref]

Lusakowski, J.

P. Kopyt, P. Zagrajek, J. Marczewski, K. Kucharski, B. Salski, J. Lusakowski, W. Knap, and W. K. Gwarek, “Analysis of sub-THz radiation detector built of planar antenna integrated with MOSFET,” Microelectronics J. 45(9), 1168–1176 (2014).
[Crossref]

W. Knap, S. Nadar, H. Videlier, S. Boubanga-Tombet, D. Coquillat, N. Dyakonova, F. Teppe, K. Karpierz, J. Lusakowski, M. Sakowicz, I. Kasalynas, D. Seliuta, G. Valusis, T. Otsuji, Y. Meziani, A. El Fatimy, S. Vandenbrouk, K. Madjour, D. Théron, and C. Gaquière, “Field effect transistors for terahertz detection and emission,” J. Infrared Millim. Terahertz Waves 32(5), 618–628 (2011).
[Crossref]

Madjour, K.

W. Knap, S. Nadar, H. Videlier, S. Boubanga-Tombet, D. Coquillat, N. Dyakonova, F. Teppe, K. Karpierz, J. Lusakowski, M. Sakowicz, I. Kasalynas, D. Seliuta, G. Valusis, T. Otsuji, Y. Meziani, A. El Fatimy, S. Vandenbrouk, K. Madjour, D. Théron, and C. Gaquière, “Field effect transistors for terahertz detection and emission,” J. Infrared Millim. Terahertz Waves 32(5), 618–628 (2011).
[Crossref]

Marczewski, J.

P. Kopyt, P. Zagrajek, J. Marczewski, K. Kucharski, B. Salski, J. Lusakowski, W. Knap, and W. K. Gwarek, “Analysis of sub-THz radiation detector built of planar antenna integrated with MOSFET,” Microelectronics J. 45(9), 1168–1176 (2014).
[Crossref]

Maude, D. K.

R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, and M. S. Shur, “Plasma wave detection of terahertz radiation by silicon field effect transistors: responsivity and noise equivalent power,” Appl. Phys. Lett. 89(25), 253511 (2006).
[Crossref]

Meziani, Y.

W. Knap, S. Nadar, H. Videlier, S. Boubanga-Tombet, D. Coquillat, N. Dyakonova, F. Teppe, K. Karpierz, J. Lusakowski, M. Sakowicz, I. Kasalynas, D. Seliuta, G. Valusis, T. Otsuji, Y. Meziani, A. El Fatimy, S. Vandenbrouk, K. Madjour, D. Théron, and C. Gaquière, “Field effect transistors for terahertz detection and emission,” J. Infrared Millim. Terahertz Waves 32(5), 618–628 (2011).
[Crossref]

R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, and M. S. Shur, “Plasma wave detection of terahertz radiation by silicon field effect transistors: responsivity and noise equivalent power,” Appl. Phys. Lett. 89(25), 253511 (2006).
[Crossref]

Minamikata, Y.

S. Blin, L. Tohme, D. Coquillat, S. Horiguchi, Y. Minamikata, S. Hisatake, P. Nouvel, T. Cohen, A. Pénarier, F. Cano, L. Varani, W. Knap, and T. Nagatsuma, “Wireless communication at 310 GHz using GaAs high-electron-mobility transistors for detection,” J. Commun. Netw. 15(6), 559–568 (2013).
[Crossref]

Nadar, S.

W. Knap, S. Nadar, H. Videlier, S. Boubanga-Tombet, D. Coquillat, N. Dyakonova, F. Teppe, K. Karpierz, J. Lusakowski, M. Sakowicz, I. Kasalynas, D. Seliuta, G. Valusis, T. Otsuji, Y. Meziani, A. El Fatimy, S. Vandenbrouk, K. Madjour, D. Théron, and C. Gaquière, “Field effect transistors for terahertz detection and emission,” J. Infrared Millim. Terahertz Waves 32(5), 618–628 (2011).
[Crossref]

Nagatsuma, T.

T. Nagatsuma, P. Nouvel, L. Tohmé, W. Knap, D. Coquillat, A. Pénarier, S. Blin, J.-F. Lampin, L. Varani, S. Hisatake, and G. Ducournau, “Terahertz wireless communication using GaAs transistors as detectors,” Electron. Lett. 50(4), 323–325 (2014).
[Crossref]

S. Blin, L. Tohme, D. Coquillat, S. Horiguchi, Y. Minamikata, S. Hisatake, P. Nouvel, T. Cohen, A. Pénarier, F. Cano, L. Varani, W. Knap, and T. Nagatsuma, “Wireless communication at 310 GHz using GaAs high-electron-mobility transistors for detection,” J. Commun. Netw. 15(6), 559–568 (2013).
[Crossref]

Nouvel, P.

T. Nagatsuma, P. Nouvel, L. Tohmé, W. Knap, D. Coquillat, A. Pénarier, S. Blin, J.-F. Lampin, L. Varani, S. Hisatake, and G. Ducournau, “Terahertz wireless communication using GaAs transistors as detectors,” Electron. Lett. 50(4), 323–325 (2014).
[Crossref]

S. Blin, L. Tohme, D. Coquillat, S. Horiguchi, Y. Minamikata, S. Hisatake, P. Nouvel, T. Cohen, A. Pénarier, F. Cano, L. Varani, W. Knap, and T. Nagatsuma, “Wireless communication at 310 GHz using GaAs high-electron-mobility transistors for detection,” J. Commun. Netw. 15(6), 559–568 (2013).
[Crossref]

Otsuji, T.

W. Knap, S. Nadar, H. Videlier, S. Boubanga-Tombet, D. Coquillat, N. Dyakonova, F. Teppe, K. Karpierz, J. Lusakowski, M. Sakowicz, I. Kasalynas, D. Seliuta, G. Valusis, T. Otsuji, Y. Meziani, A. El Fatimy, S. Vandenbrouk, K. Madjour, D. Théron, and C. Gaquière, “Field effect transistors for terahertz detection and emission,” J. Infrared Millim. Terahertz Waves 32(5), 618–628 (2011).
[Crossref]

Pénarier, A.

T. Nagatsuma, P. Nouvel, L. Tohmé, W. Knap, D. Coquillat, A. Pénarier, S. Blin, J.-F. Lampin, L. Varani, S. Hisatake, and G. Ducournau, “Terahertz wireless communication using GaAs transistors as detectors,” Electron. Lett. 50(4), 323–325 (2014).
[Crossref]

S. Blin, L. Tohme, D. Coquillat, S. Horiguchi, Y. Minamikata, S. Hisatake, P. Nouvel, T. Cohen, A. Pénarier, F. Cano, L. Varani, W. Knap, and T. Nagatsuma, “Wireless communication at 310 GHz using GaAs high-electron-mobility transistors for detection,” J. Commun. Netw. 15(6), 559–568 (2013).
[Crossref]

Pitanti, A.

M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, “Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors,” Nano Lett. 12(1), 96–101 (2012).
[Crossref] [PubMed]

Pozar, D. M.

D. M. Pozar, “Considerations for millimeter wave printed antennas,” IEEE Trans. Antenn. Propag. 31(5), 740–747 (1983).
[Crossref]

Rumyantsev, S.

R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, and M. S. Shur, “Plasma wave detection of terahertz radiation by silicon field effect transistors: responsivity and noise equivalent power,” Appl. Phys. Lett. 89(25), 253511 (2006).
[Crossref]

Sakowicz, M.

W. Knap, S. Nadar, H. Videlier, S. Boubanga-Tombet, D. Coquillat, N. Dyakonova, F. Teppe, K. Karpierz, J. Lusakowski, M. Sakowicz, I. Kasalynas, D. Seliuta, G. Valusis, T. Otsuji, Y. Meziani, A. El Fatimy, S. Vandenbrouk, K. Madjour, D. Théron, and C. Gaquière, “Field effect transistors for terahertz detection and emission,” J. Infrared Millim. Terahertz Waves 32(5), 618–628 (2011).
[Crossref]

M. Sakowicz, M. B. Lifshits, O. A. Klimenko, F. Schuster, D. Coquillat, F. Teppe, and W. Knap, “Terahertz responsivity of field effect transistors versus their static channel conductivity and loading effects,” J. Appl. Phys. 110(5), 054512 (2011).
[Crossref]

F. Schuster, D. Coquillat, H. Videlier, M. Sakowicz, F. Teppe, L. Dussopt, B. Giffard, T. Skotnicki, and W. Knap, “Broadband terahertz imaging with highly sensitive silicon CMOS detectors,” Opt. Express 19(8), 7827–7832 (2011).
[Crossref] [PubMed]

Salski, B.

P. Kopyt, P. Zagrajek, J. Marczewski, K. Kucharski, B. Salski, J. Lusakowski, W. Knap, and W. K. Gwarek, “Analysis of sub-THz radiation detector built of planar antenna integrated with MOSFET,” Microelectronics J. 45(9), 1168–1176 (2014).
[Crossref]

Schuster, F.

F. Schuster, D. Coquillat, H. Videlier, M. Sakowicz, F. Teppe, L. Dussopt, B. Giffard, T. Skotnicki, and W. Knap, “Broadband terahertz imaging with highly sensitive silicon CMOS detectors,” Opt. Express 19(8), 7827–7832 (2011).
[Crossref] [PubMed]

M. Sakowicz, M. B. Lifshits, O. A. Klimenko, F. Schuster, D. Coquillat, F. Teppe, and W. Knap, “Terahertz responsivity of field effect transistors versus their static channel conductivity and loading effects,” J. Appl. Phys. 110(5), 054512 (2011).
[Crossref]

Seliuta, D.

W. Knap, S. Nadar, H. Videlier, S. Boubanga-Tombet, D. Coquillat, N. Dyakonova, F. Teppe, K. Karpierz, J. Lusakowski, M. Sakowicz, I. Kasalynas, D. Seliuta, G. Valusis, T. Otsuji, Y. Meziani, A. El Fatimy, S. Vandenbrouk, K. Madjour, D. Théron, and C. Gaquière, “Field effect transistors for terahertz detection and emission,” J. Infrared Millim. Terahertz Waves 32(5), 618–628 (2011).
[Crossref]

Shur, M.

M. Dyakonov and M. Shur, “Detection, mixing, and frequency multiplication of terahertz radiation by two dimensional electronic fluid,” IEEE Trans. Electron. Dev. 43(3), 380–387 (1996).
[Crossref]

M. Dyakonov and M. Shur, “Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by dc current,” Phys. Rev. Lett. 71(15), 2465–2468 (1993).
[Crossref] [PubMed]

Shur, M. S.

R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, and M. S. Shur, “Plasma wave detection of terahertz radiation by silicon field effect transistors: responsivity and noise equivalent power,” Appl. Phys. Lett. 89(25), 253511 (2006).
[Crossref]

Skotnicki, T.

F. Schuster, D. Coquillat, H. Videlier, M. Sakowicz, F. Teppe, L. Dussopt, B. Giffard, T. Skotnicki, and W. Knap, “Broadband terahertz imaging with highly sensitive silicon CMOS detectors,” Opt. Express 19(8), 7827–7832 (2011).
[Crossref] [PubMed]

R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, and M. S. Shur, “Plasma wave detection of terahertz radiation by silicon field effect transistors: responsivity and noise equivalent power,” Appl. Phys. Lett. 89(25), 253511 (2006).
[Crossref]

Sorba, L.

M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, “Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors,” Nano Lett. 12(1), 96–101 (2012).
[Crossref] [PubMed]

Tauk, R.

R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, and M. S. Shur, “Plasma wave detection of terahertz radiation by silicon field effect transistors: responsivity and noise equivalent power,” Appl. Phys. Lett. 89(25), 253511 (2006).
[Crossref]

Teppe, F.

M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, “Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors,” Nano Lett. 12(1), 96–101 (2012).
[Crossref] [PubMed]

W. Knap, S. Nadar, H. Videlier, S. Boubanga-Tombet, D. Coquillat, N. Dyakonova, F. Teppe, K. Karpierz, J. Lusakowski, M. Sakowicz, I. Kasalynas, D. Seliuta, G. Valusis, T. Otsuji, Y. Meziani, A. El Fatimy, S. Vandenbrouk, K. Madjour, D. Théron, and C. Gaquière, “Field effect transistors for terahertz detection and emission,” J. Infrared Millim. Terahertz Waves 32(5), 618–628 (2011).
[Crossref]

F. Schuster, D. Coquillat, H. Videlier, M. Sakowicz, F. Teppe, L. Dussopt, B. Giffard, T. Skotnicki, and W. Knap, “Broadband terahertz imaging with highly sensitive silicon CMOS detectors,” Opt. Express 19(8), 7827–7832 (2011).
[Crossref] [PubMed]

M. Sakowicz, M. B. Lifshits, O. A. Klimenko, F. Schuster, D. Coquillat, F. Teppe, and W. Knap, “Terahertz responsivity of field effect transistors versus their static channel conductivity and loading effects,” J. Appl. Phys. 110(5), 054512 (2011).
[Crossref]

R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, and M. S. Shur, “Plasma wave detection of terahertz radiation by silicon field effect transistors: responsivity and noise equivalent power,” Appl. Phys. Lett. 89(25), 253511 (2006).
[Crossref]

Théron, D.

W. Knap, S. Nadar, H. Videlier, S. Boubanga-Tombet, D. Coquillat, N. Dyakonova, F. Teppe, K. Karpierz, J. Lusakowski, M. Sakowicz, I. Kasalynas, D. Seliuta, G. Valusis, T. Otsuji, Y. Meziani, A. El Fatimy, S. Vandenbrouk, K. Madjour, D. Théron, and C. Gaquière, “Field effect transistors for terahertz detection and emission,” J. Infrared Millim. Terahertz Waves 32(5), 618–628 (2011).
[Crossref]

Tohme, L.

S. Blin, L. Tohme, D. Coquillat, S. Horiguchi, Y. Minamikata, S. Hisatake, P. Nouvel, T. Cohen, A. Pénarier, F. Cano, L. Varani, W. Knap, and T. Nagatsuma, “Wireless communication at 310 GHz using GaAs high-electron-mobility transistors for detection,” J. Commun. Netw. 15(6), 559–568 (2013).
[Crossref]

Tohmé, L.

T. Nagatsuma, P. Nouvel, L. Tohmé, W. Knap, D. Coquillat, A. Pénarier, S. Blin, J.-F. Lampin, L. Varani, S. Hisatake, and G. Ducournau, “Terahertz wireless communication using GaAs transistors as detectors,” Electron. Lett. 50(4), 323–325 (2014).
[Crossref]

Tredicucci, A.

M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, “Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors,” Nano Lett. 12(1), 96–101 (2012).
[Crossref] [PubMed]

Valusis, G.

W. Knap, S. Nadar, H. Videlier, S. Boubanga-Tombet, D. Coquillat, N. Dyakonova, F. Teppe, K. Karpierz, J. Lusakowski, M. Sakowicz, I. Kasalynas, D. Seliuta, G. Valusis, T. Otsuji, Y. Meziani, A. El Fatimy, S. Vandenbrouk, K. Madjour, D. Théron, and C. Gaquière, “Field effect transistors for terahertz detection and emission,” J. Infrared Millim. Terahertz Waves 32(5), 618–628 (2011).
[Crossref]

Vandenbrouk, S.

W. Knap, S. Nadar, H. Videlier, S. Boubanga-Tombet, D. Coquillat, N. Dyakonova, F. Teppe, K. Karpierz, J. Lusakowski, M. Sakowicz, I. Kasalynas, D. Seliuta, G. Valusis, T. Otsuji, Y. Meziani, A. El Fatimy, S. Vandenbrouk, K. Madjour, D. Théron, and C. Gaquière, “Field effect transistors for terahertz detection and emission,” J. Infrared Millim. Terahertz Waves 32(5), 618–628 (2011).
[Crossref]

Varani, L.

T. Nagatsuma, P. Nouvel, L. Tohmé, W. Knap, D. Coquillat, A. Pénarier, S. Blin, J.-F. Lampin, L. Varani, S. Hisatake, and G. Ducournau, “Terahertz wireless communication using GaAs transistors as detectors,” Electron. Lett. 50(4), 323–325 (2014).
[Crossref]

S. Blin, L. Tohme, D. Coquillat, S. Horiguchi, Y. Minamikata, S. Hisatake, P. Nouvel, T. Cohen, A. Pénarier, F. Cano, L. Varani, W. Knap, and T. Nagatsuma, “Wireless communication at 310 GHz using GaAs high-electron-mobility transistors for detection,” J. Commun. Netw. 15(6), 559–568 (2013).
[Crossref]

Videlier, H.

W. Knap, S. Nadar, H. Videlier, S. Boubanga-Tombet, D. Coquillat, N. Dyakonova, F. Teppe, K. Karpierz, J. Lusakowski, M. Sakowicz, I. Kasalynas, D. Seliuta, G. Valusis, T. Otsuji, Y. Meziani, A. El Fatimy, S. Vandenbrouk, K. Madjour, D. Théron, and C. Gaquière, “Field effect transistors for terahertz detection and emission,” J. Infrared Millim. Terahertz Waves 32(5), 618–628 (2011).
[Crossref]

F. Schuster, D. Coquillat, H. Videlier, M. Sakowicz, F. Teppe, L. Dussopt, B. Giffard, T. Skotnicki, and W. Knap, “Broadband terahertz imaging with highly sensitive silicon CMOS detectors,” Opt. Express 19(8), 7827–7832 (2011).
[Crossref] [PubMed]

Viti, L.

M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, “Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors,” Nano Lett. 12(1), 96–101 (2012).
[Crossref] [PubMed]

Vitiello, M. S.

M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, “Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors,” Nano Lett. 12(1), 96–101 (2012).
[Crossref] [PubMed]

Zagrajek, P.

P. Kopyt, P. Zagrajek, J. Marczewski, K. Kucharski, B. Salski, J. Lusakowski, W. Knap, and W. K. Gwarek, “Analysis of sub-THz radiation detector built of planar antenna integrated with MOSFET,” Microelectronics J. 45(9), 1168–1176 (2014).
[Crossref]

Appl. Phys. Lett. (1)

R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, and M. S. Shur, “Plasma wave detection of terahertz radiation by silicon field effect transistors: responsivity and noise equivalent power,” Appl. Phys. Lett. 89(25), 253511 (2006).
[Crossref]

Electron. Lett. (1)

T. Nagatsuma, P. Nouvel, L. Tohmé, W. Knap, D. Coquillat, A. Pénarier, S. Blin, J.-F. Lampin, L. Varani, S. Hisatake, and G. Ducournau, “Terahertz wireless communication using GaAs transistors as detectors,” Electron. Lett. 50(4), 323–325 (2014).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

D. M. Pozar, “Considerations for millimeter wave printed antennas,” IEEE Trans. Antenn. Propag. 31(5), 740–747 (1983).
[Crossref]

IEEE Trans. Electron. Dev. (1)

M. Dyakonov and M. Shur, “Detection, mixing, and frequency multiplication of terahertz radiation by two dimensional electronic fluid,” IEEE Trans. Electron. Dev. 43(3), 380–387 (1996).
[Crossref]

J. Appl. Phys. (1)

M. Sakowicz, M. B. Lifshits, O. A. Klimenko, F. Schuster, D. Coquillat, F. Teppe, and W. Knap, “Terahertz responsivity of field effect transistors versus their static channel conductivity and loading effects,” J. Appl. Phys. 110(5), 054512 (2011).
[Crossref]

J. Commun. Netw. (1)

S. Blin, L. Tohme, D. Coquillat, S. Horiguchi, Y. Minamikata, S. Hisatake, P. Nouvel, T. Cohen, A. Pénarier, F. Cano, L. Varani, W. Knap, and T. Nagatsuma, “Wireless communication at 310 GHz using GaAs high-electron-mobility transistors for detection,” J. Commun. Netw. 15(6), 559–568 (2013).
[Crossref]

J. Infrared Millim. Terahertz Waves (1)

W. Knap, S. Nadar, H. Videlier, S. Boubanga-Tombet, D. Coquillat, N. Dyakonova, F. Teppe, K. Karpierz, J. Lusakowski, M. Sakowicz, I. Kasalynas, D. Seliuta, G. Valusis, T. Otsuji, Y. Meziani, A. El Fatimy, S. Vandenbrouk, K. Madjour, D. Théron, and C. Gaquière, “Field effect transistors for terahertz detection and emission,” J. Infrared Millim. Terahertz Waves 32(5), 618–628 (2011).
[Crossref]

Microelectronics J. (1)

P. Kopyt, P. Zagrajek, J. Marczewski, K. Kucharski, B. Salski, J. Lusakowski, W. Knap, and W. K. Gwarek, “Analysis of sub-THz radiation detector built of planar antenna integrated with MOSFET,” Microelectronics J. 45(9), 1168–1176 (2014).
[Crossref]

Nano Lett. (1)

M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, “Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors,” Nano Lett. 12(1), 96–101 (2012).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. Lett. (1)

M. Dyakonov and M. Shur, “Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by dc current,” Phys. Rev. Lett. 71(15), 2465–2468 (1993).
[Crossref] [PubMed]

Other (3)

R. E. Collin, “Field Theory of Guided Waves”, McGraw-Hill, 470–474 (1960).

D. Coquillat, V. Nodjiadjim, A. Konczykowska, M. Riet, N. Dyakonova, C. Consejo, F. Teppe, J. Godin, and W. Knap, “InP double heterojunction bipolar transistor as sub-terahertz detector,” IRMMW-THz: Int. Conf. on Infrared, Millimeter, and Terahertz Waves, Tucson, AZ, USA, 15–19 Sept. 2014, 1–2 (2014).
[Crossref]

W. K. Gwarek, M. Celuch, M. Sypniewski, and A. Wieckowski, QuickWave-3D Manual v.2015, (QWED Poland, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Right scale (thin black curve): dc transfer characteristics for 5 mV of source-to-drain voltage. Left scale: Comparison of directly measured responsivity R meas as a function of the gate voltage (thick black curve) and calculated responsivity from transfer characteristics using Eq. (1). The calculated responsivities R ZL=  and  R ZL were determined for open circuit ( Z l = , blue open triangles) and taking into account the loading effect ( Z l calculated using 10 MW for the input resistance and 120 pF for the capacitance, blue dashed curve), respectively. For the fitting parameter, we have used A = 28.1 V2/W. The inset shows a photo of the transistor integrated with antenna. (b) Responsivity R meas as a function of the frequency of the incident radiation, for a gate voltage close to the threshold voltage (around + 110 mV) for transistors with different substrate thicknesses. Inset: the black circles mark the measurement points corresponding to the maximum of the responsitivity of the unloaded detector R ZL= at peak frequency as a function of the substrate thickness ( V g around + 110 mV).
Fig. 2
Fig. 2 Frequency dependence of the propagation constant for EM modes supported in grounded dielectric waveguide made of Si of thickness d calculated analytically and numerically shown for the TM0 mode (a) and for the TE1 mode (b).
Fig. 3
Fig. 3 Portion of the power contained in air obtained by numerical integration of the Poynting vector over an surface located above the bow-tie antenna- thus only the waves that propagates along the vector normal to the chip top surface is accounted for. The circles mark the measurement points corresponding to the maximum of R ZL= normalized by arbitrary value of 1150 V/W.
Fig. 4
Fig. 4 Thickness of the Si substrate as a function of the frequency for a threshold value of 30% of the power lost in the substrate, calculated using the 3D FDTD model of the infinite slab and a bow-tie on it (black open dots) and with purely analytical calculations limited to the TM0 mode (solid black curve). The curves delimit the region over which more than 30% of the power is lost in the Si substrate. Similar analytical calculations in the case of GaAs or InP substrates (red dashed curve) and GaN substrate (blue dashed-dotted curve). Inset: Substrate thickness for a threshold values of 10% and 30% for most common materials (Si, GaAs or InP, GaN) used in technologies employed for transistor-based THz detectors.

Tables (1)

Tables Icon

Table 1 Responsivity of the thinned detectors

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ΔU=( U a 2 4 ) d d V g ln[ I ds ( V g ) ] 1 1+ R ds / Z L ,
f n TM,TE = nc 4d ε r 1 ;
P Air = 1 2 x=d Re(E×H*) dx,
P Substrate = 1 2 x=0 d Re(E×H*) dx,
P Air TM = 1 2 B 2 p 2 β z ω ε 0 e -2pd 2p and P Air TE = 1 2 B 2 p 2 β z ω μ 0 e -2pd 2p ,
P Substrate TM = 1 2 A 2 h 2 β z ω ε 0 ε r 4h ( 2hd+sin(2hd) ), and P Substrate TE = 1 2 A 2 h 2 β z ω μ 0 4h ( 2hdsin(2hd) ),
R= P Substrate P Substrate + P Air .

Metrics