Abstract

We have switched GaAs/AlAs and AlGaAs/AlAs planar microcavities that operate in the “Original” (O) telecom band by exploiting the instantaneous electronic Kerr effect. We observe that the resonance frequency reversibly shifts within one picosecond when the nanostructure is pumped with low-energy photons. We investigate experimentally and theoretically the role of several parameters: the material backbone and its electronic bandgap, the quality factor, and the duration of the switch pulse. The magnitude of the frequency shift is reduced when the backbone of the central λ-layer has a greater electronic bandgap compared to the cavity resonance frequency and the frequency of the pump. This observation is caused by the fact that pumping with photon energies near the bandgap resonantly enhances the switched magnitude. We thus find that cavities operating in the telecom O-band are more amenable to ultrafast Kerr switching than those operating at lower frequencies, such as the C-band. Our results indicate that the large bandgap of AlGaAs/AlAs cavity allows to tune both the pump and the probe to the telecom range to perform Kerr switching without detrimental two-photon absorption. We observe that the magnitude of the resonance frequency shift decreases with increasing quality factor of the cavity. Our model shows that the magnitude of the resonance frequency shift depends on the pump pulse duration and is maximized when the duration matches the cavity storage time to within a factor two. In our experiments, we obtain a maximum shift of the cavity resonance relative to the cavity linewidth of 20%. We project that the shift of the cavity resonance can be increased twofold with a pump pulse duration that better matches the cavity storage time. We provide the essential parameter settings for different materials so that the frequency shift of the cavity resonance can be maximized using the electronic Kerr effect.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Competition between electronic Kerr and free-carrier effects in an ultimate-fast optically switched semiconductor microcavity

Emre Yüce, Georgios Ctistis, Julien Claudon, Emmanuel Dupuy, Klaus J. Boller, Jean-Michel Gérard, and Willem L. Vos
J. Opt. Soc. Am. B 29(9) 2630-2642 (2012)

All-optical switching of a microcavity repeated at terahertz rates

Emre Yüce, Georgios Ctistis, Julien Claudon, Emmanuel Dupuy, Robin D. Buijs, Bob de Ronde, Allard P. Mosk, Jean-Michel Gérard, and Willem L. Vos
Opt. Lett. 38(3) 374-376 (2013)

Identification of competing ultrafast all-optical switching mechanisms in Si woodpile photonic crystals

Philip J. Harding, Tijmen G. Euser, and Willem L. Vos
J. Opt. Soc. Am. B 26(4) 610-619 (2009)

References

  • View by:
  • |
  • |
  • |

  1. A. Kan’an, P. LiKamWa, M. Dutta, and J. Pamulapati, “1.7-ps consecutive switching in an integrated multiple-quantum-well Y-junction optical switch,” IEEE Photon. Technol. Lett. 8, 1641–1643 (1996).
    [Crossref]
  2. J. P. Mondia, H. W. Tan, S. Linden, and H. M. van Driel, “Ultrafast tuning of two-dimensional planar photonic-crystal waveguides via free-carrier injection and the optical Kerr effect,” J. Opt. Soc. Am. B 22, 2480–2486 (2005).
    [Crossref]
  3. H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2, 484–488 (2006).
    [Crossref]
  4. I. Fushman, E. Waks, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Ultrafast nonlinear optical tuning of photonic crystal cavities,” Appl. Phys. Lett. 90, 091118 (2007).
    [Crossref]
  5. P. J. Harding, T. G. Euser, Y. Nowicki-Bringuier, J.-M. Gérard, and W. L. Vos, “Dynamical ultrafast all-optical switching of planar GaAs/AlAs photonic microcavities,” Appl. Phys. Lett. 91, 111103 (2007).
    [Crossref]
  6. C. Husko, A. de Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
    [Crossref]
  7. C.-Y. Jin and O. Wada, “Photonic switching devices based on semiconductor nano-structures,” J. Phys. D Appl. Phys. 47, 133001 (2014).
    [Crossref]
  8. A. Pejkic, R. R. Nissim, E. Myslivets, A. O. J. Wiberg, N. Alic, and S. Radic, “All-optical switching in a highly efficient parametric fiber mixer: design study,” Opt. Express 22, 23512–23527 (2014).
    [Crossref] [PubMed]
  9. X. Xia, J. Xu, and Y. Yang, “Controllable optical bistability of an asymmetric cavity containing a single two-level atom,” Phys. Rev. A 90, 043857 (2014).
    [Crossref]
  10. P. M. Johnson, A. F. Koenderink, and W. L. Vos, “Ultrafast switching of photonic density of states in photonic crystals,” Phys. Rev. B 66, 081102(2002).
    [Crossref]
  11. M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004).
    [Crossref] [PubMed]
  12. H. Thyrrestrup, A. Hartsuiker, J.-M. Gérard, and W. L. Vos, “Switching the decay rate of an emitter inside a cavity in the time domain,” Opt. Express 21, 23130–23144 (2013).
    [Crossref] [PubMed]
  13. R. Johne, R. Schutjens, S. F. Poor, C.-Y. Jin, and A. Fiore, “Control of the electromagnetic environment of a quantum emitter by shaping the vacuum field in a coupled-cavity system,” Phys. Rev. A 91, 063807 (2015).
    [Crossref]
  14. R. Boyd, Nonlinear Optics, 3rd ed.(Academic, 2008).
  15. A. Hartsuiker, P. J. Harding, Y. Nowicki-Bringuier, J.-M. Gérard, and W. L. Vos, “Kerr and free carrier ultrafast all-optical switching of GaAs/AlAs nanostructures near the three photon edge of GaAs,” J. Appl. Phys. 104, 083105 (2008).
    [Crossref]
  16. P. J. Harding, T. G. Euser, and W. L. Vos, “Identification of competing ultrafast all-optical switching mechanisms in Si woodpile photonic crystals,” J. Opt. Soc. Am. B 28, 610–619 (2009).
    [Crossref]
  17. G. Ctistis, E. Yüce, A. Hartsuiker, J. Claudon, M. Bazin, J.-M. Gérard, and W. L. Vos, “Ultimate fast optical switching of a planar microcavity in the telecom wavelength range,” Appl. Phys. Lett. 98, 161114 (2011).
    [Crossref]
  18. E. Yüce, G. Ctistis, J. Claudon, E. Dupuy, K.-J. Boller, J.-M. Gérard, and W. L. Vos, “Competition between electronic Kerr and free carrier effects in an ultimate-fast optically switched semiconductor microcavity,” J. Opt. Soc. Am. B 29, 2630–2642 (2012).
    [Crossref]
  19. V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrié, G. Lehoucq, and A. D. Rossi, “Kerr-induced all-optical switching in a GaInP photonic crystal Fabry-Perot resonator,” Opt. Express 20, 8524–8534 (2012).
    [Crossref] [PubMed]
  20. E. Yüce, G. Ctistis, J. Claudon, E. Dupuy, R. D. Buijs, B. de Ronde, A. P. Mosk, J.-M. Gérard, and W. L. Vos, “All-optical switching of a microcavity repeated at terahertz rates,” Opt. Lett. 38, 374–376 (2013).
    [Crossref] [PubMed]
  21. J.-F. Wu and C. Li, “Similar role of transient Kerr effect and two-photon absorption in a nonlinear photonic crystal nanocavity,” IEEE Photon. J.1 5, 6100209 (2013).
    [Crossref]
  22. J.-M. Gérard, “Solid-state cavity-quantum electrodynamics with self-assembled quantum dots,” Top. Appl. Phys. 90, 269–314 (2003).
    [Crossref]
  23. T. G. Euser, P. J. Harding, and W. L. Vos, “Broadband sensitive pump-probe setup for ultrafast optical switching of photonic nanostructures and semiconductors,” Rev. Sci. Instrum. 80, 073104 (2009).
    [Crossref] [PubMed]
  24. T. G. Euser and W. L. Vos, “Spatial homogeneity of optically switched semiconductor photonic crystals and of bulk semiconductors,” J. Appl. Phys. 97, 043102 (2005).
    [Crossref]
  25. P. J. Harding, H. J. Bakker, A. Hartsuiker, J. Claudon, A. P. Mosk, J. M. Gérard, and W. L. Vos, “Observation of a stronger-than-adiabatic change of light trapped in an ultrafast switched GaAs-AlAs microcavity,” J. Opt. Soc. Am. B 29, A1–A5 (2012).
    [Crossref]
  26. M. Sheik-Bahae, J. Wang, and E. W. van Stryland, “Nondegenerate optical Kerr effect in semiconductors,” IEEE J. Quantum. Electron. 30, 249–255 (1994).
    [Crossref]
  27. M. G. Kuzyk, R. A. Norwood, J. W. Wu, and A. F. Garito, “Frequency dependence of the optical Kerr effect and third-order electronic nonlinear-optical processes of organic liquids,” J. Opt. Soc. Am. B 6, 154–164 (1989).
    [Crossref]
  28. M. Sheik-Bahae, D. J. Hagan, and E. W. van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65, 96–99 (1990).
    [Crossref] [PubMed]
  29. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Sel. Top. Quantum Electron. 27, 1296–1309 (1991).
    [Crossref]
  30. W. C. Hurlbut, Y.-S. Lee, K. L. Vodopyanov, P. S. Kuo, and M. M. Fejer, “Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared,” Opt. Lett. 32, 668–670 (2007).
    [Crossref] [PubMed]
  31. P. J. Harding, “Photonic crystals modified by optically resonant systems,” Ph.D. thesis, University of Twente (2008).
  32. A. Hartsuiker, “Ultrafast all-optical switching and optical properties of microcavities and photonic crystals,” Ph.D. thesis, University of Twente (2009).
  33. J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale, 2nd ed.(Academic, 1996).
  34. M. Born and E. Wolf, Principles of Optics, 7th ed.(Cambridge University, 2002).

2015 (1)

R. Johne, R. Schutjens, S. F. Poor, C.-Y. Jin, and A. Fiore, “Control of the electromagnetic environment of a quantum emitter by shaping the vacuum field in a coupled-cavity system,” Phys. Rev. A 91, 063807 (2015).
[Crossref]

2014 (3)

C.-Y. Jin and O. Wada, “Photonic switching devices based on semiconductor nano-structures,” J. Phys. D Appl. Phys. 47, 133001 (2014).
[Crossref]

A. Pejkic, R. R. Nissim, E. Myslivets, A. O. J. Wiberg, N. Alic, and S. Radic, “All-optical switching in a highly efficient parametric fiber mixer: design study,” Opt. Express 22, 23512–23527 (2014).
[Crossref] [PubMed]

X. Xia, J. Xu, and Y. Yang, “Controllable optical bistability of an asymmetric cavity containing a single two-level atom,” Phys. Rev. A 90, 043857 (2014).
[Crossref]

2013 (3)

2012 (3)

2011 (1)

G. Ctistis, E. Yüce, A. Hartsuiker, J. Claudon, M. Bazin, J.-M. Gérard, and W. L. Vos, “Ultimate fast optical switching of a planar microcavity in the telecom wavelength range,” Appl. Phys. Lett. 98, 161114 (2011).
[Crossref]

2009 (3)

P. J. Harding, T. G. Euser, and W. L. Vos, “Identification of competing ultrafast all-optical switching mechanisms in Si woodpile photonic crystals,” J. Opt. Soc. Am. B 28, 610–619 (2009).
[Crossref]

C. Husko, A. de Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
[Crossref]

T. G. Euser, P. J. Harding, and W. L. Vos, “Broadband sensitive pump-probe setup for ultrafast optical switching of photonic nanostructures and semiconductors,” Rev. Sci. Instrum. 80, 073104 (2009).
[Crossref] [PubMed]

2008 (1)

A. Hartsuiker, P. J. Harding, Y. Nowicki-Bringuier, J.-M. Gérard, and W. L. Vos, “Kerr and free carrier ultrafast all-optical switching of GaAs/AlAs nanostructures near the three photon edge of GaAs,” J. Appl. Phys. 104, 083105 (2008).
[Crossref]

2007 (3)

I. Fushman, E. Waks, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Ultrafast nonlinear optical tuning of photonic crystal cavities,” Appl. Phys. Lett. 90, 091118 (2007).
[Crossref]

P. J. Harding, T. G. Euser, Y. Nowicki-Bringuier, J.-M. Gérard, and W. L. Vos, “Dynamical ultrafast all-optical switching of planar GaAs/AlAs photonic microcavities,” Appl. Phys. Lett. 91, 111103 (2007).
[Crossref]

W. C. Hurlbut, Y.-S. Lee, K. L. Vodopyanov, P. S. Kuo, and M. M. Fejer, “Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared,” Opt. Lett. 32, 668–670 (2007).
[Crossref] [PubMed]

2006 (1)

H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2, 484–488 (2006).
[Crossref]

2005 (2)

J. P. Mondia, H. W. Tan, S. Linden, and H. M. van Driel, “Ultrafast tuning of two-dimensional planar photonic-crystal waveguides via free-carrier injection and the optical Kerr effect,” J. Opt. Soc. Am. B 22, 2480–2486 (2005).
[Crossref]

T. G. Euser and W. L. Vos, “Spatial homogeneity of optically switched semiconductor photonic crystals and of bulk semiconductors,” J. Appl. Phys. 97, 043102 (2005).
[Crossref]

2004 (1)

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004).
[Crossref] [PubMed]

2003 (1)

J.-M. Gérard, “Solid-state cavity-quantum electrodynamics with self-assembled quantum dots,” Top. Appl. Phys. 90, 269–314 (2003).
[Crossref]

2002 (1)

P. M. Johnson, A. F. Koenderink, and W. L. Vos, “Ultrafast switching of photonic density of states in photonic crystals,” Phys. Rev. B 66, 081102(2002).
[Crossref]

1996 (1)

A. Kan’an, P. LiKamWa, M. Dutta, and J. Pamulapati, “1.7-ps consecutive switching in an integrated multiple-quantum-well Y-junction optical switch,” IEEE Photon. Technol. Lett. 8, 1641–1643 (1996).
[Crossref]

1994 (1)

M. Sheik-Bahae, J. Wang, and E. W. van Stryland, “Nondegenerate optical Kerr effect in semiconductors,” IEEE J. Quantum. Electron. 30, 249–255 (1994).
[Crossref]

1991 (1)

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Sel. Top. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

1990 (1)

M. Sheik-Bahae, D. J. Hagan, and E. W. van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65, 96–99 (1990).
[Crossref] [PubMed]

1989 (1)

Alic, N.

Altug, H.

H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2, 484–488 (2006).
[Crossref]

Bakker, H. J.

Bazin, M.

G. Ctistis, E. Yüce, A. Hartsuiker, J. Claudon, M. Bazin, J.-M. Gérard, and W. L. Vos, “Ultimate fast optical switching of a planar microcavity in the telecom wavelength range,” Appl. Phys. Lett. 98, 161114 (2011).
[Crossref]

Boller, K.-J.

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed.(Cambridge University, 2002).

Boyd, R.

R. Boyd, Nonlinear Optics, 3rd ed.(Academic, 2008).

Buijs, R. D.

Cestier, I.

Claudon, J.

Combrié, S.

V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrié, G. Lehoucq, and A. D. Rossi, “Kerr-induced all-optical switching in a GaInP photonic crystal Fabry-Perot resonator,” Opt. Express 20, 8524–8534 (2012).
[Crossref] [PubMed]

C. Husko, A. de Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
[Crossref]

Ctistis, G.

de Ronde, B.

de Rossi, A.

C. Husko, A. de Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
[Crossref]

Diels, J. C.

J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale, 2nd ed.(Academic, 1996).

Dupuy, E.

Dutta, M.

A. Kan’an, P. LiKamWa, M. Dutta, and J. Pamulapati, “1.7-ps consecutive switching in an integrated multiple-quantum-well Y-junction optical switch,” IEEE Photon. Technol. Lett. 8, 1641–1643 (1996).
[Crossref]

Eckhouse, V.

Eisenstein, G.

Englund, D.

I. Fushman, E. Waks, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Ultrafast nonlinear optical tuning of photonic crystal cavities,” Appl. Phys. Lett. 90, 091118 (2007).
[Crossref]

H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2, 484–488 (2006).
[Crossref]

Euser, T. G.

P. J. Harding, T. G. Euser, and W. L. Vos, “Identification of competing ultrafast all-optical switching mechanisms in Si woodpile photonic crystals,” J. Opt. Soc. Am. B 28, 610–619 (2009).
[Crossref]

T. G. Euser, P. J. Harding, and W. L. Vos, “Broadband sensitive pump-probe setup for ultrafast optical switching of photonic nanostructures and semiconductors,” Rev. Sci. Instrum. 80, 073104 (2009).
[Crossref] [PubMed]

P. J. Harding, T. G. Euser, Y. Nowicki-Bringuier, J.-M. Gérard, and W. L. Vos, “Dynamical ultrafast all-optical switching of planar GaAs/AlAs photonic microcavities,” Appl. Phys. Lett. 91, 111103 (2007).
[Crossref]

T. G. Euser and W. L. Vos, “Spatial homogeneity of optically switched semiconductor photonic crystals and of bulk semiconductors,” J. Appl. Phys. 97, 043102 (2005).
[Crossref]

Fan, S.

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004).
[Crossref] [PubMed]

Fejer, M. M.

Fiore, A.

R. Johne, R. Schutjens, S. F. Poor, C.-Y. Jin, and A. Fiore, “Control of the electromagnetic environment of a quantum emitter by shaping the vacuum field in a coupled-cavity system,” Phys. Rev. A 91, 063807 (2015).
[Crossref]

Fushman, I.

I. Fushman, E. Waks, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Ultrafast nonlinear optical tuning of photonic crystal cavities,” Appl. Phys. Lett. 90, 091118 (2007).
[Crossref]

Garito, A. F.

Gérard, J. M.

Gérard, J.-M.

E. Yüce, G. Ctistis, J. Claudon, E. Dupuy, R. D. Buijs, B. de Ronde, A. P. Mosk, J.-M. Gérard, and W. L. Vos, “All-optical switching of a microcavity repeated at terahertz rates,” Opt. Lett. 38, 374–376 (2013).
[Crossref] [PubMed]

H. Thyrrestrup, A. Hartsuiker, J.-M. Gérard, and W. L. Vos, “Switching the decay rate of an emitter inside a cavity in the time domain,” Opt. Express 21, 23130–23144 (2013).
[Crossref] [PubMed]

E. Yüce, G. Ctistis, J. Claudon, E. Dupuy, K.-J. Boller, J.-M. Gérard, and W. L. Vos, “Competition between electronic Kerr and free carrier effects in an ultimate-fast optically switched semiconductor microcavity,” J. Opt. Soc. Am. B 29, 2630–2642 (2012).
[Crossref]

G. Ctistis, E. Yüce, A. Hartsuiker, J. Claudon, M. Bazin, J.-M. Gérard, and W. L. Vos, “Ultimate fast optical switching of a planar microcavity in the telecom wavelength range,” Appl. Phys. Lett. 98, 161114 (2011).
[Crossref]

A. Hartsuiker, P. J. Harding, Y. Nowicki-Bringuier, J.-M. Gérard, and W. L. Vos, “Kerr and free carrier ultrafast all-optical switching of GaAs/AlAs nanostructures near the three photon edge of GaAs,” J. Appl. Phys. 104, 083105 (2008).
[Crossref]

P. J. Harding, T. G. Euser, Y. Nowicki-Bringuier, J.-M. Gérard, and W. L. Vos, “Dynamical ultrafast all-optical switching of planar GaAs/AlAs photonic microcavities,” Appl. Phys. Lett. 91, 111103 (2007).
[Crossref]

J.-M. Gérard, “Solid-state cavity-quantum electrodynamics with self-assembled quantum dots,” Top. Appl. Phys. 90, 269–314 (2003).
[Crossref]

Hagan, D. J.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Sel. Top. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

M. Sheik-Bahae, D. J. Hagan, and E. W. van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65, 96–99 (1990).
[Crossref] [PubMed]

Harding, P. J.

P. J. Harding, H. J. Bakker, A. Hartsuiker, J. Claudon, A. P. Mosk, J. M. Gérard, and W. L. Vos, “Observation of a stronger-than-adiabatic change of light trapped in an ultrafast switched GaAs-AlAs microcavity,” J. Opt. Soc. Am. B 29, A1–A5 (2012).
[Crossref]

T. G. Euser, P. J. Harding, and W. L. Vos, “Broadband sensitive pump-probe setup for ultrafast optical switching of photonic nanostructures and semiconductors,” Rev. Sci. Instrum. 80, 073104 (2009).
[Crossref] [PubMed]

P. J. Harding, T. G. Euser, and W. L. Vos, “Identification of competing ultrafast all-optical switching mechanisms in Si woodpile photonic crystals,” J. Opt. Soc. Am. B 28, 610–619 (2009).
[Crossref]

A. Hartsuiker, P. J. Harding, Y. Nowicki-Bringuier, J.-M. Gérard, and W. L. Vos, “Kerr and free carrier ultrafast all-optical switching of GaAs/AlAs nanostructures near the three photon edge of GaAs,” J. Appl. Phys. 104, 083105 (2008).
[Crossref]

P. J. Harding, T. G. Euser, Y. Nowicki-Bringuier, J.-M. Gérard, and W. L. Vos, “Dynamical ultrafast all-optical switching of planar GaAs/AlAs photonic microcavities,” Appl. Phys. Lett. 91, 111103 (2007).
[Crossref]

P. J. Harding, “Photonic crystals modified by optically resonant systems,” Ph.D. thesis, University of Twente (2008).

Hartsuiker, A.

H. Thyrrestrup, A. Hartsuiker, J.-M. Gérard, and W. L. Vos, “Switching the decay rate of an emitter inside a cavity in the time domain,” Opt. Express 21, 23130–23144 (2013).
[Crossref] [PubMed]

P. J. Harding, H. J. Bakker, A. Hartsuiker, J. Claudon, A. P. Mosk, J. M. Gérard, and W. L. Vos, “Observation of a stronger-than-adiabatic change of light trapped in an ultrafast switched GaAs-AlAs microcavity,” J. Opt. Soc. Am. B 29, A1–A5 (2012).
[Crossref]

G. Ctistis, E. Yüce, A. Hartsuiker, J. Claudon, M. Bazin, J.-M. Gérard, and W. L. Vos, “Ultimate fast optical switching of a planar microcavity in the telecom wavelength range,” Appl. Phys. Lett. 98, 161114 (2011).
[Crossref]

A. Hartsuiker, P. J. Harding, Y. Nowicki-Bringuier, J.-M. Gérard, and W. L. Vos, “Kerr and free carrier ultrafast all-optical switching of GaAs/AlAs nanostructures near the three photon edge of GaAs,” J. Appl. Phys. 104, 083105 (2008).
[Crossref]

A. Hartsuiker, “Ultrafast all-optical switching and optical properties of microcavities and photonic crystals,” Ph.D. thesis, University of Twente (2009).

Hurlbut, W. C.

Husko, C.

C. Husko, A. de Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
[Crossref]

Hutchings, D. C.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Sel. Top. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

Jin, C.-Y.

R. Johne, R. Schutjens, S. F. Poor, C.-Y. Jin, and A. Fiore, “Control of the electromagnetic environment of a quantum emitter by shaping the vacuum field in a coupled-cavity system,” Phys. Rev. A 91, 063807 (2015).
[Crossref]

C.-Y. Jin and O. Wada, “Photonic switching devices based on semiconductor nano-structures,” J. Phys. D Appl. Phys. 47, 133001 (2014).
[Crossref]

Johne, R.

R. Johne, R. Schutjens, S. F. Poor, C.-Y. Jin, and A. Fiore, “Control of the electromagnetic environment of a quantum emitter by shaping the vacuum field in a coupled-cavity system,” Phys. Rev. A 91, 063807 (2015).
[Crossref]

Johnson, P. M.

P. M. Johnson, A. F. Koenderink, and W. L. Vos, “Ultrafast switching of photonic density of states in photonic crystals,” Phys. Rev. B 66, 081102(2002).
[Crossref]

Kan’an, A.

A. Kan’an, P. LiKamWa, M. Dutta, and J. Pamulapati, “1.7-ps consecutive switching in an integrated multiple-quantum-well Y-junction optical switch,” IEEE Photon. Technol. Lett. 8, 1641–1643 (1996).
[Crossref]

Koenderink, A. F.

P. M. Johnson, A. F. Koenderink, and W. L. Vos, “Ultrafast switching of photonic density of states in photonic crystals,” Phys. Rev. B 66, 081102(2002).
[Crossref]

Kuo, P. S.

Kuzyk, M. G.

Lee, Y.-S.

Lehoucq, G.

Li, C.

J.-F. Wu and C. Li, “Similar role of transient Kerr effect and two-photon absorption in a nonlinear photonic crystal nanocavity,” IEEE Photon. J.1 5, 6100209 (2013).
[Crossref]

LiKamWa, P.

A. Kan’an, P. LiKamWa, M. Dutta, and J. Pamulapati, “1.7-ps consecutive switching in an integrated multiple-quantum-well Y-junction optical switch,” IEEE Photon. Technol. Lett. 8, 1641–1643 (1996).
[Crossref]

Linden, S.

Mondia, J. P.

Mosk, A. P.

Myslivets, E.

Nissim, R. R.

Norwood, R. A.

Nowicki-Bringuier, Y.

A. Hartsuiker, P. J. Harding, Y. Nowicki-Bringuier, J.-M. Gérard, and W. L. Vos, “Kerr and free carrier ultrafast all-optical switching of GaAs/AlAs nanostructures near the three photon edge of GaAs,” J. Appl. Phys. 104, 083105 (2008).
[Crossref]

P. J. Harding, T. G. Euser, Y. Nowicki-Bringuier, J.-M. Gérard, and W. L. Vos, “Dynamical ultrafast all-optical switching of planar GaAs/AlAs photonic microcavities,” Appl. Phys. Lett. 91, 111103 (2007).
[Crossref]

Pamulapati, J.

A. Kan’an, P. LiKamWa, M. Dutta, and J. Pamulapati, “1.7-ps consecutive switching in an integrated multiple-quantum-well Y-junction optical switch,” IEEE Photon. Technol. Lett. 8, 1641–1643 (1996).
[Crossref]

Pejkic, A.

Petroff, P.

I. Fushman, E. Waks, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Ultrafast nonlinear optical tuning of photonic crystal cavities,” Appl. Phys. Lett. 90, 091118 (2007).
[Crossref]

Poor, S. F.

R. Johne, R. Schutjens, S. F. Poor, C.-Y. Jin, and A. Fiore, “Control of the electromagnetic environment of a quantum emitter by shaping the vacuum field in a coupled-cavity system,” Phys. Rev. A 91, 063807 (2015).
[Crossref]

Radic, S.

Raineri, F.

C. Husko, A. de Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
[Crossref]

Rossi, A. D.

Rudolph, W.

J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale, 2nd ed.(Academic, 1996).

Schutjens, R.

R. Johne, R. Schutjens, S. F. Poor, C.-Y. Jin, and A. Fiore, “Control of the electromagnetic environment of a quantum emitter by shaping the vacuum field in a coupled-cavity system,” Phys. Rev. A 91, 063807 (2015).
[Crossref]

Sheik-Bahae, M.

M. Sheik-Bahae, J. Wang, and E. W. van Stryland, “Nondegenerate optical Kerr effect in semiconductors,” IEEE J. Quantum. Electron. 30, 249–255 (1994).
[Crossref]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Sel. Top. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

M. Sheik-Bahae, D. J. Hagan, and E. W. van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65, 96–99 (1990).
[Crossref] [PubMed]

Stoltz, N.

I. Fushman, E. Waks, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Ultrafast nonlinear optical tuning of photonic crystal cavities,” Appl. Phys. Lett. 90, 091118 (2007).
[Crossref]

Tan, H. W.

Thyrrestrup, H.

Tran, Q. V.

C. Husko, A. de Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
[Crossref]

van Driel, H. M.

van Stryland, E. W.

M. Sheik-Bahae, J. Wang, and E. W. van Stryland, “Nondegenerate optical Kerr effect in semiconductors,” IEEE J. Quantum. Electron. 30, 249–255 (1994).
[Crossref]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Sel. Top. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

M. Sheik-Bahae, D. J. Hagan, and E. W. van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65, 96–99 (1990).
[Crossref] [PubMed]

Vodopyanov, K. L.

Vos, W. L.

H. Thyrrestrup, A. Hartsuiker, J.-M. Gérard, and W. L. Vos, “Switching the decay rate of an emitter inside a cavity in the time domain,” Opt. Express 21, 23130–23144 (2013).
[Crossref] [PubMed]

E. Yüce, G. Ctistis, J. Claudon, E. Dupuy, R. D. Buijs, B. de Ronde, A. P. Mosk, J.-M. Gérard, and W. L. Vos, “All-optical switching of a microcavity repeated at terahertz rates,” Opt. Lett. 38, 374–376 (2013).
[Crossref] [PubMed]

E. Yüce, G. Ctistis, J. Claudon, E. Dupuy, K.-J. Boller, J.-M. Gérard, and W. L. Vos, “Competition between electronic Kerr and free carrier effects in an ultimate-fast optically switched semiconductor microcavity,” J. Opt. Soc. Am. B 29, 2630–2642 (2012).
[Crossref]

P. J. Harding, H. J. Bakker, A. Hartsuiker, J. Claudon, A. P. Mosk, J. M. Gérard, and W. L. Vos, “Observation of a stronger-than-adiabatic change of light trapped in an ultrafast switched GaAs-AlAs microcavity,” J. Opt. Soc. Am. B 29, A1–A5 (2012).
[Crossref]

G. Ctistis, E. Yüce, A. Hartsuiker, J. Claudon, M. Bazin, J.-M. Gérard, and W. L. Vos, “Ultimate fast optical switching of a planar microcavity in the telecom wavelength range,” Appl. Phys. Lett. 98, 161114 (2011).
[Crossref]

T. G. Euser, P. J. Harding, and W. L. Vos, “Broadband sensitive pump-probe setup for ultrafast optical switching of photonic nanostructures and semiconductors,” Rev. Sci. Instrum. 80, 073104 (2009).
[Crossref] [PubMed]

P. J. Harding, T. G. Euser, and W. L. Vos, “Identification of competing ultrafast all-optical switching mechanisms in Si woodpile photonic crystals,” J. Opt. Soc. Am. B 28, 610–619 (2009).
[Crossref]

A. Hartsuiker, P. J. Harding, Y. Nowicki-Bringuier, J.-M. Gérard, and W. L. Vos, “Kerr and free carrier ultrafast all-optical switching of GaAs/AlAs nanostructures near the three photon edge of GaAs,” J. Appl. Phys. 104, 083105 (2008).
[Crossref]

P. J. Harding, T. G. Euser, Y. Nowicki-Bringuier, J.-M. Gérard, and W. L. Vos, “Dynamical ultrafast all-optical switching of planar GaAs/AlAs photonic microcavities,” Appl. Phys. Lett. 91, 111103 (2007).
[Crossref]

T. G. Euser and W. L. Vos, “Spatial homogeneity of optically switched semiconductor photonic crystals and of bulk semiconductors,” J. Appl. Phys. 97, 043102 (2005).
[Crossref]

P. M. Johnson, A. F. Koenderink, and W. L. Vos, “Ultrafast switching of photonic density of states in photonic crystals,” Phys. Rev. B 66, 081102(2002).
[Crossref]

Vuckovic, J.

I. Fushman, E. Waks, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Ultrafast nonlinear optical tuning of photonic crystal cavities,” Appl. Phys. Lett. 90, 091118 (2007).
[Crossref]

H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2, 484–488 (2006).
[Crossref]

Wada, O.

C.-Y. Jin and O. Wada, “Photonic switching devices based on semiconductor nano-structures,” J. Phys. D Appl. Phys. 47, 133001 (2014).
[Crossref]

Waks, E.

I. Fushman, E. Waks, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Ultrafast nonlinear optical tuning of photonic crystal cavities,” Appl. Phys. Lett. 90, 091118 (2007).
[Crossref]

Wang, J.

M. Sheik-Bahae, J. Wang, and E. W. van Stryland, “Nondegenerate optical Kerr effect in semiconductors,” IEEE J. Quantum. Electron. 30, 249–255 (1994).
[Crossref]

Wiberg, A. O. J.

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed.(Cambridge University, 2002).

Wong, C. W.

C. Husko, A. de Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
[Crossref]

Wu, J. W.

Wu, J.-F.

J.-F. Wu and C. Li, “Similar role of transient Kerr effect and two-photon absorption in a nonlinear photonic crystal nanocavity,” IEEE Photon. J.1 5, 6100209 (2013).
[Crossref]

Xia, X.

X. Xia, J. Xu, and Y. Yang, “Controllable optical bistability of an asymmetric cavity containing a single two-level atom,” Phys. Rev. A 90, 043857 (2014).
[Crossref]

Xu, J.

X. Xia, J. Xu, and Y. Yang, “Controllable optical bistability of an asymmetric cavity containing a single two-level atom,” Phys. Rev. A 90, 043857 (2014).
[Crossref]

Yang, Y.

X. Xia, J. Xu, and Y. Yang, “Controllable optical bistability of an asymmetric cavity containing a single two-level atom,” Phys. Rev. A 90, 043857 (2014).
[Crossref]

Yanik, M. F.

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004).
[Crossref] [PubMed]

Yüce, E.

Appl. Phys. Lett. (4)

I. Fushman, E. Waks, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Ultrafast nonlinear optical tuning of photonic crystal cavities,” Appl. Phys. Lett. 90, 091118 (2007).
[Crossref]

P. J. Harding, T. G. Euser, Y. Nowicki-Bringuier, J.-M. Gérard, and W. L. Vos, “Dynamical ultrafast all-optical switching of planar GaAs/AlAs photonic microcavities,” Appl. Phys. Lett. 91, 111103 (2007).
[Crossref]

C. Husko, A. de Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
[Crossref]

G. Ctistis, E. Yüce, A. Hartsuiker, J. Claudon, M. Bazin, J.-M. Gérard, and W. L. Vos, “Ultimate fast optical switching of a planar microcavity in the telecom wavelength range,” Appl. Phys. Lett. 98, 161114 (2011).
[Crossref]

IEEE J. Quantum. Electron. (1)

M. Sheik-Bahae, J. Wang, and E. W. van Stryland, “Nondegenerate optical Kerr effect in semiconductors,” IEEE J. Quantum. Electron. 30, 249–255 (1994).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Sel. Top. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

IEEE Photon. J.1 (1)

J.-F. Wu and C. Li, “Similar role of transient Kerr effect and two-photon absorption in a nonlinear photonic crystal nanocavity,” IEEE Photon. J.1 5, 6100209 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. Kan’an, P. LiKamWa, M. Dutta, and J. Pamulapati, “1.7-ps consecutive switching in an integrated multiple-quantum-well Y-junction optical switch,” IEEE Photon. Technol. Lett. 8, 1641–1643 (1996).
[Crossref]

J. Appl. Phys. (2)

A. Hartsuiker, P. J. Harding, Y. Nowicki-Bringuier, J.-M. Gérard, and W. L. Vos, “Kerr and free carrier ultrafast all-optical switching of GaAs/AlAs nanostructures near the three photon edge of GaAs,” J. Appl. Phys. 104, 083105 (2008).
[Crossref]

T. G. Euser and W. L. Vos, “Spatial homogeneity of optically switched semiconductor photonic crystals and of bulk semiconductors,” J. Appl. Phys. 97, 043102 (2005).
[Crossref]

J. Opt. Soc. Am. B (5)

J. Phys. D Appl. Phys. (1)

C.-Y. Jin and O. Wada, “Photonic switching devices based on semiconductor nano-structures,” J. Phys. D Appl. Phys. 47, 133001 (2014).
[Crossref]

Nat. Phys. (1)

H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2, 484–488 (2006).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. A (2)

R. Johne, R. Schutjens, S. F. Poor, C.-Y. Jin, and A. Fiore, “Control of the electromagnetic environment of a quantum emitter by shaping the vacuum field in a coupled-cavity system,” Phys. Rev. A 91, 063807 (2015).
[Crossref]

X. Xia, J. Xu, and Y. Yang, “Controllable optical bistability of an asymmetric cavity containing a single two-level atom,” Phys. Rev. A 90, 043857 (2014).
[Crossref]

Phys. Rev. B (1)

P. M. Johnson, A. F. Koenderink, and W. L. Vos, “Ultrafast switching of photonic density of states in photonic crystals,” Phys. Rev. B 66, 081102(2002).
[Crossref]

Phys. Rev. Lett. (2)

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004).
[Crossref] [PubMed]

M. Sheik-Bahae, D. J. Hagan, and E. W. van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65, 96–99 (1990).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

T. G. Euser, P. J. Harding, and W. L. Vos, “Broadband sensitive pump-probe setup for ultrafast optical switching of photonic nanostructures and semiconductors,” Rev. Sci. Instrum. 80, 073104 (2009).
[Crossref] [PubMed]

Top. Appl. Phys. (1)

J.-M. Gérard, “Solid-state cavity-quantum electrodynamics with self-assembled quantum dots,” Top. Appl. Phys. 90, 269–314 (2003).
[Crossref]

Other (5)

P. J. Harding, “Photonic crystals modified by optically resonant systems,” Ph.D. thesis, University of Twente (2008).

A. Hartsuiker, “Ultrafast all-optical switching and optical properties of microcavities and photonic crystals,” Ph.D. thesis, University of Twente (2009).

J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale, 2nd ed.(Academic, 1996).

M. Born and E. Wolf, Principles of Optics, 7th ed.(Cambridge University, 2002).

R. Boyd, Nonlinear Optics, 3rd ed.(Academic, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic of the all-optical switch setup. The probe beam path is shown in blue, the pump beam path in red. The time delay between pump and probe pulses is set with a delay stage. The reflected signal from the cavity is spectrally resolved and detected. (b) SEM picture of the multilayer structure of a GaAs/AlAs microcavity. GaAs layers appear light grey, and AlAs layers dark grey. The white arrows indicate the thickness of the GaAs λ-layer. The GaAs substrate is seen at the bottom. The magnifier shows a more detailed view on how the λ-layer is sandwiched between the Bragg stacks.
Fig. 2
Fig. 2 (a) Measured (symbols) and calculated (red curve) resonance frequency versus time delay (Δt) between pump and probe for a GaAs/AlAs cavity (Q = 390 ± 60). The resonance frequency red-shifts due to increased refractive index only near temporal overlap (Δt = 0 ± 15 f s) of pump-probe, shown with dashed curve. (b) Calculated spectra for a GaAs/AlAs cavity that consists of 19 pairs of bottom Bragg layers, λ-layer, and sequentially changed number of layers on the top Bragg mirror.
Fig. 3
Fig. 3 Resonance frequency versus time delay (Δt) between pump and probe for (a) GaAs/AlAs (Q = 390) and (c) AlGaAs/AlAs cavity. The resonance frequency red-shifts due to increased refractive index only near temporal overlap (Δt = 0 ± 15 f s) of pump-probe. Both cavities are switched at 65 pJm2 pump fluence. The dashed lines represent the unswitched cavity resonance frequency. The solid curves represent the induced refractive index change. The schematic representation of the electronic bandgap of (b) GaAs and (d) AlGaAs and the energy of the pump and probe photons relative to the bandgap.
Fig. 4
Fig. 4 Nondegenerate dispersion curve of the electronic Kerr effect for probe frequency within original (O) and conventional (C) telecom bands, shown with solid and dashed curves, respectively. The symbols mark the G2 values at our setting of pump frequency for GaAs and AlGaAs cavities.
Fig. 5
Fig. 5 Relative cavity resonance frequency change versus quality factor and cavity storage time. The calculations and the experiments are performed at 65 pJm2 pump fluence and pulse duration τpu = 140 fs. The calculations are performed at pump-probe delay Δt = −100 fs. Black circles show the measured results within the standard deviation. The solid curve indicates the calculated relative frequency change for different quality factor cavities.
Fig. 6
Fig. 6 Schematic representation of the pump and probe pulses in the cavity for two different quality factor cavities, (a) high-Q, (c) low-Q. The lower panels show the instantaneous frequency shift versus time. The cavity resonance instantaneously shifts from ω0 to ω′ at pump probe overlap (Δt = 0). The detected resonance shift (ωavg) is deduced from the transient reflectivity that is a result of the time averaging of the cavity storage and detector response time. A larger resonance frequency shift δω is observed for cavities with shorter storage times.
Fig. 7
Fig. 7 Calculated relative cavity resonance frequency change with respect to the cavity linewidth (Δω) versus the pump pulse duration for GaAs/AlAs cavity with Q = 450. The calculations are performed at a pump intensity of 70 GW/cm2 and the peak intensity is kept constant for each pulse duration. The calculations are performed at pump-probe delay Δt = 0 fs. The red circle marks the duration of the pump pulse in our experiments.
Fig. 8
Fig. 8 Schematic representation of the pump and probe pulses in the cavity for three different pump pulse durations. The peak intensity of the pump pulse is kept constant while stretching the pump pulse. The lower panels show the instantaneous frequency shift versus time. The cavity resonance instantaneously shifts from ω0 to ω′ at pump probe overlap (Δt = 0). The detected resonance shift (ωavg) is deduced from the transient reflectivity that is a result of the time averaging of the cavity storage and detector response time.
Fig. 9
Fig. 9 Schematic picture of the one-dimensional microcavity considered in our model calculations. The Bragg mirrors consist of GaAs and AlAs layers and the λ-layer consists of GaAs. The thickness of the air, GaAs, and AlAs layers are indicated in the figure so as to yield a resonance frequency as in our experiment. The first two interfaces are marked with the indices i and i+1. The probe field is launched at z = z0.

Tables (1)

Tables Icon

Table 1 List of samples used in this work. The resonance frequency ω0 and corresponding wavelength λ0, and the quality factor Q of the cavities are obtained from our measurements. The last column shows in which sections the cavities are discussed.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

n 2 ( ω p r , ω p u ) = c K 2 E p E g a p 4 n 0 p r n 0 p u G 2 ( ω p r , ω p u ) ,
J = π r 2 t i n t / 2 t i n t / 2 | S | d t = t i n t / 2 t i n t / 2 ε 0 μ 0 E ( t ) 2 d t
π r 2 ε 0 μ 0 E ˜ 0 2 ( e 4 l n 2 t 2 / τ P 2 ) 2 d t
= π r 2 ε 0 μ 0 π 2 l n ( 2 ) τ P E ˜ 0 2 4 ,
J ( ω ) = π r 2 ( ε 0 c ) 1 | d t E ( t ) e i ω t | 2
E p r ( z 0 , t ) = E 0 ( z 0 ) e i ω t e ( t t 0 / τ p r ) 2 ,
E p r ( z , t ) = E p r ( z 0 , n ( t ) ( z z 0 ) / c ) = E 0 ( z 0 ) e i ω ( n ( t ) ( z z 0 ) / c ) e ( ( n ( t ) ( z z 0 ) / c ) t 0 / τ p r ) 2 .
n ( z , t ) = { n a i r , z in air n A l A s , z in AlAs n G a A s 0 + 12 π 2 χ ( 3 ) ( n G a A s 0 ) 2 c [ I p u e ( t Δ t τ p u ) 2 ] , z in GaAs ,
r = n 1 ( z , t ) n 2 ( z , t ) n 1 ( z , t ) + n 2 ( z , t ) , t = 2 n 1 ( z , t ) n 1 ( z , t ) + n 2 ( z , t ) ,
p r i ( z , t ) = E p r + ( z 0 , n ( z , t ) ( z z 0 ) / c ) t i + E p r ( z 0 , n ( z , t ) ( z z 0 ) / c ) r i + 1
| p r ( z , ω ) | 2 = | 0 t p r ( z , t ) e ( i 2 π ω δ t ) | 2 .

Metrics