Abstract

We demonstrate that phase shifts larger than 2π can be induced by all-optical tuning in silicon waveguides of a few micrometers in length. By generating high concentrations of free carriers in the silicon employing absorption of ultrashort, ultraviolet laser pulses, the refractive index of silicon can be drastically reduced. As a result, the resonance wavelength of optical resonators can be freely tuned over the full free spectral range. This allows for active integrated optic devices that can be switched with GHz frequencies into any desired state by all-optical means.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Reconfigurable silicon thermo-optical ring resonator switch based on Vernier effect control

William S. Fegadolli, German Vargas, Xuan Wang, Felipe Valini, Luis A. M. Barea, José E. B. Oliveira, Newton Frateschi, Axel Scherer, Vilson R. Almeida, and Roberto R. Panepucci
Opt. Express 20(13) 14722-14733 (2012)

Circular Grating Resonators as Small Mode-Volume Microcavities for Switching

Sophie Schönenberger, Nikolaj Moll, Thilo Stöferle, Rainer F. Mahrt, Bert J. Offrein, Stephan Götzinger, Vahid Sandoghdar, Jens Bolten, Thorsten Wahlbrink, Tobias Plötzing, Michael Waldow, and Michael Först
Opt. Express 17(8) 5953-5964 (2009)

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref] [PubMed]
  2. J. Takayesu, M. Hochberg, T. Baehr-Jones, E. Chan, G. Wang, P. Sullivan, Y. Liao, J. Davies, L. Dalton, A. Scherer, and W. Krug, “A hybrid electrooptic microring resonator-based 1x4x1 ROADM for wafer scale optical interconnects,” J. Lightwave Technol. 27(4), 440–448 (2009).
    [Crossref]
  3. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [Crossref] [PubMed]
  4. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
    [Crossref] [PubMed]
  5. I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermooptical tuning of SOI resonator switch,” IEEE Photon. Technol. Lett. 18(2), 364–366 (2006).
    [Crossref]
  6. P. Dong, W. Qian, H. Liang, R. Shafiiha, N. N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18(10), 9852–9858 (2010).
    [Crossref] [PubMed]
  7. A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Martí, and R. Spano, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
    [Crossref] [PubMed]
  8. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15(10), 5976–5990 (2007).
    [Crossref] [PubMed]
  9. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
    [Crossref]
  10. T. Kampfrath, D. M. Beggs, T. P. White, M. Burresi, D. van Oosten, T. F. Krauss, and L. Kuipers, “Ultrafast rerouting of light via slow modes in a nanophotonic directional coupler,” Appl. Phys. Lett. 94(24), 241119 (2009).
    [Crossref]
  11. A. Opheij, N. Rotenberg, D. M. Beggs, I. H. Rey, T. F. Krauss, and L. Kuipers, “Ultracompact (3 μm) silicon slow-light optical modulator,” Sci Rep 3, 3546 (2013).
    [Crossref] [PubMed]
  12. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
    [Crossref]
  13. A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18(4), 3582–3591 (2010).
    [Crossref] [PubMed]
  14. S. F. Preble, Q. Xu, B. S. Schmidt, and M. Lipson, “Ultrafast all-optical modulation on a silicon chip,” Opt. Lett. 30(21), 2891–2893 (2005).
    [Crossref] [PubMed]
  15. Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L. W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108(22), 223907 (2012).
    [Crossref] [PubMed]
  16. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
    [Crossref] [PubMed]
  17. T. Liang, L. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. Tsang, “Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides,” Opt. Express 13(19), 7298–7303 (2005).
    [Crossref] [PubMed]
  18. Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15(3), 924–929 (2007).
    [Crossref] [PubMed]
  19. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
    [Crossref]
  20. M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, and H. Taniyama, “On-chip all-optical switching and memory by silicon photonic crystal nanocavities,” Adv. Opt. Technol. 2008, 568936 (2008).
    [Crossref]
  21. B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photon. Technol. Lett. 20(10), 767–769 (2008).
    [Crossref]
  22. P. Dong, S. F. Preble, and M. Lipson, “All-optical compact silicon comb switch,” Opt. Express 15(15), 9600–9605 (2007).
    [Crossref] [PubMed]
  23. M. Waldow, T. Plötzing, M. Gottheil, M. Först, J. Bolten, T. Wahlbrink, and H. Kurz, “25ps all-optical switching in oxygen implanted silicon-on-insulator microring resonator,” Opt. Express 16(11), 7693–7702 (2008).
    [Crossref] [PubMed]
  24. M. Belotti, M. Galli, D. Gerace, L. C. Andreani, G. Guizzetti, A. R. Md Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “All-optical switching in silicon-on-insulator photonic wire nano-cavities,” Opt. Express 18(2), 1450–1461 (2010).
    [Crossref] [PubMed]
  25. S. Schönenberger, T. Stöferle, N. Moll, R. F. Mahrt, M. S. Dahlem, T. Wahlbrink, J. Bolten, T. Mollenhauer, H. Kurz, and B. J. Offrein, “Ultrafast all-optical modulator with femtojoule absorbed switching energy in silicon-on-insulator,” Opt. Express 18(21), 22485–22496 (2010).
    [Crossref] [PubMed]
  26. D. K. Tripathi, P. Singh, N. K. Shukla, and H. K. Dixit, “Reconfigurable optical add drop multiplexers A Review,” Electrical and Computer Engineering: An International Journal3, (2014), doi:.
    [Crossref]
  27. A. V. Tsarev, “Thin heterogeneous optical silicon-on-insulator waveguides and their application in reconégurable optical multiplexers,” Quantum Electron. 38(5), 445–451 (2008).
    [Crossref]
  28. P. Prabhathan, Z. Jing, V. M. Murukeshan, Z. Huijuan, and C. Shiyi, “Discrete and fine wavelength tunable thermo-optic WSS for low power consumption C+L band tenability,” IEE Photonics Tech. Lett. 24(2), 152–154 (2012).
    [Crossref]
  29. V. Passaro, F. Magno, and A. Tsarev, “Investigation of thermo-optic effect and multi-reflector tunable filter/multiplexer in SOI waveguides,” Opt. Express 13(9), 3429–3437 (2005).
    [Crossref] [PubMed]
  30. H. Huang, W. Li, and W. Ren, “Next-generation ROADM architecture and technologies,” Adv. Mat. Research 760, 50–53 (2013).
  31. R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9(1), 54–60 (2014).
    [Crossref]
  32. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20(11), 1968–1975 (2002).
    [Crossref]
  33. B. Troia, A. Z. Khokhar, M. Nedeljkovic, J. S. Penades, V. M. N. Passaro, and G. Z. Mashanovich, “Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared,” Opt. Express 22(20), 23990–24003 (2014).
    [Crossref] [PubMed]
  34. T. Claes, W. Bogaerts, and P. Bienstman, “Vernier-cascade label-free biosensor with integrated arrayed waveguide grating for wavelength interrogation with low-cost broadband source,” Opt. Lett. 36(17), 3320–3322 (2011).
    [Crossref] [PubMed]
  35. T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010).
    [Crossref] [PubMed]
  36. L. Jin, M. Li, and J. J. He, “Optical waveguide double-ring sensor using intensity interrogation with a low-cost broadband source,” Opt. Lett. 36(7), 1128–1130 (2011).
    [Crossref] [PubMed]
  37. R. Boeck, L. Chrostowski, and N. A. F. Jaeger, “Thermally tunable quadruple Vernier racetrack resonators,” Opt. Lett. 38(14), 2440–2442 (2013).
    [Crossref] [PubMed]
  38. W. S. Fegadolli, G. Vargas, X. Wang, F. Valini, L. A. M. Barea, J. E. B. Oliveira, N. Frateschi, A. Scherer, V. R. Almeida, and R. R. Panepucci, “Reconfigurable silicon thermo-optical ring resonator switch based on Vernier effect control,” Opt. Express 20(13), 14722–14733 (2012).
    [Crossref] [PubMed]
  39. G. Ren, T. Cao, and S. Chen, “Design and analysis of a cascaded microring resonator-based thermo-optical tunable filter with ultralarge free spectrum range and low power consumption,” Opt. Eng. 50(7), 074601 (2011).
    [Crossref]
  40. L. Zhou, X. Zhang, L. Lu, and J. Chen, “Tunable Vernier microring optical filters with p-i-p-type microheaters,” IEEE Phot. Journal 5, 6601211 (2013).
    [Crossref]
  41. S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Tunable narrow linewidth all-buried heterostructure ring resonator filters using Vernier effects,” IEEE Photon. Technol. Lett. 17(1), 106–108 (2005).
    [Crossref]
  42. K. G. Wilcox, A. H. Quarterman, V. Apostolopoulos, H. E. Beere, I. Farrer, D. A. Ritchie, and A. C. Tropper, “175 GHz, 400-fs-pulse harmonically mode-locked surface emitting semiconductor laser,” Opt. Express 20(7), 7040–7045 (2012).
    [Crossref] [PubMed]
  43. K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express 21(2), 1599–1605 (2013).
    [Crossref] [PubMed]
  44. R. Boeck, W. Shi, L. Chrostowski, and N. A. F. Jaeger, “FSR-eliminated Vernier racetrack resonators using grating-assisted couplers,” IEEE Photon. J. 5(5), 2202511 (2013).
    [Crossref]
  45. R. Boeck, J. Flueckiger, L. Chrostowski, and N. A. F. Jaeger, “Experimental performance of DWDM quadruple Vernier racetrack resonators,” Opt. Express 21(7), 9103–9112 (2013).
    [Crossref] [PubMed]

2014 (2)

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9(1), 54–60 (2014).
[Crossref]

B. Troia, A. Z. Khokhar, M. Nedeljkovic, J. S. Penades, V. M. N. Passaro, and G. Z. Mashanovich, “Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared,” Opt. Express 22(20), 23990–24003 (2014).
[Crossref] [PubMed]

2013 (7)

R. Boeck, L. Chrostowski, and N. A. F. Jaeger, “Thermally tunable quadruple Vernier racetrack resonators,” Opt. Lett. 38(14), 2440–2442 (2013).
[Crossref] [PubMed]

H. Huang, W. Li, and W. Ren, “Next-generation ROADM architecture and technologies,” Adv. Mat. Research 760, 50–53 (2013).

A. Opheij, N. Rotenberg, D. M. Beggs, I. H. Rey, T. F. Krauss, and L. Kuipers, “Ultracompact (3 μm) silicon slow-light optical modulator,” Sci Rep 3, 3546 (2013).
[Crossref] [PubMed]

L. Zhou, X. Zhang, L. Lu, and J. Chen, “Tunable Vernier microring optical filters with p-i-p-type microheaters,” IEEE Phot. Journal 5, 6601211 (2013).
[Crossref]

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express 21(2), 1599–1605 (2013).
[Crossref] [PubMed]

R. Boeck, W. Shi, L. Chrostowski, and N. A. F. Jaeger, “FSR-eliminated Vernier racetrack resonators using grating-assisted couplers,” IEEE Photon. J. 5(5), 2202511 (2013).
[Crossref]

R. Boeck, J. Flueckiger, L. Chrostowski, and N. A. F. Jaeger, “Experimental performance of DWDM quadruple Vernier racetrack resonators,” Opt. Express 21(7), 9103–9112 (2013).
[Crossref] [PubMed]

2012 (4)

K. G. Wilcox, A. H. Quarterman, V. Apostolopoulos, H. E. Beere, I. Farrer, D. A. Ritchie, and A. C. Tropper, “175 GHz, 400-fs-pulse harmonically mode-locked surface emitting semiconductor laser,” Opt. Express 20(7), 7040–7045 (2012).
[Crossref] [PubMed]

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L. W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108(22), 223907 (2012).
[Crossref] [PubMed]

W. S. Fegadolli, G. Vargas, X. Wang, F. Valini, L. A. M. Barea, J. E. B. Oliveira, N. Frateschi, A. Scherer, V. R. Almeida, and R. R. Panepucci, “Reconfigurable silicon thermo-optical ring resonator switch based on Vernier effect control,” Opt. Express 20(13), 14722–14733 (2012).
[Crossref] [PubMed]

P. Prabhathan, Z. Jing, V. M. Murukeshan, Z. Huijuan, and C. Shiyi, “Discrete and fine wavelength tunable thermo-optic WSS for low power consumption C+L band tenability,” IEE Photonics Tech. Lett. 24(2), 152–154 (2012).
[Crossref]

2011 (3)

2010 (8)

T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010).
[Crossref] [PubMed]

M. Belotti, M. Galli, D. Gerace, L. C. Andreani, G. Guizzetti, A. R. Md Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “All-optical switching in silicon-on-insulator photonic wire nano-cavities,” Opt. Express 18(2), 1450–1461 (2010).
[Crossref] [PubMed]

S. Schönenberger, T. Stöferle, N. Moll, R. F. Mahrt, M. S. Dahlem, T. Wahlbrink, J. Bolten, T. Mollenhauer, H. Kurz, and B. J. Offrein, “Ultrafast all-optical modulator with femtojoule absorbed switching energy in silicon-on-insulator,” Opt. Express 18(21), 22485–22496 (2010).
[Crossref] [PubMed]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18(4), 3582–3591 (2010).
[Crossref] [PubMed]

P. Dong, W. Qian, H. Liang, R. Shafiiha, N. N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18(10), 9852–9858 (2010).
[Crossref] [PubMed]

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Martí, and R. Spano, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[Crossref] [PubMed]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

2009 (2)

T. Kampfrath, D. M. Beggs, T. P. White, M. Burresi, D. van Oosten, T. F. Krauss, and L. Kuipers, “Ultrafast rerouting of light via slow modes in a nanophotonic directional coupler,” Appl. Phys. Lett. 94(24), 241119 (2009).
[Crossref]

J. Takayesu, M. Hochberg, T. Baehr-Jones, E. Chan, G. Wang, P. Sullivan, Y. Liao, J. Davies, L. Dalton, A. Scherer, and W. Krug, “A hybrid electrooptic microring resonator-based 1x4x1 ROADM for wafer scale optical interconnects,” J. Lightwave Technol. 27(4), 440–448 (2009).
[Crossref]

2008 (5)

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[Crossref] [PubMed]

A. V. Tsarev, “Thin heterogeneous optical silicon-on-insulator waveguides and their application in reconégurable optical multiplexers,” Quantum Electron. 38(5), 445–451 (2008).
[Crossref]

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, and H. Taniyama, “On-chip all-optical switching and memory by silicon photonic crystal nanocavities,” Adv. Opt. Technol. 2008, 568936 (2008).
[Crossref]

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photon. Technol. Lett. 20(10), 767–769 (2008).
[Crossref]

M. Waldow, T. Plötzing, M. Gottheil, M. Först, J. Bolten, T. Wahlbrink, and H. Kurz, “25ps all-optical switching in oxygen implanted silicon-on-insulator microring resonator,” Opt. Express 16(11), 7693–7702 (2008).
[Crossref] [PubMed]

2007 (3)

2006 (1)

I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermooptical tuning of SOI resonator switch,” IEEE Photon. Technol. Lett. 18(2), 364–366 (2006).
[Crossref]

2005 (6)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

S. F. Preble, Q. Xu, B. S. Schmidt, and M. Lipson, “Ultrafast all-optical modulation on a silicon chip,” Opt. Lett. 30(21), 2891–2893 (2005).
[Crossref] [PubMed]

T. Liang, L. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. Tsang, “Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides,” Opt. Express 13(19), 7298–7303 (2005).
[Crossref] [PubMed]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[Crossref]

V. Passaro, F. Magno, and A. Tsarev, “Investigation of thermo-optic effect and multi-reflector tunable filter/multiplexer in SOI waveguides,” Opt. Express 13(9), 3429–3437 (2005).
[Crossref] [PubMed]

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Tunable narrow linewidth all-buried heterostructure ring resonator filters using Vernier effects,” IEEE Photon. Technol. Lett. 17(1), 106–108 (2005).
[Crossref]

2004 (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

2003 (1)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

2002 (1)

Almeida, V. R.

Andreani, L. C.

Apostolopoulos, V.

Asghari, M.

Aydinli, A.

I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermooptical tuning of SOI resonator switch,” IEEE Photon. Technol. Lett. 18(2), 364–366 (2006).
[Crossref]

Baehr-Jones, T.

Baets, R.

Barea, L. A. M.

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Beere, H. E.

Beggs, D. M.

A. Opheij, N. Rotenberg, D. M. Beggs, I. H. Rey, T. F. Krauss, and L. Kuipers, “Ultracompact (3 μm) silicon slow-light optical modulator,” Sci Rep 3, 3546 (2013).
[Crossref] [PubMed]

T. Kampfrath, D. M. Beggs, T. P. White, M. Burresi, D. van Oosten, T. F. Krauss, and L. Kuipers, “Ultrafast rerouting of light via slow modes in a nanophotonic directional coupler,” Appl. Phys. Lett. 94(24), 241119 (2009).
[Crossref]

Belotti, M.

Bergman, K.

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[Crossref] [PubMed]

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photon. Technol. Lett. 20(10), 767–769 (2008).
[Crossref]

Biberman, A.

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photon. Technol. Lett. 20(10), 767–769 (2008).
[Crossref]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[Crossref] [PubMed]

Bienstman, P.

Blasco, J.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Martí, and R. Spano, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[Crossref] [PubMed]

Boeck, R.

Bogaerts, W.

Bolten, J.

Bruck, R.

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9(1), 54–60 (2014).
[Crossref]

Burresi, M.

T. Kampfrath, D. M. Beggs, T. P. White, M. Burresi, D. van Oosten, T. F. Krauss, and L. Kuipers, “Ultrafast rerouting of light via slow modes in a nanophotonic directional coupler,” Appl. Phys. Lett. 94(24), 241119 (2009).
[Crossref]

Cao, T.

G. Ren, T. Cao, and S. Chen, “Design and analysis of a cascaded microring resonator-based thermo-optical tunable filter with ultralarge free spectrum range and low power consumption,” Opt. Eng. 50(7), 074601 (2011).
[Crossref]

Chan, E.

Chen, J.

L. Zhou, X. Zhang, L. Lu, and J. Chen, “Tunable Vernier microring optical filters with p-i-p-type microheaters,” IEEE Phot. Journal 5, 6601211 (2013).
[Crossref]

Chen, L.

Chen, S.

G. Ren, T. Cao, and S. Chen, “Design and analysis of a cascaded microring resonator-based thermo-optical tunable filter with ultralarge free spectrum range and low power consumption,” Opt. Eng. 50(7), 074601 (2011).
[Crossref]

Choi, S. J.

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Tunable narrow linewidth all-buried heterostructure ring resonator filters using Vernier effects,” IEEE Photon. Technol. Lett. 17(1), 106–108 (2005).
[Crossref]

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Tunable narrow linewidth all-buried heterostructure ring resonator filters using Vernier effects,” IEEE Photon. Technol. Lett. 17(1), 106–108 (2005).
[Crossref]

Chrostowski, L.

Claes, T.

Dagli, N.

I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermooptical tuning of SOI resonator switch,” IEEE Photon. Technol. Lett. 18(2), 364–366 (2006).
[Crossref]

Dahlem, M. S.

Daldosso, N.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Martí, and R. Spano, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[Crossref] [PubMed]

Dalton, L.

Dalton, L. R.

Dapkus, P. D.

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Tunable narrow linewidth all-buried heterostructure ring resonator filters using Vernier effects,” IEEE Photon. Technol. Lett. 17(1), 106–108 (2005).
[Crossref]

Davies, J.

De La Rue, R. M.

Dixit, H. K.

D. K. Tripathi, P. Singh, N. K. Shukla, and H. K. Dixit, “Reconfigurable optical add drop multiplexers A Review,” Electrical and Computer Engineering: An International Journal3, (2014), doi:.
[Crossref]

Dong, P.

Dumon, P.

Farrer, I.

Fedeli, J. M.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Martí, and R. Spano, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[Crossref] [PubMed]

Fegadolli, W. S.

Feng, D.

Feng, N. N.

Flueckiger, J.

Först, M.

Foster, M. A.

Frateschi, N.

Freude, W.

Fridman, M.

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L. W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108(22), 223907 (2012).
[Crossref] [PubMed]

Gaeta, A. L.

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L. W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108(22), 223907 (2012).
[Crossref] [PubMed]

A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18(4), 3582–3591 (2010).
[Crossref] [PubMed]

Galán, J. V.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Martí, and R. Spano, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[Crossref] [PubMed]

Galli, M.

García-Rupérez, J.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Martí, and R. Spano, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[Crossref] [PubMed]

Gardes, F. Y.

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9(1), 54–60 (2014).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Garrido, B.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Martí, and R. Spano, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[Crossref] [PubMed]

Gautier, P.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Martí, and R. Spano, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[Crossref] [PubMed]

Gerace, D.

Gottheil, M.

Guider, R.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Martí, and R. Spano, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[Crossref] [PubMed]

Guizzetti, G.

He, J. J.

Heinen, B.

Hernández, S.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Martí, and R. Spano, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[Crossref] [PubMed]

Hochberg, M.

Hu, Y.

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9(1), 54–60 (2014).
[Crossref]

Huang, H.

H. Huang, W. Li, and W. Ren, “Next-generation ROADM architecture and technologies,” Adv. Mat. Research 760, 50–53 (2013).

Huijuan, Z.

P. Prabhathan, Z. Jing, V. M. Murukeshan, Z. Huijuan, and C. Shiyi, “Discrete and fine wavelength tunable thermo-optic WSS for low power consumption C+L band tenability,” IEE Photonics Tech. Lett. 24(2), 152–154 (2012).
[Crossref]

Jacome, L.

Jaeger, N. A. F.

Jin, L.

Jing, Z.

P. Prabhathan, Z. Jing, V. M. Murukeshan, Z. Huijuan, and C. Shiyi, “Discrete and fine wavelength tunable thermo-optic WSS for low power consumption C+L band tenability,” IEE Photonics Tech. Lett. 24(2), 152–154 (2012).
[Crossref]

Johnson, N. P.

Jordana, E.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Martí, and R. Spano, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[Crossref] [PubMed]

Kampfrath, T.

T. Kampfrath, D. M. Beggs, T. P. White, M. Burresi, D. van Oosten, T. F. Krauss, and L. Kuipers, “Ultrafast rerouting of light via slow modes in a nanophotonic directional coupler,” Appl. Phys. Lett. 94(24), 241119 (2009).
[Crossref]

Kawanishi, T.

Khokhar, A. Z.

Kiyat, I.

I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermooptical tuning of SOI resonator switch,” IEEE Photon. Technol. Lett. 18(2), 364–366 (2006).
[Crossref]

Koos, C.

Krauss, T. F.

A. Opheij, N. Rotenberg, D. M. Beggs, I. H. Rey, T. F. Krauss, and L. Kuipers, “Ultracompact (3 μm) silicon slow-light optical modulator,” Sci Rep 3, 3546 (2013).
[Crossref] [PubMed]

T. Kampfrath, D. M. Beggs, T. P. White, M. Burresi, D. van Oosten, T. F. Krauss, and L. Kuipers, “Ultrafast rerouting of light via slow modes in a nanophotonic directional coupler,” Appl. Phys. Lett. 94(24), 241119 (2009).
[Crossref]

Krishnamoorthy, A. V.

Krug, W.

Kuipers, L.

A. Opheij, N. Rotenberg, D. M. Beggs, I. H. Rey, T. F. Krauss, and L. Kuipers, “Ultracompact (3 μm) silicon slow-light optical modulator,” Sci Rep 3, 3546 (2013).
[Crossref] [PubMed]

T. Kampfrath, D. M. Beggs, T. P. White, M. Burresi, D. van Oosten, T. F. Krauss, and L. Kuipers, “Ultrafast rerouting of light via slow modes in a nanophotonic directional coupler,” Appl. Phys. Lett. 94(24), 241119 (2009).
[Crossref]

Kunert, B.

Kuramochi, E.

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, and H. Taniyama, “On-chip all-optical switching and memory by silicon photonic crystal nanocavities,” Adv. Opt. Technol. 2008, 568936 (2008).
[Crossref]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[Crossref]

Kurz, H.

Kuzucu, O.

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L. W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108(22), 223907 (2012).
[Crossref] [PubMed]

Lebour, Y.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Martí, and R. Spano, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[Crossref] [PubMed]

Lee, B. G.

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[Crossref] [PubMed]

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photon. Technol. Lett. 20(10), 767–769 (2008).
[Crossref]

Leuthold, J.

Levy, J. S.

Li, M.

Li, W.

H. Huang, W. Li, and W. Ren, “Next-generation ROADM architecture and technologies,” Adv. Mat. Research 760, 50–53 (2013).

Liang, H.

Liang, T.

Liao, Y.

Lipson, M.

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L. W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108(22), 223907 (2012).
[Crossref] [PubMed]

A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18(4), 3582–3591 (2010).
[Crossref] [PubMed]

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photon. Technol. Lett. 20(10), 767–769 (2008).
[Crossref]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[Crossref] [PubMed]

P. Dong, S. F. Preble, and M. Lipson, “All-optical compact silicon comb switch,” Opt. Express 15(15), 9600–9605 (2007).
[Crossref] [PubMed]

Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15(3), 924–929 (2007).
[Crossref] [PubMed]

S. F. Preble, Q. Xu, B. S. Schmidt, and M. Lipson, “Ultrafast all-optical modulation on a silicon chip,” Opt. Lett. 30(21), 2891–2893 (2005).
[Crossref] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Lu, L.

L. Zhou, X. Zhang, L. Lu, and J. Chen, “Tunable Vernier microring optical filters with p-i-p-type microheaters,” IEEE Phot. Journal 5, 6601211 (2013).
[Crossref]

Luo, L. W.

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L. W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108(22), 223907 (2012).
[Crossref] [PubMed]

Magno, F.

Mahrt, R. F.

Martí, J.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Martí, and R. Spano, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[Crossref] [PubMed]

Martínez, A.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Martí, and R. Spano, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[Crossref] [PubMed]

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Mashanovich, G. Z.

B. Troia, A. Z. Khokhar, M. Nedeljkovic, J. S. Penades, V. M. N. Passaro, and G. Z. Mashanovich, “Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared,” Opt. Express 22(20), 23990–24003 (2014).
[Crossref] [PubMed]

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9(1), 54–60 (2014).
[Crossref]

Matsuo, S.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

Md Zain, A. R.

Mills, B.

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9(1), 54–60 (2014).
[Crossref]

Mitsugi, S.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[Crossref]

Moll, N.

Mollenhauer, T.

Murukeshan, V. M.

P. Prabhathan, Z. Jing, V. M. Murukeshan, Z. Huijuan, and C. Shiyi, “Discrete and fine wavelength tunable thermo-optic WSS for low power consumption C+L band tenability,” IEE Photonics Tech. Lett. 24(2), 152–154 (2012).
[Crossref]

Muskens, O. L.

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9(1), 54–60 (2014).
[Crossref]

Nedeljkovic, M.

Notomi, M.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, and H. Taniyama, “On-chip all-optical switching and memory by silicon photonic crystal nanocavities,” Adv. Opt. Technol. 2008, 568936 (2008).
[Crossref]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[Crossref]

Nozaki, K.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

Nunes, L.

Offrein, B. J.

Oliveira, J. E. B.

Opheij, A.

A. Opheij, N. Rotenberg, D. M. Beggs, I. H. Rey, T. F. Krauss, and L. Kuipers, “Ultracompact (3 μm) silicon slow-light optical modulator,” Sci Rep 3, 3546 (2013).
[Crossref] [PubMed]

Panepucci, R. R.

Passaro, V.

Passaro, V. M. N.

B. Troia, A. Z. Khokhar, M. Nedeljkovic, J. S. Penades, V. M. N. Passaro, and G. Z. Mashanovich, “Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared,” Opt. Express 22(20), 23990–24003 (2014).
[Crossref] [PubMed]

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9(1), 54–60 (2014).
[Crossref]

Pavesi, L.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Martí, and R. Spano, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[Crossref] [PubMed]

Penades, J. S.

Peng, Z.

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Tunable narrow linewidth all-buried heterostructure ring resonator filters using Vernier effects,” IEEE Photon. Technol. Lett. 17(1), 106–108 (2005).
[Crossref]

Plötzing, T.

Poitras, C. B.

Poulton, C.

Prabhathan, P.

P. Prabhathan, Z. Jing, V. M. Murukeshan, Z. Huijuan, and C. Shiyi, “Discrete and fine wavelength tunable thermo-optic WSS for low power consumption C+L band tenability,” IEE Photonics Tech. Lett. 24(2), 152–154 (2012).
[Crossref]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Preble, S. F.

Priem, G.

Qian, W.

Quarterman, A. H.

Rabiei, P.

Reed, G. T.

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9(1), 54–60 (2014).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Ren, G.

G. Ren, T. Cao, and S. Chen, “Design and analysis of a cascaded microring resonator-based thermo-optical tunable filter with ultralarge free spectrum range and low power consumption,” Opt. Eng. 50(7), 074601 (2011).
[Crossref]

Ren, W.

H. Huang, W. Li, and W. Ren, “Next-generation ROADM architecture and technologies,” Adv. Mat. Research 760, 50–53 (2013).

Rey, I. H.

A. Opheij, N. Rotenberg, D. M. Beggs, I. H. Rey, T. F. Krauss, and L. Kuipers, “Ultracompact (3 μm) silicon slow-light optical modulator,” Sci Rep 3, 3546 (2013).
[Crossref] [PubMed]

Ritchie, D. A.

Rotenberg, N.

A. Opheij, N. Rotenberg, D. M. Beggs, I. H. Rey, T. F. Krauss, and L. Kuipers, “Ultracompact (3 μm) silicon slow-light optical modulator,” Sci Rep 3, 3546 (2013).
[Crossref] [PubMed]

Sakamoto, T.

Salem, R.

Sanchis, P.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Martí, and R. Spano, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[Crossref] [PubMed]

Sasagawa, K.

Sato, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

Scherer, A.

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Schmidt, B. S.

Schönenberger, S.

Shafiiha, R.

Sherwood-Droz, N.

Shi, W.

R. Boeck, W. Shi, L. Chrostowski, and N. A. F. Jaeger, “FSR-eliminated Vernier racetrack resonators using grating-assisted couplers,” IEEE Photon. J. 5(5), 2202511 (2013).
[Crossref]

Shinya, A.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, and H. Taniyama, “On-chip all-optical switching and memory by silicon photonic crystal nanocavities,” Adv. Opt. Technol. 2008, 568936 (2008).
[Crossref]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[Crossref]

Shiyi, C.

P. Prabhathan, Z. Jing, V. M. Murukeshan, Z. Huijuan, and C. Shiyi, “Discrete and fine wavelength tunable thermo-optic WSS for low power consumption C+L band tenability,” IEE Photonics Tech. Lett. 24(2), 152–154 (2012).
[Crossref]

Shukla, N. K.

D. K. Tripathi, P. Singh, N. K. Shukla, and H. K. Dixit, “Reconfigurable optical add drop multiplexers A Review,” Electrical and Computer Engineering: An International Journal3, (2014), doi:.
[Crossref]

Singh, P.

D. K. Tripathi, P. Singh, N. K. Shukla, and H. K. Dixit, “Reconfigurable optical add drop multiplexers A Review,” Electrical and Computer Engineering: An International Journal3, (2014), doi:.
[Crossref]

Sorel, M.

Spano, R.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Martí, and R. Spano, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[Crossref] [PubMed]

Steier, W. H.

Stöferle, T.

Stolz, W.

Sullivan, P.

Takayesu, J.

Tanabe, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, and H. Taniyama, “On-chip all-optical switching and memory by silicon photonic crystal nanocavities,” Adv. Opt. Technol. 2008, 568936 (2008).
[Crossref]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[Crossref]

Taniyama, H.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, and H. Taniyama, “On-chip all-optical switching and memory by silicon photonic crystal nanocavities,” Adv. Opt. Technol. 2008, 568936 (2008).
[Crossref]

Thomson, D. J.

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9(1), 54–60 (2014).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Tripathi, D. K.

D. K. Tripathi, P. Singh, N. K. Shukla, and H. K. Dixit, “Reconfigurable optical add drop multiplexers A Review,” Electrical and Computer Engineering: An International Journal3, (2014), doi:.
[Crossref]

Troia, B.

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9(1), 54–60 (2014).
[Crossref]

B. Troia, A. Z. Khokhar, M. Nedeljkovic, J. S. Penades, V. M. N. Passaro, and G. Z. Mashanovich, “Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared,” Opt. Express 22(20), 23990–24003 (2014).
[Crossref] [PubMed]

Tropper, A. C.

Tsang, H.

Tsarev, A.

Tsarev, A. V.

A. V. Tsarev, “Thin heterogeneous optical silicon-on-insulator waveguides and their application in reconégurable optical multiplexers,” Quantum Electron. 38(5), 445–451 (2008).
[Crossref]

Tsuchiya, M.

Turner-Foster, A. C.

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Valini, F.

van Oosten, D.

T. Kampfrath, D. M. Beggs, T. P. White, M. Burresi, D. van Oosten, T. F. Krauss, and L. Kuipers, “Ultrafast rerouting of light via slow modes in a nanophotonic directional coupler,” Appl. Phys. Lett. 94(24), 241119 (2009).
[Crossref]

Van Thourhout, D.

Vargas, G.

Wahlbrink, T.

Waldow, M.

Wang, G.

Wang, H.

Wang, X.

Wen, Y. H.

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L. W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108(22), 223907 (2012).
[Crossref] [PubMed]

White, T. P.

T. Kampfrath, D. M. Beggs, T. P. White, M. Burresi, D. van Oosten, T. F. Krauss, and L. Kuipers, “Ultrafast rerouting of light via slow modes in a nanophotonic directional coupler,” Appl. Phys. Lett. 94(24), 241119 (2009).
[Crossref]

Wilcox, K. G.

Xu, Q.

Yang, Q.

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Tunable narrow linewidth all-buried heterostructure ring resonator filters using Vernier effects,” IEEE Photon. Technol. Lett. 17(1), 106–108 (2005).
[Crossref]

Zhang, C.

Zhang, X.

L. Zhou, X. Zhang, L. Lu, and J. Chen, “Tunable Vernier microring optical filters with p-i-p-type microheaters,” IEEE Phot. Journal 5, 6601211 (2013).
[Crossref]

Zheng, X.

Zhou, L.

L. Zhou, X. Zhang, L. Lu, and J. Chen, “Tunable Vernier microring optical filters with p-i-p-type microheaters,” IEEE Phot. Journal 5, 6601211 (2013).
[Crossref]

Adv. Mat. Research (1)

H. Huang, W. Li, and W. Ren, “Next-generation ROADM architecture and technologies,” Adv. Mat. Research 760, 50–53 (2013).

Adv. Opt. Technol. (1)

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, and H. Taniyama, “On-chip all-optical switching and memory by silicon photonic crystal nanocavities,” Adv. Opt. Technol. 2008, 568936 (2008).
[Crossref]

Appl. Phys. Lett. (2)

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[Crossref]

T. Kampfrath, D. M. Beggs, T. P. White, M. Burresi, D. van Oosten, T. F. Krauss, and L. Kuipers, “Ultrafast rerouting of light via slow modes in a nanophotonic directional coupler,” Appl. Phys. Lett. 94(24), 241119 (2009).
[Crossref]

IEE Photonics Tech. Lett. (1)

P. Prabhathan, Z. Jing, V. M. Murukeshan, Z. Huijuan, and C. Shiyi, “Discrete and fine wavelength tunable thermo-optic WSS for low power consumption C+L band tenability,” IEE Photonics Tech. Lett. 24(2), 152–154 (2012).
[Crossref]

IEEE Phot. Journal (1)

L. Zhou, X. Zhang, L. Lu, and J. Chen, “Tunable Vernier microring optical filters with p-i-p-type microheaters,” IEEE Phot. Journal 5, 6601211 (2013).
[Crossref]

IEEE Photon. J. (1)

R. Boeck, W. Shi, L. Chrostowski, and N. A. F. Jaeger, “FSR-eliminated Vernier racetrack resonators using grating-assisted couplers,” IEEE Photon. J. 5(5), 2202511 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (3)

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Tunable narrow linewidth all-buried heterostructure ring resonator filters using Vernier effects,” IEEE Photon. Technol. Lett. 17(1), 106–108 (2005).
[Crossref]

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photon. Technol. Lett. 20(10), 767–769 (2008).
[Crossref]

I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermooptical tuning of SOI resonator switch,” IEEE Photon. Technol. Lett. 18(2), 364–366 (2006).
[Crossref]

J. Lightwave Technol. (2)

Nano Lett. (1)

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Martí, and R. Spano, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[Crossref] [PubMed]

Nat. Photonics (3)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9(1), 54–60 (2014).
[Crossref]

Nature (3)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Opt. Eng. (1)

G. Ren, T. Cao, and S. Chen, “Design and analysis of a cascaded microring resonator-based thermo-optical tunable filter with ultralarge free spectrum range and low power consumption,” Opt. Eng. 50(7), 074601 (2011).
[Crossref]

Opt. Express (17)

W. S. Fegadolli, G. Vargas, X. Wang, F. Valini, L. A. M. Barea, J. E. B. Oliveira, N. Frateschi, A. Scherer, V. R. Almeida, and R. R. Panepucci, “Reconfigurable silicon thermo-optical ring resonator switch based on Vernier effect control,” Opt. Express 20(13), 14722–14733 (2012).
[Crossref] [PubMed]

T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010).
[Crossref] [PubMed]

B. Troia, A. Z. Khokhar, M. Nedeljkovic, J. S. Penades, V. M. N. Passaro, and G. Z. Mashanovich, “Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared,” Opt. Express 22(20), 23990–24003 (2014).
[Crossref] [PubMed]

P. Dong, S. F. Preble, and M. Lipson, “All-optical compact silicon comb switch,” Opt. Express 15(15), 9600–9605 (2007).
[Crossref] [PubMed]

M. Waldow, T. Plötzing, M. Gottheil, M. Först, J. Bolten, T. Wahlbrink, and H. Kurz, “25ps all-optical switching in oxygen implanted silicon-on-insulator microring resonator,” Opt. Express 16(11), 7693–7702 (2008).
[Crossref] [PubMed]

M. Belotti, M. Galli, D. Gerace, L. C. Andreani, G. Guizzetti, A. R. Md Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “All-optical switching in silicon-on-insulator photonic wire nano-cavities,” Opt. Express 18(2), 1450–1461 (2010).
[Crossref] [PubMed]

S. Schönenberger, T. Stöferle, N. Moll, R. F. Mahrt, M. S. Dahlem, T. Wahlbrink, J. Bolten, T. Mollenhauer, H. Kurz, and B. J. Offrein, “Ultrafast all-optical modulator with femtojoule absorbed switching energy in silicon-on-insulator,” Opt. Express 18(21), 22485–22496 (2010).
[Crossref] [PubMed]

V. Passaro, F. Magno, and A. Tsarev, “Investigation of thermo-optic effect and multi-reflector tunable filter/multiplexer in SOI waveguides,” Opt. Express 13(9), 3429–3437 (2005).
[Crossref] [PubMed]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[Crossref] [PubMed]

P. Dong, W. Qian, H. Liang, R. Shafiiha, N. N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18(10), 9852–9858 (2010).
[Crossref] [PubMed]

C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15(10), 5976–5990 (2007).
[Crossref] [PubMed]

T. Liang, L. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. Tsang, “Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides,” Opt. Express 13(19), 7298–7303 (2005).
[Crossref] [PubMed]

Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15(3), 924–929 (2007).
[Crossref] [PubMed]

A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18(4), 3582–3591 (2010).
[Crossref] [PubMed]

K. G. Wilcox, A. H. Quarterman, V. Apostolopoulos, H. E. Beere, I. Farrer, D. A. Ritchie, and A. C. Tropper, “175 GHz, 400-fs-pulse harmonically mode-locked surface emitting semiconductor laser,” Opt. Express 20(7), 7040–7045 (2012).
[Crossref] [PubMed]

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express 21(2), 1599–1605 (2013).
[Crossref] [PubMed]

R. Boeck, J. Flueckiger, L. Chrostowski, and N. A. F. Jaeger, “Experimental performance of DWDM quadruple Vernier racetrack resonators,” Opt. Express 21(7), 9103–9112 (2013).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Rev. Lett. (1)

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L. W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108(22), 223907 (2012).
[Crossref] [PubMed]

Quantum Electron. (1)

A. V. Tsarev, “Thin heterogeneous optical silicon-on-insulator waveguides and their application in reconégurable optical multiplexers,” Quantum Electron. 38(5), 445–451 (2008).
[Crossref]

Sci Rep (1)

A. Opheij, N. Rotenberg, D. M. Beggs, I. H. Rey, T. F. Krauss, and L. Kuipers, “Ultracompact (3 μm) silicon slow-light optical modulator,” Sci Rep 3, 3546 (2013).
[Crossref] [PubMed]

Other (1)

D. K. Tripathi, P. Singh, N. K. Shukla, and H. K. Dixit, “Reconfigurable optical add drop multiplexers A Review,” Electrical and Computer Engineering: An International Journal3, (2014), doi:.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical setup for tuning of optical resonators employing UPMS. Infrared probe pulses are coupled by grating couplers into the input waveguide, travel through the device and are detected after outcoupling in a spectrometer. Pump pulses are focused on the resonator from top.

Fig. 2
Fig. 2

Tuning of a ring resonator. (a) Micrograph of the investigated ring resonator with indicators for pump position and direction of light propagation. (b) Measured wavelength shift in units of the free spectral range (FSR) for delay times of 5 ps (red crosses), 50 ps (blue circles), and 100 ps (cyan triangles). Solid lines are linear fits to these data points. (c)-(f) Transmission spectra (TE-polarization) of the bus waveguide as a function of delay time at which the ring is modulated for four different effective pump energies. Dips in the transmission spectra (dark colors) correspond to the resonances of the ring and the dashed lines are guides to the eye following the resonances that were used to create (b).

Fig. 3
Fig. 3

(a)-3(c) Comparison of the untuned spectra of the ring resonator with the spectra for different effective pump energies and for delay times of 5 ps, 100 ps, and 200 ps. (d) Q-factor of the resonances in (a)-(c) versus the wavelength shift normalized to the FSR of 16.7 nm (pump energy 38 pJ: red triangles and crosses, pump energy 116 pJ: blue squares and diamonds, pump energy 196 pJ: cyan circles). The grey line is a fit to the data points assuming a linear relation of ni = 0.24 Δnr.

Fig. 4
Fig. 4

Spatial photomodulation maps. (a) Sketch of the untuned and tuned transmission spectra T of a ring (top curves), as well as of the expected photomodulation ΔT/T (bottom curve). Also, the spectral positions of the spatial photomodulation maps presented in (b)-(f) are indicated. The spatial maps are plotted for different wavelengths, as denoted in the graphs (3 ps delay time, 95 pJ effective pump energy, 1.5 µm pump spot size).

Fig. 5
Fig. 5

Tuning of Vernier racetracks. (a) Micrograph of the investigated system with annotations for light propagation and position of the pump spot. (b) Untuned transmission spectrum (black line) and tuned transmission spectra for delay times of 50 ps (red lines) and 200 ps (blue lines) for different effective pump energies. Dashed lines in the background indicate the position of the Vernier envelope maxima. (c) Detailed view on the spectra in (b) for a pump energy of 326 pJ. The dashed lines indicate the envelopes for delay times of 50 ps (red) and 200 ps (blue). (d) Transmission spectra as function of delay time for an effective pump energy of 163 pJ.

Metrics