Abstract

A method is proposed to compute and synthesize the microrelief of a diffractive optical element to produce a new visual security feature – the vertical 3D/3D switch effect. The security feature consists in the alternation of two 3D color images when the diffractive element is tilted up/down. Optical security elements that produce the new security feature are synthesized using electron-beam technology. Sample optical security elements are manufactured that produce 3D to 3D visual switch effect when illuminated by white light. Photos and video records of the vertical 3D/3D switch effect of real optical elements are presented. The optical elements developed can be replicated using standard equipment employed for manufacturing security holograms. The new optical security feature is easy to control visually, safely protected against counterfeit, and designed to protect banknotes, documents, ID cards, etc.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Diffractive optical element with asymmetric microrelief for creating visual security features

Alexander Goncharsky, Anton Goncharsky, and Svyatoslav Durlevich
Opt. Express 23(22) 29184-29192 (2015)

Cylindrical computer-generated hologram for displaying 3D images

Anton Goncharsky and Svyatoslav Durlevich
Opt. Express 26(17) 22160-22167 (2018)

Fabrication of digital rainbow holograms and 3-D imaging using SEM based e-beam lithography

An. Firsov, A. Firsov, B. Loechel, A. Erko, A. Svintsov, and S. Zaitsev
Opt. Express 22(23) 28756-28770 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. L. Van Renesse, Optical Document Security (Artech House, 2005).
  2. G. Saxby, Practical Holography, 3rd ed. (CRC, 2003).
  3. F. S. Davis, “Holographic image conversion method for making a controlled holographic grating,” United States Patent 5,262,879 (1993).
  4. P. Rai-Choudhury, Handbook of Microlithography, Micromachining, and Microfabrication: Microlithography (SPIE Optical Engineering, 1997).
  5. T. Shiono, T. Hamamoto, and K. Takahara, “High-efficiency blazed diffractive optical elements for the violet wavelength fabricated by electron-beam lithography,” Appl. Opt. 41(13), 2390–2393 (2002).
    [Crossref] [PubMed]
  6. Z. Zhou and S. H. Lee, “Two-beam-current method for e-beam writing gray-scale masks and its application to high-resolution microstructures,” Appl. Opt. 47(17), 3177–3184 (2008).
    [Crossref] [PubMed]
  7. H. Zhang, H. Liu, Z. Lu, and H. Zhang, “Modified phase function model for kinoform lenses,” Appl. Opt. 47(22), 4055–4060 (2008).
    [Crossref] [PubMed]
  8. J. Bengtsson, “Kinoform-only Gaussian-to-rectangle beam shaper for a semiconductor laser,” Appl. Opt. 35(20), 3807–3814 (1996).
    [Crossref] [PubMed]
  9. A. Motogaito and K. Hiramatsu, “Fabrication of binary diffractive lenses and the application to LED lighting for controlling luminosity distribution,” Opt. Photonics J. 3(1), 67–73 (2013).
    [Crossref]
  10. A. V. Goncharsky and A. A. Goncharsky, Computer Optics and Computer Holography (Moscow University, 2004).
  11. A. V. Goncharsky and A. A. Goncharsky, “E-beam technology: current state and development prospects,” Holography News 18(11), 6–7 (2004).
  12. A. Goncharsky, A. Goncharsky, and S. Durlevich, “Diffractive optical element with asymmetric microrelief for creating visual security features,” Opt. Express 23(22), 29184–29192 (2015).
    [Crossref] [PubMed]
  13. L. I. Goray and G. Schmidt, “Solving conical diffraction grating problems with integral equations,” J. Opt. Soc. Am. A 27(3), 585–597 (2010).
    [Crossref] [PubMed]
  14. E. Popov, Gratings: Theory and Numeric Applications, Second Revisited Edition (Institut Fresnel, 2014).
  15. K. Matsushima, Y. Arima, and S. Nakahara, “Digitized holography: modern holography for 3D imaging of virtual and real objects,” Appl. Opt. 50(34), H278–H284 (2011).
    [Crossref] [PubMed]
  16. M. Paturzo, P. Memmolo, A. Finizio, R. Näsänen, T. J. Naughton, and P. Ferraro, “Synthesis and display of dynamic holographic 3D scenes with real-world objects,” Opt. Express 18(9), 8806–8815 (2010).
    [Crossref] [PubMed]
  17. R. L. Van Renesse, “Security aspects of commercially available dot matrix and image matrix origination systems,” in SPIE International Conference on Optical Holography and its Applications (SPIE, 2004), pp. 1–12.
  18. M. Škeren, M. Nyvlt, and J. Svoboda, “Design and visualization of synthetic holograms for security applications,” J. Phys.: Conf. Series 415(1), 012060 (2013).
  19. A. Firsov, A. Firsov, B. Loechel, A. Erko, A. Svintsov, and S. Zaitsev, “Fabrication of digital rainbow holograms and 3-D imaging using SEM based e-beam lithography,” Opt. Express 22(23), 28756–28770 (2014).
    [PubMed]
  20. M. Naruse, N. Tate, and M. Ohtsu, “Optical security based on near-field processes at the nanoscale,” J. Opt. 14(9), 094002 (2012).
  21. A. Bakushinsky and A. Goncharsky, Ill-Posed Problems: Theory and Applications (Springer Netherlands, 1994).

2015 (1)

2014 (1)

2013 (2)

M. Škeren, M. Nyvlt, and J. Svoboda, “Design and visualization of synthetic holograms for security applications,” J. Phys.: Conf. Series 415(1), 012060 (2013).

A. Motogaito and K. Hiramatsu, “Fabrication of binary diffractive lenses and the application to LED lighting for controlling luminosity distribution,” Opt. Photonics J. 3(1), 67–73 (2013).
[Crossref]

2012 (1)

M. Naruse, N. Tate, and M. Ohtsu, “Optical security based on near-field processes at the nanoscale,” J. Opt. 14(9), 094002 (2012).

2011 (1)

2010 (2)

2008 (2)

2004 (1)

A. V. Goncharsky and A. A. Goncharsky, “E-beam technology: current state and development prospects,” Holography News 18(11), 6–7 (2004).

2002 (1)

1996 (1)

Arima, Y.

Bengtsson, J.

Durlevich, S.

Erko, A.

Ferraro, P.

Finizio, A.

Firsov, A.

Goncharsky, A.

Goncharsky, A. A.

A. V. Goncharsky and A. A. Goncharsky, “E-beam technology: current state and development prospects,” Holography News 18(11), 6–7 (2004).

Goncharsky, A. V.

A. V. Goncharsky and A. A. Goncharsky, “E-beam technology: current state and development prospects,” Holography News 18(11), 6–7 (2004).

Goray, L. I.

Hamamoto, T.

Hiramatsu, K.

A. Motogaito and K. Hiramatsu, “Fabrication of binary diffractive lenses and the application to LED lighting for controlling luminosity distribution,” Opt. Photonics J. 3(1), 67–73 (2013).
[Crossref]

Lee, S. H.

Liu, H.

Loechel, B.

Lu, Z.

Matsushima, K.

Memmolo, P.

Motogaito, A.

A. Motogaito and K. Hiramatsu, “Fabrication of binary diffractive lenses and the application to LED lighting for controlling luminosity distribution,” Opt. Photonics J. 3(1), 67–73 (2013).
[Crossref]

Nakahara, S.

Naruse, M.

M. Naruse, N. Tate, and M. Ohtsu, “Optical security based on near-field processes at the nanoscale,” J. Opt. 14(9), 094002 (2012).

Näsänen, R.

Naughton, T. J.

Nyvlt, M.

M. Škeren, M. Nyvlt, and J. Svoboda, “Design and visualization of synthetic holograms for security applications,” J. Phys.: Conf. Series 415(1), 012060 (2013).

Ohtsu, M.

M. Naruse, N. Tate, and M. Ohtsu, “Optical security based on near-field processes at the nanoscale,” J. Opt. 14(9), 094002 (2012).

Paturzo, M.

Schmidt, G.

Shiono, T.

Škeren, M.

M. Škeren, M. Nyvlt, and J. Svoboda, “Design and visualization of synthetic holograms for security applications,” J. Phys.: Conf. Series 415(1), 012060 (2013).

Svintsov, A.

Svoboda, J.

M. Škeren, M. Nyvlt, and J. Svoboda, “Design and visualization of synthetic holograms for security applications,” J. Phys.: Conf. Series 415(1), 012060 (2013).

Takahara, K.

Tate, N.

M. Naruse, N. Tate, and M. Ohtsu, “Optical security based on near-field processes at the nanoscale,” J. Opt. 14(9), 094002 (2012).

Van Renesse, R. L.

R. L. Van Renesse, “Security aspects of commercially available dot matrix and image matrix origination systems,” in SPIE International Conference on Optical Holography and its Applications (SPIE, 2004), pp. 1–12.

Zaitsev, S.

Zhang, H.

Zhou, Z.

Appl. Opt. (5)

Holography News (1)

A. V. Goncharsky and A. A. Goncharsky, “E-beam technology: current state and development prospects,” Holography News 18(11), 6–7 (2004).

J. Opt. (1)

M. Naruse, N. Tate, and M. Ohtsu, “Optical security based on near-field processes at the nanoscale,” J. Opt. 14(9), 094002 (2012).

J. Opt. Soc. Am. A (1)

J. Phys.: Conf. Series (1)

M. Škeren, M. Nyvlt, and J. Svoboda, “Design and visualization of synthetic holograms for security applications,” J. Phys.: Conf. Series 415(1), 012060 (2013).

Opt. Express (3)

Opt. Photonics J. (1)

A. Motogaito and K. Hiramatsu, “Fabrication of binary diffractive lenses and the application to LED lighting for controlling luminosity distribution,” Opt. Photonics J. 3(1), 67–73 (2013).
[Crossref]

Other (8)

A. V. Goncharsky and A. A. Goncharsky, Computer Optics and Computer Holography (Moscow University, 2004).

R. L. Van Renesse, Optical Document Security (Artech House, 2005).

G. Saxby, Practical Holography, 3rd ed. (CRC, 2003).

F. S. Davis, “Holographic image conversion method for making a controlled holographic grating,” United States Patent 5,262,879 (1993).

P. Rai-Choudhury, Handbook of Microlithography, Micromachining, and Microfabrication: Microlithography (SPIE Optical Engineering, 1997).

E. Popov, Gratings: Theory and Numeric Applications, Second Revisited Edition (Institut Fresnel, 2014).

R. L. Van Renesse, “Security aspects of commercially available dot matrix and image matrix origination systems,” in SPIE International Conference on Optical Holography and its Applications (SPIE, 2004), pp. 1–12.

A. Bakushinsky and A. Goncharsky, Ill-Posed Problems: Theory and Applications (Springer Netherlands, 1994).

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (9206 KB)      Visual effect captured from the real sample

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Scheme of the formation of the vertical 3D/3D switch visual security feature.
Fig. 2
Fig. 2 Schematic arrangement of the optical security element, source, and observer.
Fig. 3
Fig. 3 Set of 2D frames for the formation of 3D images.
Fig. 4
Fig. 4 Scheme of the microrelief formation of a fragment of a flat optical element.
Fig. 5
Fig. 5 AFM image of a DOE microrelief fragment.
Fig. 6
Fig. 6 Photo of the optical element taken from a point K0 (a) and R0 (b) (see Visualization 1).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k Q,m = k Q,i +m D .

Metrics