Abstract

We propose a switchable phase grating using fringe field switching (FFS) cells. The FFS phase grating possesses several attractive features: large diffraction angle, high diffraction efficiency, fast response time, and high contrast ratio. It can diffract >32% light to ± 2nd orders with a large diffraction angle of 12.1°. Meanwhile, its response time remains relatively fast even at −40°C. A simulation model is developed to explain the experimental results and good agreement is obtained. We also demonstrate a blazed phase grating to achieve tunable beam steering between 0th, 1st and 2nd orders.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fast response and transparent optically isotropic liquid crystal diffraction grating

Ramesh Manda, Srinivas Pagidi, Surjya Sarathi Bhattacharyya, Chul Ho Park, Young Jin Lim, Jin Seog Gwag, and Seung Hee Lee
Opt. Express 25(20) 24033-24043 (2017)

High-performance switchable grating based on pre-transitional effect of antiferroelectric liquid crystals

Zhengyu Feng and Ken Ishikawa
Opt. Express 26(24) 31976-31982 (2018)

On the fringing-field effect in liquid-crystal beam-steering devices

Boris Apter, Uzi Efron, and Eldad Bahat-Treidel
Appl. Opt. 43(1) 11-19 (2004)

References

  • View by:
  • |
  • |
  • |

  1. M. Schadt, “Liquid crystal materials and liquid crystal displays,” Annu. Rev. Mater. Sci. 27(1), 305–379 (1997).
    [Crossref]
  2. E. Lueder, Liquid Crystal Displays: Addressing Schemes and Electro-Optical Effects (Wiley, 2001).
  3. Z. Luo, D. Xu, and S. T. Wu, “Emerging quantum-dots-enhanced LCDs,” J. Disp. Technol. 10(7), 526–539 (2014).
    [Crossref]
  4. B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. M. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360–362 (2004).
    [Crossref]
  5. Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
    [Crossref]
  6. M. Xu, D. Xu, H. Ren, I. S. Yoo, and Q. H. Wang, “An adaptive liquid lens with radial interdigitated electrode,” J. Opt. 16(10), 105601 (2014).
    [Crossref]
  7. F. Peng, D. Xu, H. Chen, and S. T. Wu, “Low voltage polymer network liquid crystal for infrared spatial light modulators,” Opt. Express 23(3), 2361–2368 (2015).
    [Crossref] [PubMed]
  8. R. G. Lindquist, J. H. Kulick, G. P. Nordin, J. M. Jarem, S. T. Kowel, M. Friends, and T. M. Leslie, “High-resolution liquid-crystal phase grating formed by fringing fields from interdigitated electrodes,” Opt. Lett. 19(9), 670–672 (1994).
    [Crossref] [PubMed]
  9. J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electrooptically controlled liquid-crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
    [Crossref]
  10. D. P. Resler, D. S. Hobbs, R. C. Sharp, L. J. Friedman, and T. A. Dorschner, “High-efficiency liquid-crystal optical phased-array beam steering,” Opt. Lett. 21(9), 689–691 (1996).
    [Crossref] [PubMed]
  11. P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
    [Crossref]
  12. L. L. Gu, X. N. Chen, W. Jiang, B. Howley, and R. T. Chen, “Fringing-field minimization in liquid-crystal-based high-resolution switchable gratings,” Appl. Phys. Lett. 87(20), 201106 (2005).
    [Crossref]
  13. I. Drevensek-Olenik, M. Copic, M. E. Sousa, and G. P. Crawford, “Optical retardation of in-plane switched polymer dispersed liquid crystals,” J. Appl. Phys. 100(3), 033515 (2006).
    [Crossref]
  14. D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
    [Crossref]
  15. S. M. Morris, D. J. Gardiner, F. Castles, P. J. W. Hands, T. D. Wilkinson, and H. J. Coles, “Fast-switching phase gratings using in-plane addressed short-pitch polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 99(25), 253502 (2011).
    [Crossref]
  16. F. Fan, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Switchable liquid crystal grating with sub millisecond response,” Appl. Phys. Lett. 100(11), 111105 (2012).
    [Crossref]
  17. A. K. Srivastava, W. Hu, V. G. Chigrinov, A. D. Kiselev, and Y. Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
    [Crossref]
  18. S. J. Ge, W. Ji, G. X. Cui, B. Y. Wei, W. Hu, and Y. Q. Lu, “Fast switchable optical vortex generator based on blue phase liquid crystal fork grating,” Opt. Mater. Express 4(12), 2535–2541 (2014).
    [Crossref]
  19. J. Yan, Y. Li, and S. T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett. 36(8), 1404–1406 (2011).
    [Crossref] [PubMed]
  20. G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization-independent blue-phase liquid-crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20(6), 341–346 (2012).
    [Crossref]
  21. J. Yan, Q. Li, and K. Hu, “Polarization independent blue phase liquid crystal gratings based on periodic polymer slices structure,” J. Appl. Phys. 114(15), 153104 (2013).
    [Crossref]
  22. Y. T. Lin, H. C. Jau, and T. H. Lin, “Polarization-independent rapidly responding phase grating based on hybrid blue phase liquid crystal,” J. Appl. Phys. 113(6), 063103 (2013).
    [Crossref]
  23. D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
    [Crossref]
  24. Y. Liu, S. Xu, D. Xu, J. Yan, Y. Gao, and S. T. Wu, “A hysteresis-free polymer-stabilised blue-phase liquid crystal,” Liq. Cryst. 41(9), 1339–1344 (2014).
    [Crossref]
  25. D. Xu, J. Yuan, M. Schadt, and S. T. Wu, “Blue phase liquid crystals stabilized by linear photo-polymerization,” Appl. Phys. Lett. 105(8), 081114 (2014).
    [Crossref]
  26. D. Xu, F. Peng, H. Chen, J. Yuan, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “Image sticking in liquid crystal displays with lateral electric fields,” J. Appl. Phys. 116(19), 193102 (2014).
    [Crossref]
  27. H. Chen, F. Peng, Z. Luo, D. Xu, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “High performance liquid crystal displays with a low dielectric constant material,” Opt. Mater. Express 4(11), 2262–2273 (2014).
    [Crossref]
  28. D. C. Flanders, D. C. Shaver, and H. I. Smith, “Alignment of liquid-crystals using submicrometer periodicity gratings,” Appl. Phys. Lett. 32(10), 597–598 (1978).
    [Crossref]
  29. X. Y. Nie, R. B. Lu, H. Q. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
    [Crossref]
  30. S. T. Wu, “Nematic modulators with response time less than 100μs at room temperature,” Appl. Phys. Lett. 57(10), 986–988 (1990).
    [Crossref]
  31. M. Schadt, “Low-frequency dielectric relaxations in nematics and dual-frequency addressing of field effects,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 89(1-4), 77–92 (1982).
    [Crossref]
  32. H. Xianyu, S. T. Wu, and C. L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36(6-7), 717–726 (2009).
    [Crossref]
  33. C. H. Wen and S. T. Wu, “Dielectric heating effects of dual-frequency liquid crystals,” Appl. Phys. Lett. 86(23), 231104 (2005).
    [Crossref]
  34. D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices, 2nd ed. (Wiley, 2014).
  35. J. N. Li, X. K. Hu, B. Y. Wei, Z. J. Wu, S. J. Ge, W. Ji, W. Hu, and Y. Q. Lu, “Simulation and optimization of liquid crystal gratings with alternate twisted nematic and planar aligned regions,” Appl. Opt. 53(22), E14–E18 (2014).
    [Crossref] [PubMed]
  36. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  37. S. T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A 33(2), 1270–1274 (1986).
    [Crossref] [PubMed]
  38. E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, 1997).
  39. E. Schulze and W. von Reden, “Diffractive liquid crystal spatial light modulators with fine-pitch phase gratings,” Proc. SPIE 2408, 113–120 (1995).
    [Crossref]
  40. X. Wang, D. Wilson, R. Muller, P. Maker, and D. Psaltis, “Liquid-crystal blazed-grating beam deflector,” Appl. Opt. 39(35), 6545–6555 (2000).
    [Crossref] [PubMed]
  41. J. W. Park, Y. J. Ahn, J. H. Jung, S. H. Lee, R. Lu, H. Y. Kim, and S. T. Wu, “Liquid crystal display using combined fringe and in-plane electric fields,” Appl. Phys. Lett. 93(8), 081103 (2008).
    [Crossref]

2015 (1)

2014 (9)

M. Xu, D. Xu, H. Ren, I. S. Yoo, and Q. H. Wang, “An adaptive liquid lens with radial interdigitated electrode,” J. Opt. 16(10), 105601 (2014).
[Crossref]

Z. Luo, D. Xu, and S. T. Wu, “Emerging quantum-dots-enhanced LCDs,” J. Disp. Technol. 10(7), 526–539 (2014).
[Crossref]

S. J. Ge, W. Ji, G. X. Cui, B. Y. Wei, W. Hu, and Y. Q. Lu, “Fast switchable optical vortex generator based on blue phase liquid crystal fork grating,” Opt. Mater. Express 4(12), 2535–2541 (2014).
[Crossref]

D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
[Crossref]

Y. Liu, S. Xu, D. Xu, J. Yan, Y. Gao, and S. T. Wu, “A hysteresis-free polymer-stabilised blue-phase liquid crystal,” Liq. Cryst. 41(9), 1339–1344 (2014).
[Crossref]

D. Xu, J. Yuan, M. Schadt, and S. T. Wu, “Blue phase liquid crystals stabilized by linear photo-polymerization,” Appl. Phys. Lett. 105(8), 081114 (2014).
[Crossref]

D. Xu, F. Peng, H. Chen, J. Yuan, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “Image sticking in liquid crystal displays with lateral electric fields,” J. Appl. Phys. 116(19), 193102 (2014).
[Crossref]

H. Chen, F. Peng, Z. Luo, D. Xu, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “High performance liquid crystal displays with a low dielectric constant material,” Opt. Mater. Express 4(11), 2262–2273 (2014).
[Crossref]

J. N. Li, X. K. Hu, B. Y. Wei, Z. J. Wu, S. J. Ge, W. Ji, W. Hu, and Y. Q. Lu, “Simulation and optimization of liquid crystal gratings with alternate twisted nematic and planar aligned regions,” Appl. Opt. 53(22), E14–E18 (2014).
[Crossref] [PubMed]

2013 (2)

J. Yan, Q. Li, and K. Hu, “Polarization independent blue phase liquid crystal gratings based on periodic polymer slices structure,” J. Appl. Phys. 114(15), 153104 (2013).
[Crossref]

Y. T. Lin, H. C. Jau, and T. H. Lin, “Polarization-independent rapidly responding phase grating based on hybrid blue phase liquid crystal,” J. Appl. Phys. 113(6), 063103 (2013).
[Crossref]

2012 (3)

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization-independent blue-phase liquid-crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20(6), 341–346 (2012).
[Crossref]

F. Fan, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Switchable liquid crystal grating with sub millisecond response,” Appl. Phys. Lett. 100(11), 111105 (2012).
[Crossref]

A. K. Srivastava, W. Hu, V. G. Chigrinov, A. D. Kiselev, and Y. Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
[Crossref]

2011 (2)

S. M. Morris, D. J. Gardiner, F. Castles, P. J. W. Hands, T. D. Wilkinson, and H. J. Coles, “Fast-switching phase gratings using in-plane addressed short-pitch polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 99(25), 253502 (2011).
[Crossref]

J. Yan, Y. Li, and S. T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett. 36(8), 1404–1406 (2011).
[Crossref] [PubMed]

2010 (1)

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

2009 (1)

H. Xianyu, S. T. Wu, and C. L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36(6-7), 717–726 (2009).
[Crossref]

2008 (1)

J. W. Park, Y. J. Ahn, J. H. Jung, S. H. Lee, R. Lu, H. Y. Kim, and S. T. Wu, “Liquid crystal display using combined fringe and in-plane electric fields,” Appl. Phys. Lett. 93(8), 081103 (2008).
[Crossref]

2007 (1)

X. Y. Nie, R. B. Lu, H. Q. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
[Crossref]

2006 (1)

I. Drevensek-Olenik, M. Copic, M. E. Sousa, and G. P. Crawford, “Optical retardation of in-plane switched polymer dispersed liquid crystals,” J. Appl. Phys. 100(3), 033515 (2006).
[Crossref]

2005 (2)

L. L. Gu, X. N. Chen, W. Jiang, B. Howley, and R. T. Chen, “Fringing-field minimization in liquid-crystal-based high-resolution switchable gratings,” Appl. Phys. Lett. 87(20), 201106 (2005).
[Crossref]

C. H. Wen and S. T. Wu, “Dielectric heating effects of dual-frequency liquid crystals,” Appl. Phys. Lett. 86(23), 231104 (2005).
[Crossref]

2004 (1)

B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. M. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360–362 (2004).
[Crossref]

2000 (1)

1997 (2)

M. Schadt, “Liquid crystal materials and liquid crystal displays,” Annu. Rev. Mater. Sci. 27(1), 305–379 (1997).
[Crossref]

D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[Crossref]

1996 (2)

D. P. Resler, D. S. Hobbs, R. C. Sharp, L. J. Friedman, and T. A. Dorschner, “High-efficiency liquid-crystal optical phased-array beam steering,” Opt. Lett. 21(9), 689–691 (1996).
[Crossref] [PubMed]

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

1995 (2)

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electrooptically controlled liquid-crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[Crossref]

E. Schulze and W. von Reden, “Diffractive liquid crystal spatial light modulators with fine-pitch phase gratings,” Proc. SPIE 2408, 113–120 (1995).
[Crossref]

1994 (1)

1990 (1)

S. T. Wu, “Nematic modulators with response time less than 100μs at room temperature,” Appl. Phys. Lett. 57(10), 986–988 (1990).
[Crossref]

1986 (1)

S. T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A 33(2), 1270–1274 (1986).
[Crossref] [PubMed]

1982 (1)

M. Schadt, “Low-frequency dielectric relaxations in nematics and dual-frequency addressing of field effects,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 89(1-4), 77–92 (1982).
[Crossref]

1978 (1)

D. C. Flanders, D. C. Shaver, and H. I. Smith, “Alignment of liquid-crystals using submicrometer periodicity gratings,” Appl. Phys. Lett. 32(10), 597–598 (1978).
[Crossref]

Ahn, Y. J.

J. W. Park, Y. J. Ahn, J. H. Jung, S. H. Lee, R. Lu, H. Y. Kim, and S. T. Wu, “Liquid crystal display using combined fringe and in-plane electric fields,” Appl. Phys. Lett. 93(8), 081103 (2008).
[Crossref]

Baehr-Jones, T.

B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. M. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360–362 (2004).
[Crossref]

Bos, P. J.

D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[Crossref]

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electrooptically controlled liquid-crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[Crossref]

Castles, F.

S. M. Morris, D. J. Gardiner, F. Castles, P. J. W. Hands, T. D. Wilkinson, and H. J. Coles, “Fast-switching phase gratings using in-plane addressed short-pitch polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 99(25), 253502 (2011).
[Crossref]

Chen, H.

Chen, H. S.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Chen, J.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electrooptically controlled liquid-crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[Crossref]

Chen, R. T.

L. L. Gu, X. N. Chen, W. Jiang, B. Howley, and R. T. Chen, “Fringing-field minimization in liquid-crystal-based high-resolution switchable gratings,” Appl. Phys. Lett. 87(20), 201106 (2005).
[Crossref]

Chen, X. N.

L. L. Gu, X. N. Chen, W. Jiang, B. Howley, and R. T. Chen, “Fringing-field minimization in liquid-crystal-based high-resolution switchable gratings,” Appl. Phys. Lett. 87(20), 201106 (2005).
[Crossref]

Chen, Y.

D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
[Crossref]

Chigrinov, V. G.

F. Fan, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Switchable liquid crystal grating with sub millisecond response,” Appl. Phys. Lett. 100(11), 111105 (2012).
[Crossref]

A. K. Srivastava, W. Hu, V. G. Chigrinov, A. D. Kiselev, and Y. Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
[Crossref]

Coles, H. J.

S. M. Morris, D. J. Gardiner, F. Castles, P. J. W. Hands, T. D. Wilkinson, and H. J. Coles, “Fast-switching phase gratings using in-plane addressed short-pitch polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 99(25), 253502 (2011).
[Crossref]

Copic, M.

I. Drevensek-Olenik, M. Copic, M. E. Sousa, and G. P. Crawford, “Optical retardation of in-plane switched polymer dispersed liquid crystals,” J. Appl. Phys. 100(3), 033515 (2006).
[Crossref]

Corkum, D. L.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Crawford, G. P.

I. Drevensek-Olenik, M. Copic, M. E. Sousa, and G. P. Crawford, “Optical retardation of in-plane switched polymer dispersed liquid crystals,” J. Appl. Phys. 100(3), 033515 (2006).
[Crossref]

Cui, G. X.

Cui, H. Q.

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization-independent blue-phase liquid-crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20(6), 341–346 (2012).
[Crossref]

Dorschner, T. A.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

D. P. Resler, D. S. Hobbs, R. C. Sharp, L. J. Friedman, and T. A. Dorschner, “High-efficiency liquid-crystal optical phased-array beam steering,” Opt. Lett. 21(9), 689–691 (1996).
[Crossref] [PubMed]

Drevensek-Olenik, I.

I. Drevensek-Olenik, M. Copic, M. E. Sousa, and G. P. Crawford, “Optical retardation of in-plane switched polymer dispersed liquid crystals,” J. Appl. Phys. 100(3), 033515 (2006).
[Crossref]

Fan, F.

F. Fan, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Switchable liquid crystal grating with sub millisecond response,” Appl. Phys. Lett. 100(11), 111105 (2012).
[Crossref]

Flanders, D. C.

D. C. Flanders, D. C. Shaver, and H. I. Smith, “Alignment of liquid-crystals using submicrometer periodicity gratings,” Appl. Phys. Lett. 32(10), 597–598 (1978).
[Crossref]

Friedman, L.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Friedman, L. J.

Friends, M.

Gao, Y.

Y. Liu, S. Xu, D. Xu, J. Yan, Y. Gao, and S. T. Wu, “A hysteresis-free polymer-stabilised blue-phase liquid crystal,” Liq. Cryst. 41(9), 1339–1344 (2014).
[Crossref]

Gardiner, D. J.

S. M. Morris, D. J. Gardiner, F. Castles, P. J. W. Hands, T. D. Wilkinson, and H. J. Coles, “Fast-switching phase gratings using in-plane addressed short-pitch polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 99(25), 253502 (2011).
[Crossref]

Ge, S. J.

Gu, L. L.

L. L. Gu, X. N. Chen, W. Jiang, B. Howley, and R. T. Chen, “Fringing-field minimization in liquid-crystal-based high-resolution switchable gratings,” Appl. Phys. Lett. 87(20), 201106 (2005).
[Crossref]

Hands, P. J. W.

S. M. Morris, D. J. Gardiner, F. Castles, P. J. W. Hands, T. D. Wilkinson, and H. J. Coles, “Fast-switching phase gratings using in-plane addressed short-pitch polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 99(25), 253502 (2011).
[Crossref]

Hobbs, D. S.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

D. P. Resler, D. S. Hobbs, R. C. Sharp, L. J. Friedman, and T. A. Dorschner, “High-efficiency liquid-crystal optical phased-array beam steering,” Opt. Lett. 21(9), 689–691 (1996).
[Crossref] [PubMed]

Hochberg, M.

B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. M. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360–362 (2004).
[Crossref]

Holz, M.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Howley, B.

L. L. Gu, X. N. Chen, W. Jiang, B. Howley, and R. T. Chen, “Fringing-field minimization in liquid-crystal-based high-resolution switchable gratings,” Appl. Phys. Lett. 87(20), 201106 (2005).
[Crossref]

Hsu, H. K.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Hu, K.

J. Yan, Q. Li, and K. Hu, “Polarization independent blue phase liquid crystal gratings based on periodic polymer slices structure,” J. Appl. Phys. 114(15), 153104 (2013).
[Crossref]

Hu, W.

S. J. Ge, W. Ji, G. X. Cui, B. Y. Wei, W. Hu, and Y. Q. Lu, “Fast switchable optical vortex generator based on blue phase liquid crystal fork grating,” Opt. Mater. Express 4(12), 2535–2541 (2014).
[Crossref]

J. N. Li, X. K. Hu, B. Y. Wei, Z. J. Wu, S. J. Ge, W. Ji, W. Hu, and Y. Q. Lu, “Simulation and optimization of liquid crystal gratings with alternate twisted nematic and planar aligned regions,” Appl. Opt. 53(22), E14–E18 (2014).
[Crossref] [PubMed]

A. K. Srivastava, W. Hu, V. G. Chigrinov, A. D. Kiselev, and Y. Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
[Crossref]

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization-independent blue-phase liquid-crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20(6), 341–346 (2012).
[Crossref]

Hu, X. K.

Jarem, J. M.

Jau, H. C.

Y. T. Lin, H. C. Jau, and T. H. Lin, “Polarization-independent rapidly responding phase grating based on hybrid blue phase liquid crystal,” J. Appl. Phys. 113(6), 063103 (2013).
[Crossref]

Ji, W.

Jiang, W.

L. L. Gu, X. N. Chen, W. Jiang, B. Howley, and R. T. Chen, “Fringing-field minimization in liquid-crystal-based high-resolution switchable gratings,” Appl. Phys. Lett. 87(20), 201106 (2005).
[Crossref]

Johnson, D. L.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electrooptically controlled liquid-crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[Crossref]

Jung, J. H.

J. W. Park, Y. J. Ahn, J. H. Jung, S. H. Lee, R. Lu, H. Y. Kim, and S. T. Wu, “Liquid crystal display using combined fringe and in-plane electric fields,” Appl. Phys. Lett. 93(8), 081103 (2008).
[Crossref]

Kim, H. Y.

J. W. Park, Y. J. Ahn, J. H. Jung, S. H. Lee, R. Lu, H. Y. Kim, and S. T. Wu, “Liquid crystal display using combined fringe and in-plane electric fields,” Appl. Phys. Lett. 93(8), 081103 (2008).
[Crossref]

Kiselev, A. D.

A. K. Srivastava, W. Hu, V. G. Chigrinov, A. D. Kiselev, and Y. Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
[Crossref]

Kowel, S. T.

Kulick, J. H.

Kwok, H. S.

F. Fan, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Switchable liquid crystal grating with sub millisecond response,” Appl. Phys. Lett. 100(11), 111105 (2012).
[Crossref]

Lavrentovich, O. D.

D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[Crossref]

Lee, S. H.

J. W. Park, Y. J. Ahn, J. H. Jung, S. H. Lee, R. Lu, H. Y. Kim, and S. T. Wu, “Liquid crystal display using combined fringe and in-plane electric fields,” Appl. Phys. Lett. 93(8), 081103 (2008).
[Crossref]

Lee, S. L.

H. Chen, F. Peng, Z. Luo, D. Xu, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “High performance liquid crystal displays with a low dielectric constant material,” Opt. Mater. Express 4(11), 2262–2273 (2014).
[Crossref]

D. Xu, F. Peng, H. Chen, J. Yuan, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “Image sticking in liquid crystal displays with lateral electric fields,” J. Appl. Phys. 116(19), 193102 (2014).
[Crossref]

Leslie, T. M.

Li, J. N.

J. N. Li, X. K. Hu, B. Y. Wei, Z. J. Wu, S. J. Ge, W. Ji, W. Hu, and Y. Q. Lu, “Simulation and optimization of liquid crystal gratings with alternate twisted nematic and planar aligned regions,” Appl. Opt. 53(22), E14–E18 (2014).
[Crossref] [PubMed]

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization-independent blue-phase liquid-crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20(6), 341–346 (2012).
[Crossref]

Li, M. C.

D. Xu, F. Peng, H. Chen, J. Yuan, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “Image sticking in liquid crystal displays with lateral electric fields,” J. Appl. Phys. 116(19), 193102 (2014).
[Crossref]

H. Chen, F. Peng, Z. Luo, D. Xu, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “High performance liquid crystal displays with a low dielectric constant material,” Opt. Mater. Express 4(11), 2262–2273 (2014).
[Crossref]

Li, Q.

J. Yan, Q. Li, and K. Hu, “Polarization independent blue phase liquid crystal gratings based on periodic polymer slices structure,” J. Appl. Phys. 114(15), 153104 (2013).
[Crossref]

Li, W. Y.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Li, Y.

Liberman, S.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Lin, C. L.

H. Xianyu, S. T. Wu, and C. L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36(6-7), 717–726 (2009).
[Crossref]

Lin, H. C.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Lin, T. H.

Y. T. Lin, H. C. Jau, and T. H. Lin, “Polarization-independent rapidly responding phase grating based on hybrid blue phase liquid crystal,” J. Appl. Phys. 113(6), 063103 (2013).
[Crossref]

Lin, X. W.

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization-independent blue-phase liquid-crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20(6), 341–346 (2012).
[Crossref]

Lin, Y. H.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Lin, Y. T.

Y. T. Lin, H. C. Jau, and T. H. Lin, “Polarization-independent rapidly responding phase grating based on hybrid blue phase liquid crystal,” J. Appl. Phys. 113(6), 063103 (2013).
[Crossref]

Lindquist, R. G.

Liu, Y.

Y. Liu, S. Xu, D. Xu, J. Yan, Y. Gao, and S. T. Wu, “A hysteresis-free polymer-stabilised blue-phase liquid crystal,” Liq. Cryst. 41(9), 1339–1344 (2014).
[Crossref]

Loncar, M.

B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. M. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360–362 (2004).
[Crossref]

Lu, R.

J. W. Park, Y. J. Ahn, J. H. Jung, S. H. Lee, R. Lu, H. Y. Kim, and S. T. Wu, “Liquid crystal display using combined fringe and in-plane electric fields,” Appl. Phys. Lett. 93(8), 081103 (2008).
[Crossref]

Lu, R. B.

X. Y. Nie, R. B. Lu, H. Q. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
[Crossref]

Lu, Y. Q.

S. J. Ge, W. Ji, G. X. Cui, B. Y. Wei, W. Hu, and Y. Q. Lu, “Fast switchable optical vortex generator based on blue phase liquid crystal fork grating,” Opt. Mater. Express 4(12), 2535–2541 (2014).
[Crossref]

J. N. Li, X. K. Hu, B. Y. Wei, Z. J. Wu, S. J. Ge, W. Ji, W. Hu, and Y. Q. Lu, “Simulation and optimization of liquid crystal gratings with alternate twisted nematic and planar aligned regions,” Appl. Opt. 53(22), E14–E18 (2014).
[Crossref] [PubMed]

A. K. Srivastava, W. Hu, V. G. Chigrinov, A. D. Kiselev, and Y. Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
[Crossref]

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization-independent blue-phase liquid-crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20(6), 341–346 (2012).
[Crossref]

Luo, Z.

Maker, P.

Maune, B.

B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. M. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360–362 (2004).
[Crossref]

McManamon, P. F.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Morris, S. M.

S. M. Morris, D. J. Gardiner, F. Castles, P. J. W. Hands, T. D. Wilkinson, and H. J. Coles, “Fast-switching phase gratings using in-plane addressed short-pitch polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 99(25), 253502 (2011).
[Crossref]

Muller, R.

Nguyen, H. Q.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Nie, X. Y.

X. Y. Nie, R. B. Lu, H. Q. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
[Crossref]

Nordin, G. P.

Park, J. W.

J. W. Park, Y. J. Ahn, J. H. Jung, S. H. Lee, R. Lu, H. Y. Kim, and S. T. Wu, “Liquid crystal display using combined fringe and in-plane electric fields,” Appl. Phys. Lett. 93(8), 081103 (2008).
[Crossref]

Peng, F.

F. Peng, D. Xu, H. Chen, and S. T. Wu, “Low voltage polymer network liquid crystal for infrared spatial light modulators,” Opt. Express 23(3), 2361–2368 (2015).
[Crossref] [PubMed]

H. Chen, F. Peng, Z. Luo, D. Xu, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “High performance liquid crystal displays with a low dielectric constant material,” Opt. Mater. Express 4(11), 2262–2273 (2014).
[Crossref]

D. Xu, F. Peng, H. Chen, J. Yuan, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “Image sticking in liquid crystal displays with lateral electric fields,” J. Appl. Phys. 116(19), 193102 (2014).
[Crossref]

D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
[Crossref]

Psaltis, D.

B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. M. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360–362 (2004).
[Crossref]

X. Wang, D. Wilson, R. Muller, P. Maker, and D. Psaltis, “Liquid-crystal blazed-grating beam deflector,” Appl. Opt. 39(35), 6545–6555 (2000).
[Crossref] [PubMed]

Qiu, Y. M.

B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. M. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360–362 (2004).
[Crossref]

Ren, H.

M. Xu, D. Xu, H. Ren, I. S. Yoo, and Q. H. Wang, “An adaptive liquid lens with radial interdigitated electrode,” J. Opt. 16(10), 105601 (2014).
[Crossref]

Resler, D. P.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

D. P. Resler, D. S. Hobbs, R. C. Sharp, L. J. Friedman, and T. A. Dorschner, “High-efficiency liquid-crystal optical phased-array beam steering,” Opt. Lett. 21(9), 689–691 (1996).
[Crossref] [PubMed]

Schadt, M.

D. Xu, J. Yuan, M. Schadt, and S. T. Wu, “Blue phase liquid crystals stabilized by linear photo-polymerization,” Appl. Phys. Lett. 105(8), 081114 (2014).
[Crossref]

M. Schadt, “Liquid crystal materials and liquid crystal displays,” Annu. Rev. Mater. Sci. 27(1), 305–379 (1997).
[Crossref]

M. Schadt, “Low-frequency dielectric relaxations in nematics and dual-frequency addressing of field effects,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 89(1-4), 77–92 (1982).
[Crossref]

Scherer, A.

B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. M. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360–362 (2004).
[Crossref]

Schulze, E.

E. Schulze and W. von Reden, “Diffractive liquid crystal spatial light modulators with fine-pitch phase gratings,” Proc. SPIE 2408, 113–120 (1995).
[Crossref]

Sharp, R. C.

D. P. Resler, D. S. Hobbs, R. C. Sharp, L. J. Friedman, and T. A. Dorschner, “High-efficiency liquid-crystal optical phased-array beam steering,” Opt. Lett. 21(9), 689–691 (1996).
[Crossref] [PubMed]

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Shaver, D. C.

D. C. Flanders, D. C. Shaver, and H. I. Smith, “Alignment of liquid-crystals using submicrometer periodicity gratings,” Appl. Phys. Lett. 32(10), 597–598 (1978).
[Crossref]

Shen, D.

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization-independent blue-phase liquid-crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20(6), 341–346 (2012).
[Crossref]

Smith, H. I.

D. C. Flanders, D. C. Shaver, and H. I. Smith, “Alignment of liquid-crystals using submicrometer periodicity gratings,” Appl. Phys. Lett. 32(10), 597–598 (1978).
[Crossref]

Sousa, M. E.

I. Drevensek-Olenik, M. Copic, M. E. Sousa, and G. P. Crawford, “Optical retardation of in-plane switched polymer dispersed liquid crystals,” J. Appl. Phys. 100(3), 033515 (2006).
[Crossref]

Srivastava, A. K.

A. K. Srivastava, W. Hu, V. G. Chigrinov, A. D. Kiselev, and Y. Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
[Crossref]

F. Fan, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Switchable liquid crystal grating with sub millisecond response,” Appl. Phys. Lett. 100(11), 111105 (2012).
[Crossref]

Subacius, D.

D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[Crossref]

Tsai, W. C.

H. Chen, F. Peng, Z. Luo, D. Xu, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “High performance liquid crystal displays with a low dielectric constant material,” Opt. Mater. Express 4(11), 2262–2273 (2014).
[Crossref]

D. Xu, F. Peng, H. Chen, J. Yuan, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “Image sticking in liquid crystal displays with lateral electric fields,” J. Appl. Phys. 116(19), 193102 (2014).
[Crossref]

Tsou, Y. S.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Vithana, H.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electrooptically controlled liquid-crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[Crossref]

von Reden, W.

E. Schulze and W. von Reden, “Diffractive liquid crystal spatial light modulators with fine-pitch phase gratings,” Proc. SPIE 2408, 113–120 (1995).
[Crossref]

Wang, H. F.

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization-independent blue-phase liquid-crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20(6), 341–346 (2012).
[Crossref]

Wang, Q. H.

M. Xu, D. Xu, H. Ren, I. S. Yoo, and Q. H. Wang, “An adaptive liquid lens with radial interdigitated electrode,” J. Opt. 16(10), 105601 (2014).
[Crossref]

Wang, X.

Watson, E. A.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Wei, B. Y.

Wen, C. H.

C. H. Wen and S. T. Wu, “Dielectric heating effects of dual-frequency liquid crystals,” Appl. Phys. Lett. 86(23), 231104 (2005).
[Crossref]

Wilkinson, T. D.

S. M. Morris, D. J. Gardiner, F. Castles, P. J. W. Hands, T. D. Wilkinson, and H. J. Coles, “Fast-switching phase gratings using in-plane addressed short-pitch polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 99(25), 253502 (2011).
[Crossref]

Wilson, D.

Witzens, J.

B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. M. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360–362 (2004).
[Crossref]

Wu, S. T.

F. Peng, D. Xu, H. Chen, and S. T. Wu, “Low voltage polymer network liquid crystal for infrared spatial light modulators,” Opt. Express 23(3), 2361–2368 (2015).
[Crossref] [PubMed]

Z. Luo, D. Xu, and S. T. Wu, “Emerging quantum-dots-enhanced LCDs,” J. Disp. Technol. 10(7), 526–539 (2014).
[Crossref]

H. Chen, F. Peng, Z. Luo, D. Xu, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “High performance liquid crystal displays with a low dielectric constant material,” Opt. Mater. Express 4(11), 2262–2273 (2014).
[Crossref]

D. Xu, J. Yuan, M. Schadt, and S. T. Wu, “Blue phase liquid crystals stabilized by linear photo-polymerization,” Appl. Phys. Lett. 105(8), 081114 (2014).
[Crossref]

D. Xu, F. Peng, H. Chen, J. Yuan, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “Image sticking in liquid crystal displays with lateral electric fields,” J. Appl. Phys. 116(19), 193102 (2014).
[Crossref]

D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
[Crossref]

Y. Liu, S. Xu, D. Xu, J. Yan, Y. Gao, and S. T. Wu, “A hysteresis-free polymer-stabilised blue-phase liquid crystal,” Liq. Cryst. 41(9), 1339–1344 (2014).
[Crossref]

J. Yan, Y. Li, and S. T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett. 36(8), 1404–1406 (2011).
[Crossref] [PubMed]

H. Xianyu, S. T. Wu, and C. L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36(6-7), 717–726 (2009).
[Crossref]

J. W. Park, Y. J. Ahn, J. H. Jung, S. H. Lee, R. Lu, H. Y. Kim, and S. T. Wu, “Liquid crystal display using combined fringe and in-plane electric fields,” Appl. Phys. Lett. 93(8), 081103 (2008).
[Crossref]

X. Y. Nie, R. B. Lu, H. Q. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
[Crossref]

C. H. Wen and S. T. Wu, “Dielectric heating effects of dual-frequency liquid crystals,” Appl. Phys. Lett. 86(23), 231104 (2005).
[Crossref]

S. T. Wu, “Nematic modulators with response time less than 100μs at room temperature,” Appl. Phys. Lett. 57(10), 986–988 (1990).
[Crossref]

S. T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A 33(2), 1270–1274 (1986).
[Crossref] [PubMed]

Wu, T. X.

X. Y. Nie, R. B. Lu, H. Q. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
[Crossref]

Wu, Z. J.

Xianyu, H.

H. Xianyu, S. T. Wu, and C. L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36(6-7), 717–726 (2009).
[Crossref]

Xianyu, H. Q.

X. Y. Nie, R. B. Lu, H. Q. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
[Crossref]

Xu, D.

F. Peng, D. Xu, H. Chen, and S. T. Wu, “Low voltage polymer network liquid crystal for infrared spatial light modulators,” Opt. Express 23(3), 2361–2368 (2015).
[Crossref] [PubMed]

M. Xu, D. Xu, H. Ren, I. S. Yoo, and Q. H. Wang, “An adaptive liquid lens with radial interdigitated electrode,” J. Opt. 16(10), 105601 (2014).
[Crossref]

Z. Luo, D. Xu, and S. T. Wu, “Emerging quantum-dots-enhanced LCDs,” J. Disp. Technol. 10(7), 526–539 (2014).
[Crossref]

H. Chen, F. Peng, Z. Luo, D. Xu, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “High performance liquid crystal displays with a low dielectric constant material,” Opt. Mater. Express 4(11), 2262–2273 (2014).
[Crossref]

D. Xu, J. Yuan, M. Schadt, and S. T. Wu, “Blue phase liquid crystals stabilized by linear photo-polymerization,” Appl. Phys. Lett. 105(8), 081114 (2014).
[Crossref]

D. Xu, F. Peng, H. Chen, J. Yuan, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “Image sticking in liquid crystal displays with lateral electric fields,” J. Appl. Phys. 116(19), 193102 (2014).
[Crossref]

Y. Liu, S. Xu, D. Xu, J. Yan, Y. Gao, and S. T. Wu, “A hysteresis-free polymer-stabilised blue-phase liquid crystal,” Liq. Cryst. 41(9), 1339–1344 (2014).
[Crossref]

D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
[Crossref]

Xu, M.

M. Xu, D. Xu, H. Ren, I. S. Yoo, and Q. H. Wang, “An adaptive liquid lens with radial interdigitated electrode,” J. Opt. 16(10), 105601 (2014).
[Crossref]

Xu, S.

Y. Liu, S. Xu, D. Xu, J. Yan, Y. Gao, and S. T. Wu, “A hysteresis-free polymer-stabilised blue-phase liquid crystal,” Liq. Cryst. 41(9), 1339–1344 (2014).
[Crossref]

Yan, J.

Y. Liu, S. Xu, D. Xu, J. Yan, Y. Gao, and S. T. Wu, “A hysteresis-free polymer-stabilised blue-phase liquid crystal,” Liq. Cryst. 41(9), 1339–1344 (2014).
[Crossref]

D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
[Crossref]

J. Yan, Q. Li, and K. Hu, “Polarization independent blue phase liquid crystal gratings based on periodic polymer slices structure,” J. Appl. Phys. 114(15), 153104 (2013).
[Crossref]

J. Yan, Y. Li, and S. T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett. 36(8), 1404–1406 (2011).
[Crossref] [PubMed]

Yoo, I. S.

M. Xu, D. Xu, H. Ren, I. S. Yoo, and Q. H. Wang, “An adaptive liquid lens with radial interdigitated electrode,” J. Opt. 16(10), 105601 (2014).
[Crossref]

Yuan, J.

D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
[Crossref]

D. Xu, F. Peng, H. Chen, J. Yuan, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “Image sticking in liquid crystal displays with lateral electric fields,” J. Appl. Phys. 116(19), 193102 (2014).
[Crossref]

D. Xu, J. Yuan, M. Schadt, and S. T. Wu, “Blue phase liquid crystals stabilized by linear photo-polymerization,” Appl. Phys. Lett. 105(8), 081114 (2014).
[Crossref]

Zheng, Z. G.

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization-independent blue-phase liquid-crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20(6), 341–346 (2012).
[Crossref]

Zhu, G.

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization-independent blue-phase liquid-crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20(6), 341–346 (2012).
[Crossref]

Annu. Rev. Mater. Sci. (1)

M. Schadt, “Liquid crystal materials and liquid crystal displays,” Annu. Rev. Mater. Sci. 27(1), 305–379 (1997).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (14)

J. W. Park, Y. J. Ahn, J. H. Jung, S. H. Lee, R. Lu, H. Y. Kim, and S. T. Wu, “Liquid crystal display using combined fringe and in-plane electric fields,” Appl. Phys. Lett. 93(8), 081103 (2008).
[Crossref]

C. H. Wen and S. T. Wu, “Dielectric heating effects of dual-frequency liquid crystals,” Appl. Phys. Lett. 86(23), 231104 (2005).
[Crossref]

S. T. Wu, “Nematic modulators with response time less than 100μs at room temperature,” Appl. Phys. Lett. 57(10), 986–988 (1990).
[Crossref]

D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
[Crossref]

D. Xu, J. Yuan, M. Schadt, and S. T. Wu, “Blue phase liquid crystals stabilized by linear photo-polymerization,” Appl. Phys. Lett. 105(8), 081114 (2014).
[Crossref]

D. C. Flanders, D. C. Shaver, and H. I. Smith, “Alignment of liquid-crystals using submicrometer periodicity gratings,” Appl. Phys. Lett. 32(10), 597–598 (1978).
[Crossref]

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electrooptically controlled liquid-crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[Crossref]

B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. M. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360–362 (2004).
[Crossref]

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[Crossref]

S. M. Morris, D. J. Gardiner, F. Castles, P. J. W. Hands, T. D. Wilkinson, and H. J. Coles, “Fast-switching phase gratings using in-plane addressed short-pitch polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 99(25), 253502 (2011).
[Crossref]

F. Fan, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Switchable liquid crystal grating with sub millisecond response,” Appl. Phys. Lett. 100(11), 111105 (2012).
[Crossref]

A. K. Srivastava, W. Hu, V. G. Chigrinov, A. D. Kiselev, and Y. Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
[Crossref]

L. L. Gu, X. N. Chen, W. Jiang, B. Howley, and R. T. Chen, “Fringing-field minimization in liquid-crystal-based high-resolution switchable gratings,” Appl. Phys. Lett. 87(20), 201106 (2005).
[Crossref]

J. Appl. Phys. (5)

I. Drevensek-Olenik, M. Copic, M. E. Sousa, and G. P. Crawford, “Optical retardation of in-plane switched polymer dispersed liquid crystals,” J. Appl. Phys. 100(3), 033515 (2006).
[Crossref]

X. Y. Nie, R. B. Lu, H. Q. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
[Crossref]

D. Xu, F. Peng, H. Chen, J. Yuan, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “Image sticking in liquid crystal displays with lateral electric fields,” J. Appl. Phys. 116(19), 193102 (2014).
[Crossref]

J. Yan, Q. Li, and K. Hu, “Polarization independent blue phase liquid crystal gratings based on periodic polymer slices structure,” J. Appl. Phys. 114(15), 153104 (2013).
[Crossref]

Y. T. Lin, H. C. Jau, and T. H. Lin, “Polarization-independent rapidly responding phase grating based on hybrid blue phase liquid crystal,” J. Appl. Phys. 113(6), 063103 (2013).
[Crossref]

J. Disp. Technol. (1)

Z. Luo, D. Xu, and S. T. Wu, “Emerging quantum-dots-enhanced LCDs,” J. Disp. Technol. 10(7), 526–539 (2014).
[Crossref]

J. Opt. (1)

M. Xu, D. Xu, H. Ren, I. S. Yoo, and Q. H. Wang, “An adaptive liquid lens with radial interdigitated electrode,” J. Opt. 16(10), 105601 (2014).
[Crossref]

J. Soc. Inf. Disp. (1)

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization-independent blue-phase liquid-crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20(6), 341–346 (2012).
[Crossref]

Liq. Cryst. (2)

H. Xianyu, S. T. Wu, and C. L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36(6-7), 717–726 (2009).
[Crossref]

Y. Liu, S. Xu, D. Xu, J. Yan, Y. Gao, and S. T. Wu, “A hysteresis-free polymer-stabilised blue-phase liquid crystal,” Liq. Cryst. 41(9), 1339–1344 (2014).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

M. Schadt, “Low-frequency dielectric relaxations in nematics and dual-frequency addressing of field effects,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 89(1-4), 77–92 (1982).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Opt. Mater. Express (2)

Phys. Rev. A (1)

S. T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A 33(2), 1270–1274 (1986).
[Crossref] [PubMed]

Proc. IEEE (1)

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Proc. SPIE (1)

E. Schulze and W. von Reden, “Diffractive liquid crystal spatial light modulators with fine-pitch phase gratings,” Proc. SPIE 2408, 113–120 (1995).
[Crossref]

Other (4)

E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, 1997).

E. Lueder, Liquid Crystal Displays: Addressing Schemes and Electro-Optical Effects (Wiley, 2001).

D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices, 2nd ed. (Wiley, 2014).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Sketched phase LC director distributions (lower) and corresponding phase profiles for TM wave (upper) in an FFS cell under (a) 0V and (b) 35V applied voltage. The homogeneous alignment direction is 10° w.r.t. the pixel electrodes (x axis).
Fig. 2
Fig. 2 (a) Experimental setup for measuring the diffraction efficiency. The iris is relocated to select the diffraction orders. (b) Recorded diffraction patterns at the voltage-off state. (c) Diffraction patterns at 35V. λ = 633nm and T = 23°.
Fig. 3
Fig. 3 Diffraction efficiency of the zeroth to fourth orders (Dots: measured data, solid curves: simulation results). Please note positive and negative orders have the same diffraction efficiency.
Fig. 4
Fig. 4 Measured temperature-dependent decay time of FFS grating employing UCF-L1.
Fig. 5
Fig. 5 Maximum diffraction efficiency of the 2nd order at different dΔn/λ values for FFS gratings (λ = 633nm and T = 23°).
Fig. 6
Fig. 6 Simulated diffraction efficiency of the 0th, 2nd, and 4th orders of the FFS gratings with different cell gaps: a) d = 4 μm; b) d = 5μm (LC: UCF-L1, Δn = 0.121).
Fig. 7
Fig. 7 Measured diffraction efficiency of the 0th, 2nd, and 4th orders in a FFS cell with Δn = 0.146.
Fig. 8
Fig. 8 Device configuration of the blazed grating using a FIS LC cell.
Fig. 9
Fig. 9 Simulated diffraction efficiency of 0th, 1st and 2nd orders when V2 is scanned from −50V to 50V (V1 is fixed at 50V). Cell gap = 5.0μm. λ = 633 nm.
Fig. 10
Fig. 10 Simulated phase profile of FIS grating under (a) V2 = −10V and (b) V2 = 50V. V1 is fixed at 50V (λ = 633 nm).

Tables (1)

Tables Icon

Table 1 LC material properties and corresponding dΔn/λ of three FFS cells (λ = 633nm, f = 1 kHz, T = 23°C).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

sin θ m mλ/n Λ 1 ,
η m = I m (V)/ I 0 .
W N =[ e j k 0 n eff d 0 0 e j k 0 n o d ],
n eff = n o n e n e 2 sin 2 θ+ n o 2 cos 2 θ .
[ E x (y) E y (y) ] out = R N ' W N R N ... R 2 ' W 2 R 1 R 1 ' W 1 R 1 J 1 ,
R N =[ cosφ sinφ sinφ cosφ ].
E x ( k y )= E x (y) e j k y y dy , E y ( k y )= E y (y) e j k y y dy .
I( k y )= E x ( k y ) 2 + E y ( k y ) 2 .
sinδ= k y / k 0 .

Metrics