Abstract

We report on a high power Nd:YAG spinning disk laser. The eight cm diameter disk generated 200 W CW output with 323 W of absorbed pump in a near diffraction-limited beam. The power conversion efficiency was 64%. The pulsed result, 5 ms pulses at 10 Hz PRF, was nearly identical to the CW result indicating good thermal management. Rotated at 1200-1800 RPM with He impingement cooling the disk temperature increased by only 17 °C reaching a maximum temperature of ~31 °C. The thermal dissipation per unit of output power was 0.61 watt of heat generated per watt of laser output, which is below the typical range of 0.8-1.1 for 808 nm diode pumped Nd:YAG lasers.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Diode-pumped Nd:YAG and Nd:glass spinning-disk lasers

Steven M. Massey, Jason B. McKay, Timothy H. Russell, Alan H. Paxton, Harold C. Miller, and Santanu Basu
J. Opt. Soc. Am. B 22(5) 1003-1009 (2005)

7kW direct-liquid-cooled side-pumped Nd:YAG multi-disk laser resonator

Ke Wang, Bo Tu, Chunyan Jia, Jianli Shang, Xiangchao An, Yuan Liao, Zhi Xu, Jingwei Guo, Jiayu Yi, Yi Yu, Hua Su, Qingsong Gao, Xiaojun Wang, Wanfa Liu, and Kai Zhang
Opt. Express 24(13) 15012-15020 (2016)

Nd:YAG ceramic laser obtained high slope-efficiency of 62% in high power applications

Yunfeng Qi, Xiaolei Zhu, Qihong Lou, Jianghua Ji, Jingxing Dong, and Yunrong Wei
Opt. Express 13(22) 8725-8729 (2005)

References

  • View by:
  • |
  • |
  • |

  1. T. Gottwald, V. Kuhn, S.-S. Schad, C. Stolzenburg, and A. Killi, “Recent developments in high power thin disk lasers at TRUMPF laser,” J. Opt. Soc. Am. A 14, 741–755 (1997).
  2. K. Farley, G. Oulundsen, and Kanishka, “Fiber lasers: selecting large mode-area fibers for high-power applications,” January 17, 2014; http://www.laserfocusworld.com/articles/print/volume-50/issue-01
  3. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+ -doped solid state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
    [Crossref]
  4. W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006).
  5. M. D. Rotter, C. Dane, S. Fochs, K. LaFortune, R. Merrill, and B. Yamamoto, “Solid-state heat capacity lasers: good candidates for the marketplace,” 2004, http://www.photonics.com/Article.aspx?AID=19681 .
    [Crossref]
  6. S. Basu, “A 142-W diffraction-limited Q-switched rotary disk Yb-YAG laser for material processing,” in 2007 Conference on Lasers and Electro-Optics (IEEE, 2007), pp. 1.
  7. S. M. Massey, J. B. McKay, T. H. Russell, A. H. Paxton, H. C. Miller, and S. Basu, “Diode pumped Nd:YAG and Nd:glass spinning-disk lasers,” J. Opt. Soc. Am. B 22(5), 1003–1009 (2005).
    [Crossref]
  8. S. Basu, “Nd-YAG and Yb-YAG rotary disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 626–630 (2005).
    [Crossref]
  9. S. Mirov, V. Fedorov, D. Martyskin, I. Moskalev, M. Mirov, and S. Vasilyev, “High average power Fe:ZnSe and Cr:ZnSe mid-IR solid state lasers,” in Advanced Solid State Laser Conference (OSA, 2015), paper AW4A.1.
    [Crossref]
  10. A. H. Paxton, S. W. Massey, J. B. McKay, and H. C. Miller, “Rotating disk solid-state lasers, thermal properties,” Proc. SPIE 5333, 12–17 (2004).
    [Crossref]

2007 (1)

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+ -doped solid state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

2005 (2)

2004 (1)

A. H. Paxton, S. W. Massey, J. B. McKay, and H. C. Miller, “Rotating disk solid-state lasers, thermal properties,” Proc. SPIE 5333, 12–17 (2004).
[Crossref]

1997 (1)

Aggarwal, R. L.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+ -doped solid state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Basu, S.

S. M. Massey, J. B. McKay, T. H. Russell, A. H. Paxton, H. C. Miller, and S. Basu, “Diode pumped Nd:YAG and Nd:glass spinning-disk lasers,” J. Opt. Soc. Am. B 22(5), 1003–1009 (2005).
[Crossref]

S. Basu, “Nd-YAG and Yb-YAG rotary disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 626–630 (2005).
[Crossref]

S. Basu, “A 142-W diffraction-limited Q-switched rotary disk Yb-YAG laser for material processing,” in 2007 Conference on Lasers and Electro-Optics (IEEE, 2007), pp. 1.

Chann, B.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+ -doped solid state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Fan, T. Y.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+ -doped solid state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Gottwald, T.

Killi, A.

Kuhn, V.

Massey, S. M.

Massey, S. W.

A. H. Paxton, S. W. Massey, J. B. McKay, and H. C. Miller, “Rotating disk solid-state lasers, thermal properties,” Proc. SPIE 5333, 12–17 (2004).
[Crossref]

McKay, J. B.

S. M. Massey, J. B. McKay, T. H. Russell, A. H. Paxton, H. C. Miller, and S. Basu, “Diode pumped Nd:YAG and Nd:glass spinning-disk lasers,” J. Opt. Soc. Am. B 22(5), 1003–1009 (2005).
[Crossref]

A. H. Paxton, S. W. Massey, J. B. McKay, and H. C. Miller, “Rotating disk solid-state lasers, thermal properties,” Proc. SPIE 5333, 12–17 (2004).
[Crossref]

Miller, H. C.

S. M. Massey, J. B. McKay, T. H. Russell, A. H. Paxton, H. C. Miller, and S. Basu, “Diode pumped Nd:YAG and Nd:glass spinning-disk lasers,” J. Opt. Soc. Am. B 22(5), 1003–1009 (2005).
[Crossref]

A. H. Paxton, S. W. Massey, J. B. McKay, and H. C. Miller, “Rotating disk solid-state lasers, thermal properties,” Proc. SPIE 5333, 12–17 (2004).
[Crossref]

Ochoa, J. R.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+ -doped solid state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Paxton, A. H.

S. M. Massey, J. B. McKay, T. H. Russell, A. H. Paxton, H. C. Miller, and S. Basu, “Diode pumped Nd:YAG and Nd:glass spinning-disk lasers,” J. Opt. Soc. Am. B 22(5), 1003–1009 (2005).
[Crossref]

A. H. Paxton, S. W. Massey, J. B. McKay, and H. C. Miller, “Rotating disk solid-state lasers, thermal properties,” Proc. SPIE 5333, 12–17 (2004).
[Crossref]

Ripin, D. J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+ -doped solid state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Russell, T. H.

Schad, S.-S.

Spitzberg, J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+ -doped solid state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Stolzenburg, C.

Tilleman, M.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+ -doped solid state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+ -doped solid state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

S. Basu, “Nd-YAG and Yb-YAG rotary disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 626–630 (2005).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Proc. SPIE (1)

A. H. Paxton, S. W. Massey, J. B. McKay, and H. C. Miller, “Rotating disk solid-state lasers, thermal properties,” Proc. SPIE 5333, 12–17 (2004).
[Crossref]

Other (5)

K. Farley, G. Oulundsen, and Kanishka, “Fiber lasers: selecting large mode-area fibers for high-power applications,” January 17, 2014; http://www.laserfocusworld.com/articles/print/volume-50/issue-01

S. Mirov, V. Fedorov, D. Martyskin, I. Moskalev, M. Mirov, and S. Vasilyev, “High average power Fe:ZnSe and Cr:ZnSe mid-IR solid state lasers,” in Advanced Solid State Laser Conference (OSA, 2015), paper AW4A.1.
[Crossref]

W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006).

M. D. Rotter, C. Dane, S. Fochs, K. LaFortune, R. Merrill, and B. Yamamoto, “Solid-state heat capacity lasers: good candidates for the marketplace,” 2004, http://www.photonics.com/Article.aspx?AID=19681 .
[Crossref]

S. Basu, “A 142-W diffraction-limited Q-switched rotary disk Yb-YAG laser for material processing,” in 2007 Conference on Lasers and Electro-Optics (IEEE, 2007), pp. 1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 a. Comparison of laser output power vs. absorbed power for a stationary vs. rotated disk. 1b. Comparison of disk surface temperature for stationary vs. rotated disk.
Fig. 2
Fig. 2 a. Nd:YAG laser power for CW and pulsed operation. 2b. Fraction of pump power absorbed vs. launched pump power. The inset shows the LDA emission spectrum at the highest pump power.
Fig. 3
Fig. 3 A plot of Z vs 1/e2 beam waist for a laser output power of 156 W. The inset figure shows the beam profile. The plot asymmetry is due to the minimum lens to CCD array distance that is achievable.
Fig. 4
Fig. 4 Steady state thermal image of the disk at different pump powers (L): 112 W absorbed, Plaser = 62.4 W; (R): 269 W absorbed, Plaser = 156 W. The disk was rotated at 1200 RPM. The He flow rate was 1.05 liter per minute.
Fig. 5
Fig. 5 a. χ value versus laser power. The theoretical lower limit is indicated by the dashed line. 5b. Disk surface temperature versus heat load in watts.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ω z =ω 0 ( M 2 + M 2 ( z z R ) 2 ) 1 2
χ QL = χ QD χ QD 1

Metrics