Abstract

The optimal temperature for the cryogenic monolithic Nd:YAG laser at 946-nm is theoretically and experimentally analyzed. It is clear that decreasing temperature can considerably eliminate the thermal population at the lower laser level to enhance the quantum efficiency. However, the narrowing of the absorption bandwidth for the gain medium leads to a reduction of the effective absorption efficiency as the temperature is decreased. Consequently, an optimal temperature for the maximum output power is found to be in the range of approximately 120 K to 140 K. It is experimentally verified that employing a pump source with a narrower emission spectrum linewidth contributes a more efficient output for the cryogenic laser.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
24-W cryogenically cooled Nd:YAG monolithic 946-nm laser with a slope efficiency >70%

C. Y. Cho, C. Y. Lee, C. C. Chang, P. H. Tuan, K. F. Huang, and Y. F. Chen
Opt. Express 23(8) 10126-10131 (2015)

Cryogenically cooled 946nm Nd:YAG laser

S. J. Yoon and J. I. Mackenzie
Opt. Express 22(7) 8069-8075 (2014)

Monolithic dual-polarization self-mode-locked Nd:YAG 946-nm lasers: controlling beat frequency and observation of temporal chaos

H. P. Cheng, T. L. Huang, C. Y. Lee, C. L. Sung, C. Y. Cho, and Y. F. Chen
Opt. Express 24(21) 23829-23837 (2016)

References

  • View by:
  • |
  • |
  • |

  1. G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, “Spectral and lasing investigations of garnets with Yb3+ions,” Sov. Phys. JETP 42(3), 440–446 (1976).
  2. D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
    [Crossref]
  3. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
    [Crossref]
  4. J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals,” Phys. Status Solidi 202(13), 2565–2573 (2005).
    [Crossref]
  5. J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, K. Ueda, and Y. Izawa, “Dramatically improved laser characteristics of diode-pumped Yb-doped materials at low temperature,” Laser Phys. 15(9), 1306–1312 (2005).
  6. D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41(10), 1274–1277 (2005).
    [Crossref]
  7. S. J. Yoon and J. I. Mackenzie, “Cryogenically cooled 946nm Nd:YAG laser,” Opt. Express 22(7), 8069–8075 (2014).
    [Crossref] [PubMed]
  8. S. J. Yoon and J. I. Mackenzie, “Implications of the temperature dependence of Nd:YAG spectroscopic values for low temperature laser operation at 946 nm,” Proc. SPIE 9135, 913503 (2014).
    [Crossref]
  9. C. Y. Cho, C. Y. Lee, C. C. Chang, P. H. Tuan, K. F. Huang, and Y. F. Chen, “24-W cryogenically cooled Nd:YAG monolithic 946-nm laser with a slope efficiency >70%,” Opt. Express 23(8), 10126–10131 (2015).
    [Crossref] [PubMed]
  10. D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron. 33(5), 861–873 (1997).
    [Crossref]
  11. A. A. Kaminskii, Laser Crystals: Their Physics and Properties, 2nd ed. (Springer-Verlag, 1990), Chap. 6.
  12. R. Wynne, J. L. Daneu, and T. Y. Fan, “Thermal coefficients of the expansion and refractive index in YAG,” Appl. Opt. 38(15), 3282–3284 (1999).
    [Crossref] [PubMed]
  13. A. A. Kaminskii, S. N. Bagaev, K. Ueda, A. Shirakawa, T. Tokurakawa, H. Yagi, T. Yanagitany, and J. Dong, “Stimulated-emission spectroscopy of fine-grained “garnet” ceramics Nd:3+:Y3Al5O12 in a wide temperature range between 77 and 650 K,” Laser Phys. Lett. 6(9), 682–687 (2009).
    [Crossref]
  14. N. Ter-Gabrielyan, M. Dubinskii, G. A. Newburgh, A. Michael, and L. D. Merkle, “Temperature dependence of a diode-pumped cryogenic Er:YAG laser,” Opt. Express 17(9), 7159–7169 (2009).
    [Crossref] [PubMed]
  15. K. Lee, Y. Kim, S. Lee, J. H. Kwon, J. S. Gwak, and J. Yi, “Reducing temperature dependence of the output energy of a quasi-continuous wave diode-pumped Nd:YAG laser,” Appl. Opt. 52(24), 5967–5973 (2013).
    [Crossref] [PubMed]
  16. T. Y. Fan and R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. 23(5), 605–612 (1987).
    [Crossref]
  17. W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006), Chap. 2.
  18. H. Weber, Laser Resonators and Beam Propagation, 2nd ed. (Springer, 2004).
  19. Y. F. Chen, S. C. Wang, T. M. Huang, C. F. Kao, and C. L. Wang, “Analytical model for output optimization of fiber-coupled laser-diodes end-pumped lasers,” Proc. SPIE 2989, 35–45 (1997).
    [Crossref]
  20. Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Generation of Hermite-Gaussian modes in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Quantum Electron. 33(6), 1025–1031 (1997).
    [Crossref]

2015 (1)

2014 (2)

S. J. Yoon and J. I. Mackenzie, “Cryogenically cooled 946nm Nd:YAG laser,” Opt. Express 22(7), 8069–8075 (2014).
[Crossref] [PubMed]

S. J. Yoon and J. I. Mackenzie, “Implications of the temperature dependence of Nd:YAG spectroscopic values for low temperature laser operation at 946 nm,” Proc. SPIE 9135, 913503 (2014).
[Crossref]

2013 (1)

2009 (2)

A. A. Kaminskii, S. N. Bagaev, K. Ueda, A. Shirakawa, T. Tokurakawa, H. Yagi, T. Yanagitany, and J. Dong, “Stimulated-emission spectroscopy of fine-grained “garnet” ceramics Nd:3+:Y3Al5O12 in a wide temperature range between 77 and 650 K,” Laser Phys. Lett. 6(9), 682–687 (2009).
[Crossref]

N. Ter-Gabrielyan, M. Dubinskii, G. A. Newburgh, A. Michael, and L. D. Merkle, “Temperature dependence of a diode-pumped cryogenic Er:YAG laser,” Opt. Express 17(9), 7159–7169 (2009).
[Crossref] [PubMed]

2007 (1)

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

2005 (4)

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals,” Phys. Status Solidi 202(13), 2565–2573 (2005).
[Crossref]

J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, K. Ueda, and Y. Izawa, “Dramatically improved laser characteristics of diode-pumped Yb-doped materials at low temperature,” Laser Phys. 15(9), 1306–1312 (2005).

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41(10), 1274–1277 (2005).
[Crossref]

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

1999 (1)

1997 (3)

D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron. 33(5), 861–873 (1997).
[Crossref]

Y. F. Chen, S. C. Wang, T. M. Huang, C. F. Kao, and C. L. Wang, “Analytical model for output optimization of fiber-coupled laser-diodes end-pumped lasers,” Proc. SPIE 2989, 35–45 (1997).
[Crossref]

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Generation of Hermite-Gaussian modes in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Quantum Electron. 33(6), 1025–1031 (1997).
[Crossref]

1987 (1)

T. Y. Fan and R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. 23(5), 605–612 (1987).
[Crossref]

1976 (1)

G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, “Spectral and lasing investigations of garnets with Yb3+ions,” Sov. Phys. JETP 42(3), 440–446 (1976).

Aggarwal, R. L.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41(10), 1274–1277 (2005).
[Crossref]

Bagaev, S. N.

A. A. Kaminskii, S. N. Bagaev, K. Ueda, A. Shirakawa, T. Tokurakawa, H. Yagi, T. Yanagitany, and J. Dong, “Stimulated-emission spectroscopy of fine-grained “garnet” ceramics Nd:3+:Y3Al5O12 in a wide temperature range between 77 and 650 K,” Laser Phys. Lett. 6(9), 682–687 (2009).
[Crossref]

Bass, M.

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals,” Phys. Status Solidi 202(13), 2565–2573 (2005).
[Crossref]

Bogomolova, G. A.

G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, “Spectral and lasing investigations of garnets with Yb3+ions,” Sov. Phys. JETP 42(3), 440–446 (1976).

Brown, D. C.

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron. 33(5), 861–873 (1997).
[Crossref]

Byer, R. L.

T. Y. Fan and R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. 23(5), 605–612 (1987).
[Crossref]

Chang, C. C.

Chann, B.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Chen, Y. F.

C. Y. Cho, C. Y. Lee, C. C. Chang, P. H. Tuan, K. F. Huang, and Y. F. Chen, “24-W cryogenically cooled Nd:YAG monolithic 946-nm laser with a slope efficiency >70%,” Opt. Express 23(8), 10126–10131 (2015).
[Crossref] [PubMed]

Y. F. Chen, S. C. Wang, T. M. Huang, C. F. Kao, and C. L. Wang, “Analytical model for output optimization of fiber-coupled laser-diodes end-pumped lasers,” Proc. SPIE 2989, 35–45 (1997).
[Crossref]

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Generation of Hermite-Gaussian modes in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Quantum Electron. 33(6), 1025–1031 (1997).
[Crossref]

Cho, C. Y.

Daneu, J. L.

Dong, J.

A. A. Kaminskii, S. N. Bagaev, K. Ueda, A. Shirakawa, T. Tokurakawa, H. Yagi, T. Yanagitany, and J. Dong, “Stimulated-emission spectroscopy of fine-grained “garnet” ceramics Nd:3+:Y3Al5O12 in a wide temperature range between 77 and 650 K,” Laser Phys. Lett. 6(9), 682–687 (2009).
[Crossref]

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals,” Phys. Status Solidi 202(13), 2565–2573 (2005).
[Crossref]

Dubinskii, M.

Fan, T. Y.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41(10), 1274–1277 (2005).
[Crossref]

R. Wynne, J. L. Daneu, and T. Y. Fan, “Thermal coefficients of the expansion and refractive index in YAG,” Appl. Opt. 38(15), 3282–3284 (1999).
[Crossref] [PubMed]

T. Y. Fan and R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. 23(5), 605–612 (1987).
[Crossref]

Fujita, M.

J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, K. Ueda, and Y. Izawa, “Dramatically improved laser characteristics of diode-pumped Yb-doped materials at low temperature,” Laser Phys. 15(9), 1306–1312 (2005).

Gwak, J. S.

Huang, K. F.

Huang, T. M.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Generation of Hermite-Gaussian modes in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Quantum Electron. 33(6), 1025–1031 (1997).
[Crossref]

Y. F. Chen, S. C. Wang, T. M. Huang, C. F. Kao, and C. L. Wang, “Analytical model for output optimization of fiber-coupled laser-diodes end-pumped lasers,” Proc. SPIE 2989, 35–45 (1997).
[Crossref]

Izawa, Y.

J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, K. Ueda, and Y. Izawa, “Dramatically improved laser characteristics of diode-pumped Yb-doped materials at low temperature,” Laser Phys. 15(9), 1306–1312 (2005).

Kaminskii, A. A.

A. A. Kaminskii, S. N. Bagaev, K. Ueda, A. Shirakawa, T. Tokurakawa, H. Yagi, T. Yanagitany, and J. Dong, “Stimulated-emission spectroscopy of fine-grained “garnet” ceramics Nd:3+:Y3Al5O12 in a wide temperature range between 77 and 650 K,” Laser Phys. Lett. 6(9), 682–687 (2009).
[Crossref]

G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, “Spectral and lasing investigations of garnets with Yb3+ions,” Sov. Phys. JETP 42(3), 440–446 (1976).

Kao, C. F.

Y. F. Chen, S. C. Wang, T. M. Huang, C. F. Kao, and C. L. Wang, “Analytical model for output optimization of fiber-coupled laser-diodes end-pumped lasers,” Proc. SPIE 2989, 35–45 (1997).
[Crossref]

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Generation of Hermite-Gaussian modes in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Quantum Electron. 33(6), 1025–1031 (1997).
[Crossref]

Kawanaka, J.

J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, K. Ueda, and Y. Izawa, “Dramatically improved laser characteristics of diode-pumped Yb-doped materials at low temperature,” Laser Phys. 15(9), 1306–1312 (2005).

Kim, Y.

Kwon, J. H.

Lee, C. Y.

Lee, K.

Lee, S.

Mackenzie, J. I.

S. J. Yoon and J. I. Mackenzie, “Cryogenically cooled 946nm Nd:YAG laser,” Opt. Express 22(7), 8069–8075 (2014).
[Crossref] [PubMed]

S. J. Yoon and J. I. Mackenzie, “Implications of the temperature dependence of Nd:YAG spectroscopic values for low temperature laser operation at 946 nm,” Proc. SPIE 9135, 913503 (2014).
[Crossref]

Merkle, L. D.

Michael, A.

Newburgh, G. A.

Nishioka, H.

J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, K. Ueda, and Y. Izawa, “Dramatically improved laser characteristics of diode-pumped Yb-doped materials at low temperature,” Laser Phys. 15(9), 1306–1312 (2005).

Ochoa, J. R.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41(10), 1274–1277 (2005).
[Crossref]

Rapaport, A.

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals,” Phys. Status Solidi 202(13), 2565–2573 (2005).
[Crossref]

Ripin, D. J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41(10), 1274–1277 (2005).
[Crossref]

Shirakawa, A.

A. A. Kaminskii, S. N. Bagaev, K. Ueda, A. Shirakawa, T. Tokurakawa, H. Yagi, T. Yanagitany, and J. Dong, “Stimulated-emission spectroscopy of fine-grained “garnet” ceramics Nd:3+:Y3Al5O12 in a wide temperature range between 77 and 650 K,” Laser Phys. Lett. 6(9), 682–687 (2009).
[Crossref]

Spitzberg, J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Szipocs, F.

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals,” Phys. Status Solidi 202(13), 2565–2573 (2005).
[Crossref]

Ter-Gabrielyan, N.

Tilleman, M.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Tokita, S.

J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, K. Ueda, and Y. Izawa, “Dramatically improved laser characteristics of diode-pumped Yb-doped materials at low temperature,” Laser Phys. 15(9), 1306–1312 (2005).

Tokurakawa, T.

A. A. Kaminskii, S. N. Bagaev, K. Ueda, A. Shirakawa, T. Tokurakawa, H. Yagi, T. Yanagitany, and J. Dong, “Stimulated-emission spectroscopy of fine-grained “garnet” ceramics Nd:3+:Y3Al5O12 in a wide temperature range between 77 and 650 K,” Laser Phys. Lett. 6(9), 682–687 (2009).
[Crossref]

Tuan, P. H.

Ueda, K.

A. A. Kaminskii, S. N. Bagaev, K. Ueda, A. Shirakawa, T. Tokurakawa, H. Yagi, T. Yanagitany, and J. Dong, “Stimulated-emission spectroscopy of fine-grained “garnet” ceramics Nd:3+:Y3Al5O12 in a wide temperature range between 77 and 650 K,” Laser Phys. Lett. 6(9), 682–687 (2009).
[Crossref]

J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, K. Ueda, and Y. Izawa, “Dramatically improved laser characteristics of diode-pumped Yb-doped materials at low temperature,” Laser Phys. 15(9), 1306–1312 (2005).

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals,” Phys. Status Solidi 202(13), 2565–2573 (2005).
[Crossref]

Vylegzhanin, D. N.

G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, “Spectral and lasing investigations of garnets with Yb3+ions,” Sov. Phys. JETP 42(3), 440–446 (1976).

Wang, C. L.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Generation of Hermite-Gaussian modes in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Quantum Electron. 33(6), 1025–1031 (1997).
[Crossref]

Y. F. Chen, S. C. Wang, T. M. Huang, C. F. Kao, and C. L. Wang, “Analytical model for output optimization of fiber-coupled laser-diodes end-pumped lasers,” Proc. SPIE 2989, 35–45 (1997).
[Crossref]

Wang, S. C.

Y. F. Chen, S. C. Wang, T. M. Huang, C. F. Kao, and C. L. Wang, “Analytical model for output optimization of fiber-coupled laser-diodes end-pumped lasers,” Proc. SPIE 2989, 35–45 (1997).
[Crossref]

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Generation of Hermite-Gaussian modes in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Quantum Electron. 33(6), 1025–1031 (1997).
[Crossref]

Wynne, R.

Yagi, H.

A. A. Kaminskii, S. N. Bagaev, K. Ueda, A. Shirakawa, T. Tokurakawa, H. Yagi, T. Yanagitany, and J. Dong, “Stimulated-emission spectroscopy of fine-grained “garnet” ceramics Nd:3+:Y3Al5O12 in a wide temperature range between 77 and 650 K,” Laser Phys. Lett. 6(9), 682–687 (2009).
[Crossref]

Yamakawa, K.

J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, K. Ueda, and Y. Izawa, “Dramatically improved laser characteristics of diode-pumped Yb-doped materials at low temperature,” Laser Phys. 15(9), 1306–1312 (2005).

Yanagitany, T.

A. A. Kaminskii, S. N. Bagaev, K. Ueda, A. Shirakawa, T. Tokurakawa, H. Yagi, T. Yanagitany, and J. Dong, “Stimulated-emission spectroscopy of fine-grained “garnet” ceramics Nd:3+:Y3Al5O12 in a wide temperature range between 77 and 650 K,” Laser Phys. Lett. 6(9), 682–687 (2009).
[Crossref]

Yi, J.

Yoon, S. J.

S. J. Yoon and J. I. Mackenzie, “Cryogenically cooled 946nm Nd:YAG laser,” Opt. Express 22(7), 8069–8075 (2014).
[Crossref] [PubMed]

S. J. Yoon and J. I. Mackenzie, “Implications of the temperature dependence of Nd:YAG spectroscopic values for low temperature laser operation at 946 nm,” Proc. SPIE 9135, 913503 (2014).
[Crossref]

Appl. Opt. (2)

IEEE J. Quantum Electron. (4)

T. Y. Fan and R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. 23(5), 605–612 (1987).
[Crossref]

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Generation of Hermite-Gaussian modes in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Quantum Electron. 33(6), 1025–1031 (1997).
[Crossref]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41(10), 1274–1277 (2005).
[Crossref]

D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron. 33(5), 861–873 (1997).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Laser Phys. (1)

J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, K. Ueda, and Y. Izawa, “Dramatically improved laser characteristics of diode-pumped Yb-doped materials at low temperature,” Laser Phys. 15(9), 1306–1312 (2005).

Laser Phys. Lett. (1)

A. A. Kaminskii, S. N. Bagaev, K. Ueda, A. Shirakawa, T. Tokurakawa, H. Yagi, T. Yanagitany, and J. Dong, “Stimulated-emission spectroscopy of fine-grained “garnet” ceramics Nd:3+:Y3Al5O12 in a wide temperature range between 77 and 650 K,” Laser Phys. Lett. 6(9), 682–687 (2009).
[Crossref]

Opt. Express (3)

Phys. Status Solidi (1)

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals,” Phys. Status Solidi 202(13), 2565–2573 (2005).
[Crossref]

Proc. SPIE (2)

S. J. Yoon and J. I. Mackenzie, “Implications of the temperature dependence of Nd:YAG spectroscopic values for low temperature laser operation at 946 nm,” Proc. SPIE 9135, 913503 (2014).
[Crossref]

Y. F. Chen, S. C. Wang, T. M. Huang, C. F. Kao, and C. L. Wang, “Analytical model for output optimization of fiber-coupled laser-diodes end-pumped lasers,” Proc. SPIE 2989, 35–45 (1997).
[Crossref]

Sov. Phys. JETP (1)

G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, “Spectral and lasing investigations of garnets with Yb3+ions,” Sov. Phys. JETP 42(3), 440–446 (1976).

Other (3)

A. A. Kaminskii, Laser Crystals: Their Physics and Properties, 2nd ed. (Springer-Verlag, 1990), Chap. 6.

W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006), Chap. 2.

H. Weber, Laser Resonators and Beam Propagation, 2nd ed. (Springer, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) The experimental setup for the cryogenic laser system and (b) the emission spectrum for the pump diode operated at below-threshold region.
Fig. 2
Fig. 2 The measured absorption ratio for the Nd:YAG crystal around 808.6 nm at temperature from 300 K to 80 K.
Fig. 3
Fig. 3 (a) Theoretical analysis of thermal population at lower laser level of the 946-nm transition for the Nd:YAG crystal and the calculated effective absorption efficiency with respected to (b) the pump linewidth and (c) the cooling temperature.
Fig. 4
Fig. 4 The emission spectra of pump diodes with pump linewidth of (a) 1 nm and (b) 2 nm (solid line) and the absorption spectra for the Nd:YAG crystal at 300 K and 80 K (dash line).
Fig. 5
Fig. 5 Temperature dependence of (a) incident threshold pump powers and (b) output powers for 946-nm monolithic lasers using pump diodes with emission linewidths of 1 nm and 2 nm.
Fig. 6
Fig. 6 Temperature dependence for (a) and (b) the experimental results of mode radius and the thermal lensing on the Nd:YAG crystal as well as (c) the theoretical analysis for the thermal conductivity of the Nd:YAG crystal.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

η abs (T,λ)=1[ I(T,λ) / I 0 (λ) ].
N a (T)= N 0 exp( E a /kT ) / i exp( E i /kT ) ,
S pump (λ,Δλ)= 2 π ( Δλ ) 2 exp[ 2 ( λ λ 0 ) 2 ( Δλ ) 2 ],
η eff (T,Δλ)= η abs (T,λ) S pump (λ,Δλ)dλ .
ω 0 = λ π z 2 2 z 1 2 ω 2 ( z 2 ) ω 2 ( z 1 ) .
f th = ( π ω 0 2 λ ) 2 n l med + l med n ,
K c (T)= a [ ln( bT ) ] c d T ,

Metrics