Abstract

We describe a simple and versatile optical sensing device for measuring refractive index of liquids. The sensor consists of a sinusoidal relief grating in a glass cell. Device calibration is done by pouring in the cell different liquids of known refractive indices. Each time a liquid is poured first order intensity is measured. The fabrication process and testing of the prototype device is described. An application in the measurement of temperature is also presented.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Immersed diffraction grating refractometers of liquids

L. F. G. Dib and E. A. Barbosa
Appl. Opt. 55(30) 8582-8588 (2016)

Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels

Pavel Polynkin, Alexander Polynkin, N. Peyghambarian, and Masud Mansuripur
Opt. Lett. 30(11) 1273-1275 (2005)

Refractive index measurement through image analysis with an optofluidic device

Sergio Calixto, Martha Rosete-Aguilar, Francisco J. Sanchez-Marin, Margarita Calixto-Solano, and Carlos López-Mariscal
Opt. Express 20(3) 2073-2080 (2012)

References

  • View by:
  • |
  • |
  • |

  1. F. A. Jenkins and H. E. White, Fundamentals of Optics, (McGraw Hill, 1957).
  2. R. S. Longhurst, Geometrical and Physical Optics (Longman, 1973).
  3. S. Nemoto, “Measurement of the refractive index of liquid using laser beam displacement,” Appl. Opt. 31(31), 6690–6694 (1992).
    [Crossref] [PubMed]
  4. A. L. Bajor, “Refraction in plane-parallel plate - Reconsideration of method of measurement of refractive indices,” Optik (Stuttg.) 124(22), 5332–5339 (2013).
    [Crossref]
  5. M. V. R. K. Murty and R. P. Shukla, “Simple method for measuring rhe refractive index of a liquid,” Opt. Eng. 18(2), 182177 (1979).
    [Crossref]
  6. B. M. Pixton and J. E. Greivenkamp, “Automated measurement of the refractive index of fluids,” Appl. Opt. 47(10), 1504–1509 (2008).
    [Crossref] [PubMed]
  7. P. Liebetraut, P. Waibel, P. H. Nguyen, P. Reith, B. Aatz, and H. Zappe, “Optical properties of liquids for fluidic optics,” Appl. Opt. 52(14), 3203–3215 (2013).
    [Crossref] [PubMed]
  8. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
    [Crossref] [PubMed]
  9. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
    [Crossref]
  10. F. Yeshaiahu, L. P. Lee, D. Psaltis, and C. Yang, Optofluidics Fundamentals, Devices, and Applications (McGraw Hill, 2010).
  11. K. S. Chao, T. Y. Lin, and R. J. Yang, “Two optofluidic devices for the refractive index measurement of small volume of fluids,” Microfluid. Nanofluidics 12(5), 697–704 (2012).
    [Crossref]
  12. C. Grillet, P. Domachuk, V. Ta’eed, E. Mägi, J. Bolger, B. Eggleton, L. Rodd, and J. Cooper-White, “Compact tunable microfluidic interferometer,” Opt. Express 12(22), 5440–5447 (2004).
    [Crossref] [PubMed]
  13. A. Llobera, R. Wilke, and S. Büttgenbach, “Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift,” Lab Chip 4(1), 24–27 (2004).
    [Crossref] [PubMed]
  14. S. Calixto, M. Rosete-Aguilar, D. Monzon-Hernandez, and V. P. Minkovich, “Capillary refractometer integrated in a microfluidic configuration,” Appl. Opt. 47(6), 843–848 (2008).
    [Crossref] [PubMed]
  15. S. Calixto, M. Rosete-Aguilar, F. J. S. Marin, M. C. Solano, and C. L. Mariscal, “Refractive index mesurements through image analysis with an optofluidic device,” Opt. Express 20(3), 2073–2080 (2012).
  16. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett. 30(11), 1273–1275 (2005).
    [Crossref] [PubMed]
  17. S. Dante, D. Duval, B. Sepúlveda, A. B. González-Guerrero, J. R. Sendra, and L. M. Lechuga, “All-optical phase modulation for integrated interferometric biosensors,” Opt. Express 20(7), 7195–7205 (2012).
    [Crossref] [PubMed]
  18. K. Chaitavon, S. Sumriddetchkajorn, and J. Nukeaw, “Built-in-mask microfluidic chip for highly sensitive young interferometry-based refractometer structure,” Procd IEEE Sensors Conf.6, 2164-2167 (2012).
    [Crossref]
  19. K. Misiakos, I. Raptis, E. Makarona, A. Botsialas, A. Salapatas, P. Oikonomou, A. Psarouli, P. S. Petrou, S. E. Kakabakos, K. Tukkiniemi, M. Sopanen, and G. Jobst, “All-silicon monolithic Mach-Zehnder interferometer as a refractive index and bio-chemical sensor,” Opt. Express 22(22), 26803–26813 (2014).
    [Crossref] [PubMed]
  20. S. Calixto and C. Menchaca, “Infrared recording of transient and permanent interference gratings with commercial plastics,” Appl. Opt. 28(20), 4370–4374 (1989).
    [Crossref] [PubMed]
  21. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996) pp. 73–75.
  22. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996) pp. 81–83.
  23. R. Bracewell, The Fourier Transform and its Applications (McGraw-Hill, 1965) pp. 104–107.
  24. S. K. Mitra, N. Dass, and N. C. Varsh, “Temperature dependence of the refractive index of water,” J. Chem. Phys. 57(4), 1798–1799 (1972).
    [Crossref]
  25. P. Schiebener, T. Straub, J. M. H. Leveltstengers, and J. S. Gallagher, “Refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19(3), 677–715 (1990).
    [Crossref]

2014 (1)

2013 (2)

A. L. Bajor, “Refraction in plane-parallel plate - Reconsideration of method of measurement of refractive indices,” Optik (Stuttg.) 124(22), 5332–5339 (2013).
[Crossref]

P. Liebetraut, P. Waibel, P. H. Nguyen, P. Reith, B. Aatz, and H. Zappe, “Optical properties of liquids for fluidic optics,” Appl. Opt. 52(14), 3203–3215 (2013).
[Crossref] [PubMed]

2012 (3)

2008 (2)

2007 (1)

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

2006 (1)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (2)

C. Grillet, P. Domachuk, V. Ta’eed, E. Mägi, J. Bolger, B. Eggleton, L. Rodd, and J. Cooper-White, “Compact tunable microfluidic interferometer,” Opt. Express 12(22), 5440–5447 (2004).
[Crossref] [PubMed]

A. Llobera, R. Wilke, and S. Büttgenbach, “Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift,” Lab Chip 4(1), 24–27 (2004).
[Crossref] [PubMed]

1992 (1)

1990 (1)

P. Schiebener, T. Straub, J. M. H. Leveltstengers, and J. S. Gallagher, “Refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19(3), 677–715 (1990).
[Crossref]

1989 (1)

1979 (1)

M. V. R. K. Murty and R. P. Shukla, “Simple method for measuring rhe refractive index of a liquid,” Opt. Eng. 18(2), 182177 (1979).
[Crossref]

1972 (1)

S. K. Mitra, N. Dass, and N. C. Varsh, “Temperature dependence of the refractive index of water,” J. Chem. Phys. 57(4), 1798–1799 (1972).
[Crossref]

Aatz, B.

Bajor, A. L.

A. L. Bajor, “Refraction in plane-parallel plate - Reconsideration of method of measurement of refractive indices,” Optik (Stuttg.) 124(22), 5332–5339 (2013).
[Crossref]

Bolger, J.

Botsialas, A.

Büttgenbach, S.

A. Llobera, R. Wilke, and S. Büttgenbach, “Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift,” Lab Chip 4(1), 24–27 (2004).
[Crossref] [PubMed]

Calixto, S.

Chaitavon, K.

K. Chaitavon, S. Sumriddetchkajorn, and J. Nukeaw, “Built-in-mask microfluidic chip for highly sensitive young interferometry-based refractometer structure,” Procd IEEE Sensors Conf.6, 2164-2167 (2012).
[Crossref]

Chao, K. S.

K. S. Chao, T. Y. Lin, and R. J. Yang, “Two optofluidic devices for the refractive index measurement of small volume of fluids,” Microfluid. Nanofluidics 12(5), 697–704 (2012).
[Crossref]

Cooper-White, J.

Dante, S.

Dass, N.

S. K. Mitra, N. Dass, and N. C. Varsh, “Temperature dependence of the refractive index of water,” J. Chem. Phys. 57(4), 1798–1799 (1972).
[Crossref]

Domachuk, P.

Duval, D.

Eggleton, B.

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

Gallagher, J. S.

P. Schiebener, T. Straub, J. M. H. Leveltstengers, and J. S. Gallagher, “Refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19(3), 677–715 (1990).
[Crossref]

González-Guerrero, A. B.

Greivenkamp, J. E.

Grillet, C.

Jobst, G.

Kakabakos, S. E.

Lechuga, L. M.

Leveltstengers, J. M. H.

P. Schiebener, T. Straub, J. M. H. Leveltstengers, and J. S. Gallagher, “Refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19(3), 677–715 (1990).
[Crossref]

Liebetraut, P.

Lin, T. Y.

K. S. Chao, T. Y. Lin, and R. J. Yang, “Two optofluidic devices for the refractive index measurement of small volume of fluids,” Microfluid. Nanofluidics 12(5), 697–704 (2012).
[Crossref]

Llobera, A.

A. Llobera, R. Wilke, and S. Büttgenbach, “Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift,” Lab Chip 4(1), 24–27 (2004).
[Crossref] [PubMed]

Mägi, E.

Makarona, E.

Mansuripur, M.

Marin, F. J. S.

Mariscal, C. L.

Menchaca, C.

Minkovich, V. P.

Misiakos, K.

Mitra, S. K.

S. K. Mitra, N. Dass, and N. C. Varsh, “Temperature dependence of the refractive index of water,” J. Chem. Phys. 57(4), 1798–1799 (1972).
[Crossref]

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

Monzon-Hernandez, D.

Murty, M. V. R. K.

M. V. R. K. Murty and R. P. Shukla, “Simple method for measuring rhe refractive index of a liquid,” Opt. Eng. 18(2), 182177 (1979).
[Crossref]

Nemoto, S.

Nguyen, P. H.

Nukeaw, J.

K. Chaitavon, S. Sumriddetchkajorn, and J. Nukeaw, “Built-in-mask microfluidic chip for highly sensitive young interferometry-based refractometer structure,” Procd IEEE Sensors Conf.6, 2164-2167 (2012).
[Crossref]

Oikonomou, P.

Petrou, P. S.

Peyghambarian, N.

Pixton, B. M.

Polynkin, A.

Polynkin, P.

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Psarouli, A.

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Raptis, I.

Reith, P.

Rodd, L.

Rosete-Aguilar, M.

Salapatas, A.

Schiebener, P.

P. Schiebener, T. Straub, J. M. H. Leveltstengers, and J. S. Gallagher, “Refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19(3), 677–715 (1990).
[Crossref]

Sendra, J. R.

Sepúlveda, B.

Shukla, R. P.

M. V. R. K. Murty and R. P. Shukla, “Simple method for measuring rhe refractive index of a liquid,” Opt. Eng. 18(2), 182177 (1979).
[Crossref]

Solano, M. C.

Sopanen, M.

Straub, T.

P. Schiebener, T. Straub, J. M. H. Leveltstengers, and J. S. Gallagher, “Refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19(3), 677–715 (1990).
[Crossref]

Sumriddetchkajorn, S.

K. Chaitavon, S. Sumriddetchkajorn, and J. Nukeaw, “Built-in-mask microfluidic chip for highly sensitive young interferometry-based refractometer structure,” Procd IEEE Sensors Conf.6, 2164-2167 (2012).
[Crossref]

Ta’eed, V.

Tukkiniemi, K.

Varsh, N. C.

S. K. Mitra, N. Dass, and N. C. Varsh, “Temperature dependence of the refractive index of water,” J. Chem. Phys. 57(4), 1798–1799 (1972).
[Crossref]

Waibel, P.

Wilke, R.

A. Llobera, R. Wilke, and S. Büttgenbach, “Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift,” Lab Chip 4(1), 24–27 (2004).
[Crossref] [PubMed]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Yang, R. J.

K. S. Chao, T. Y. Lin, and R. J. Yang, “Two optofluidic devices for the refractive index measurement of small volume of fluids,” Microfluid. Nanofluidics 12(5), 697–704 (2012).
[Crossref]

Zappe, H.

Appl. Opt. (5)

J. Chem. Phys. (1)

S. K. Mitra, N. Dass, and N. C. Varsh, “Temperature dependence of the refractive index of water,” J. Chem. Phys. 57(4), 1798–1799 (1972).
[Crossref]

J. Phys. Chem. Ref. Data (1)

P. Schiebener, T. Straub, J. M. H. Leveltstengers, and J. S. Gallagher, “Refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19(3), 677–715 (1990).
[Crossref]

Lab Chip (1)

A. Llobera, R. Wilke, and S. Büttgenbach, “Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift,” Lab Chip 4(1), 24–27 (2004).
[Crossref] [PubMed]

Microfluid. Nanofluidics (1)

K. S. Chao, T. Y. Lin, and R. J. Yang, “Two optofluidic devices for the refractive index measurement of small volume of fluids,” Microfluid. Nanofluidics 12(5), 697–704 (2012).
[Crossref]

Nat. Photonics (1)

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

Nature (1)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Opt. Eng. (1)

M. V. R. K. Murty and R. P. Shukla, “Simple method for measuring rhe refractive index of a liquid,” Opt. Eng. 18(2), 182177 (1979).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Optik (Stuttg.) (1)

A. L. Bajor, “Refraction in plane-parallel plate - Reconsideration of method of measurement of refractive indices,” Optik (Stuttg.) 124(22), 5332–5339 (2013).
[Crossref]

Other (7)

F. A. Jenkins and H. E. White, Fundamentals of Optics, (McGraw Hill, 1957).

R. S. Longhurst, Geometrical and Physical Optics (Longman, 1973).

F. Yeshaiahu, L. P. Lee, D. Psaltis, and C. Yang, Optofluidics Fundamentals, Devices, and Applications (McGraw Hill, 2010).

K. Chaitavon, S. Sumriddetchkajorn, and J. Nukeaw, “Built-in-mask microfluidic chip for highly sensitive young interferometry-based refractometer structure,” Procd IEEE Sensors Conf.6, 2164-2167 (2012).
[Crossref]

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996) pp. 73–75.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996) pp. 81–83.

R. Bracewell, The Fourier Transform and its Applications (McGraw-Hill, 1965) pp. 104–107.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Refractometer diagram showing the basic elements. Liquids are injected through a syringe. Detector measures the first order intensity.

Fig. 2
Fig. 2

Configuration useed to record the sinusoidal infrared pattern.

Fig. 3
Fig. 3

a) Profile and plain view of a grating with a pitch of 117 µm given by an AFM. b) Photograph of a fabricated grating. c) Diffracted orders given by the grating.

Fig. 4
Fig. 4

Diagram shows a cycle of the diffraction grating. Two trajectories are shown. Refractive index n2 is larger than refractive index n1.

Fig. 5
Fig. 5

Sinusoidal relief diffraction grating parameters.

Fig. 6
Fig. 6

Calculated first Order Intensity as a function of Refractive Index. Parameter is the light wavelength.

Fig. 7
Fig. 7

Lines that represent the linear portion of the curves in Fig. 6. See text to find how they were calculated. Parameter is the light wavelength used to illuminate the grating.

Fig. 8
Fig. 8

Calculated First Order Intensity as a function of Refractive Index. Light wavelength is 632.8 nm. Parameter is the grating modulation m (in microns).

Fig. 9
Fig. 9

Lines that represent the linear portion of the curves in Fig. 8. Line equations were obtained by considering two points in the linear portion of the curves of Fig. 8. Parameter is the grating modulation.

Fig. 10
Fig. 10

Behavior of first Order Intensity as a function of Refractive Index. Experimental (red dots) and theoretical values are shown.

Fig. 11
Fig. 11

Behavior of first Order Intensity vs. Refractive Index when two wavelengths are considered. Experimental and theoretical values are shown.

Fig. 12
Fig. 12

Behavior of first order Intensity as a function of Refractive Index. Parameter in the plots was the grating modulation. Light with the same wavelength (λ = 632 nm) was used in both experiments.

Fig. 13
Fig. 13

Behavior of first order Intensity as a function of liquid Temperature.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

φ= 2π λ 0 ( n 1 ε+ n 2 ( mε ) )
ε= m 2 sin( 2πfx )
φ= 2π λ 0 ( n 2 m+ m 2 ( n 1 n 2 )sin( 2πfx ) )
U i ( x )=exp( i 2π λ 0 n 2 m )exp( i 2π λ 0 m 2 ( n 1 n 2 )sin( 2πfx ) )
U( P ){ exp( i 2π λ 0 n 2 m )exp( i 2π λ 0 m 2 ( n 1 n 2 )sin( 2πfx ) ) }
U( P )exp( i 2π λ 0 n 2 m ){ exp( i 2π λ 0 m 2 ( n 1 n 2 )sin( 2πfx ) ) }
exp( iCsin( 2πfx ) )= q= J q ( C )exp( i2πqfx )
U( P )exp( i 2π λ 0 n 2 m ){ q= J q ( 2π λ 0 m 2 ( n 1 n 2 ) )exp( i2πqfx ) }
U( P )exp( i 2π λ 0 n 2 m ) q= J q ( 2π λ 0 m 2 ( n 1 n 2 ) ){ exp( i2πqfx ) }
U( P )exp( i 2π λ 0 n 2 m ) q= J q ( 2π λ 0 m 2 ( n 1 n 2 ) )δ( x' λ 0 z fq )
U( P )exp( i 2π λ 0 n 2 m ) J 1 ( 2π λ 0 m 2 ( n 1 n 2 ) )δ( uf )
I 1 ( P ) [ J 1 ( 2π λ 0 m 2 ( n 1 n 2 ) ) ] 2

Metrics