Abstract

We present our analysis of a zoom system based on the variable focal power lens, and we demonstrate how our analysis can be used in zoom system design. The transverse magnification is considered as an independent first-order optics control parameter in the zoom system. The zoom system equations are established through the use of matrix optics. Formulas related to the zoom principles and performance of such optical systems are derived, and numerical and theoretical values are compared using examples.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of two-element zoom systems based on variable power lenses

Antonin Miks and Jiri Novak
Opt. Express 18(7) 6797-6810 (2010)

Four-group stabilized zoom lens design of two focal-length-variable elements

Qun Hao, Xuemin Cheng, and Ke Du
Opt. Express 21(6) 7758-7767 (2013)

Method of first-order analysis of a three-element two-conjugate zoom lens

Antonín Mikš and Jiří Novák
Appl. Opt. 56(18) 5301-5306 (2017)

References

  • View by:
  • |
  • |
  • |

  1. P. Valley, M. R. Dodge, J. Schwiegerling, G. Peyman, and N. Peyghambarian, “Nonmechanical bifocal zoom telescope,” Opt. Lett. 35(15), 2582–2584 (2010).
    [Crossref] [PubMed]
  2. Y. Lin, M. Chen, and H. Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Opt. Express 19(5), 4714–4721 (2011).
    [Crossref] [PubMed]
  3. N. Savidis, G. Peyman, N. Peyghambarian, and J. Schwiegerling, “Nonmechanical zoom system through pressure-controlled tunable fluidic lenses,” Appl. Opt. 52(12), 2858–2865 (2013).
    [Crossref] [PubMed]
  4. A. Miks and J. Novak, “Analysis of two-element zoom systems based on variable power lenses,” Opt. Express 18(7), 6797–6810 (2010).
    [Crossref] [PubMed]
  5. Q. Hao, X. Cheng, and K. Du, “Four-group stabilized zoom lens design of two focal-length-variable elements,” Opt. Express 21(6), 7758–7767 (2013).
    [Crossref] [PubMed]
  6. A. Miks and J. Novak, “Paraxial analysis of three-component zoom lens with fixed distance between object and image points and fixed position of image-space focal point,” Opt. Express 22(13), 15571–15576 (2014).
    [Crossref] [PubMed]
  7. A. Miks and J. Novak, “Paraxial imaging properties of double conjugate zoom lens system composed of three tunable- focus lenses,” Opt. Laser Eng. 53(2), 86–89 (2014).
    [Crossref]
  8. A. Miks and J. Novak, “Three-component double conjugate zoom lens system from tunable focus lenses,” Appl. Opt. 52(4), 862–865 (2013).
    [Crossref] [PubMed]
  9. C. Tao, “Design of zoom system by the varifocal differential equation,” Appl. Opt. 31(13), 2265–2273 (1992).
    [Crossref]
  10. A. D. Clark, Zoom Lenses (Adam Hilger, 1973).
  11. R. Ditteon, Modern Geometrical Optics (Wiley, 1998).

2014 (2)

A. Miks and J. Novak, “Paraxial imaging properties of double conjugate zoom lens system composed of three tunable- focus lenses,” Opt. Laser Eng. 53(2), 86–89 (2014).
[Crossref]

A. Miks and J. Novak, “Paraxial analysis of three-component zoom lens with fixed distance between object and image points and fixed position of image-space focal point,” Opt. Express 22(13), 15571–15576 (2014).
[Crossref] [PubMed]

2013 (3)

2011 (1)

2010 (2)

1992 (1)

Chen, M.

Cheng, X.

Clark, A. D.

A. D. Clark, Zoom Lenses (Adam Hilger, 1973).

Ditteon, R.

R. Ditteon, Modern Geometrical Optics (Wiley, 1998).

Dodge, M. R.

Du, K.

Hao, Q.

Lin, H.

Lin, Y.

Miks, A.

Novak, J.

Peyghambarian, N.

Peyman, G.

Savidis, N.

Schwiegerling, J.

Tao, C.

Valley, P.

Appl. Opt. (3)

Opt. Express (4)

Opt. Laser Eng. (1)

A. Miks and J. Novak, “Paraxial imaging properties of double conjugate zoom lens system composed of three tunable- focus lenses,” Opt. Laser Eng. 53(2), 86–89 (2014).
[Crossref]

Opt. Lett. (1)

Other (2)

A. D. Clark, Zoom Lenses (Adam Hilger, 1973).

R. Ditteon, Modern Geometrical Optics (Wiley, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Two-element variable focal power lens zoom system.
Fig. 2
Fig. 2 Control curve relating focal power with magnification.
Fig. 3
Fig. 3 Plot of aperture stop size RPx as function of magnification.

Tables (3)

Tables Icon

Table 1 System parameters.

Tables Icon

Table 2 Select values of magnification and corresponding focal powers of lenses a and b.

Tables Icon

Table 3 Comparison of calculated values (obtained using proposed approach) with theoretical values (obtained using ray-tracing) for select values of magnification.

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

S = [ 1 d 2 ϕ a d 2 d 2 ϕ a ϕ b ϕ a ϕ b 1 d 2 ϕ b ] .
ϕ = 1 f = ϕ a + ϕ b d 2 ϕ a ϕ b .
m = 1 ( d 2 ϕ a ϕ b ϕ a ϕ b ) × d 1 + 1 d 2 ϕ b ,
d 3 = 1 d 2 ϕ a ϕ b ϕ a ϕ b [ m ( 1 d 2 ϕ a ) ] ,
d 1 + d 2 + d 3 = d .
ϕ a = d + ( d 1 + d 2 ) ( m 1 ) m d 1 d 2 ,
ϕ b = d + d 1 ( m 1 ) d 2 ( d d 1 d 2 ) .
ϕ a = α + β / m ,
ϕ b = χ + η m ,
α = d 1 + d 2 d 1 d 2 , β = d d 1 d 2 d 1 d 2 , χ = d d 1 d 2 ( d d 1 d 2 ) , η = d 1 d 2 ( d d 1 d 2 ) .
N = T j 1 R j 1 T 1 R 1 T 0 ,
T j = [ 1 d j + 1 0 1 ] , R j = [ 1 0 ϕ j 1 ] .
[ N 11 N 12 N 21 N 22 ] .
| R 1 N 12 | = | R a d 1 | ,
| R 2 N 12 | = | R p x ( 1 d x ϕ a ) d 1 + d x | ,
| R 3 N 12 | = | R b ( 1 d 2 ϕ a ) d 1 + d 2 | .
Q 1 = [ 1 d x ϕ a d x ϕ a 1 ] .
l E = d x 1 d x ϕ a ,
R E = R P x 1 d x ϕ a .
Q 2 = [ 1 d 2 d x ϕ b 1 ϕ b ( d 2 d x ) ] .
l E = d 2 d x 1 ϕ b ( d 2 d x ) ,
R E = R P x 1 ϕ b ( d 2 d x ) .
D f = 2 R E ϕ 1 = 2 R P x 1 d x ϕ a × ( ϕ a + ϕ b d 2 ϕ a ϕ b ) ,
D f = 2 R P x 1 d x ( α + β / m ) × [ α + β / m + χ + η m d 2 ( α + β / m ) ( χ + η m ) ] .
R P x = 1 2 ( D f ) ( A m + B ) ( C m 2 + E m + F ) ,
A = 1 d x α , B = d x β , C = η ( 1 d 2 α ) , E = α + χ d 2 ( α χ + β η ) , F = β ( 1 d 2 χ ) .
α = χ = 3 / 20 , β = η = 1 / 10.
ϕ a = 3 20 + 1 10 m ,
ϕ b = 3 20 + m 10 .
ϕ a b = 2 m 2 + m + 2 40 m .
R P x = 5 ( m 2 ) 2 ( 2 m 2 + m + 2 ) .

Metrics