Abstract

Absorbance-Modulation-Optical Lithography (AMOL) enables super-resolution optical lithography by simultaneous illumination of a photochromic film by a bright spot at one wavelength, λ1 and a node at another wavelength, λ2. A deep subwavelength region of the transparent photochromic isomer is created in the vicinity of the node. Light at λ1 penetrates this region and exposes an underlying photoresist layer. In conventional AMOL, a barrier layer is required to protect the photoresist from the photochromic layer. Here, we demonstrate barrier-free AMOL, which considerably simplifies the process. Specifically, we pattern lines as small as 70nm using λ1 = 325nm and λ2 = 647nm. We further elucidate the minimum requirements for AMOL to enable multiple exposures so as to break the diffraction limit.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Absorbance-modulation optical lithography

Rajesh Menon and Henry I. Smith
J. Opt. Soc. Am. A 23(9) 2290-2294 (2006)

Increased process latitude in absorbance-modulated lithography via a plasmonic reflector

Charles W. Holzwarth, John E. Foulkes, and Richard J. Blaikie
Opt. Express 19(18) 17790-17798 (2011)

Optical patterning of features with spacing below the far-field diffraction limit using absorbance modulation

Farhana Masid, Trisha L. Andrew, and Rajesh Menon
Opt. Express 21(4) 5209-5214 (2013)

References

  • View by:
  • |
  • |
  • |

  1. F. M. Scellenberg, “Selected papers on resolution enhancement techniques in optical lithography,” SPIE Milestone Services 178, (2004).
  2. E. Abbé, “Beitragezurtheorie des mikroskops und der mikroskopischenwahrnehmung,” Arch. Mikrosk. Anat. Entwichlungsmech 9(1), 413–418 (1873).
    [Crossref]
  3. E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237(5357), 510–512 (1972).
    [Crossref] [PubMed]
  4. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991).
    [Crossref] [PubMed]
  5. L. Novotny, B. Hecht, and D. Pohl, “Implications of high resolution to near-field optical microscopy,” Ultramicroscopy 71(1–4), 341–344 (1998).
    [Crossref]
  6. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [Crossref] [PubMed]
  7. J. T. Fourkas, “Nanoscale photolithography with visible light,” J. Phys. Chem. Lett. 1(8), 1221–1227 (2010).
    [Crossref]
  8. L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
    [Crossref] [PubMed]
  9. T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-Photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324(5929), 913–917 (2009).
    [Crossref] [PubMed]
  10. T. Tsuujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-resolution disk with a photochromic mask layer,” Jpn. J. Appl. Phys. 36(Part 1, No. 1B), 526–529 (1997).
    [Crossref]
  11. T. Tsujioka, M. Kume, and M. Irie, “Theoretical analysis of super-resolution optical disk mastering using a photoreactive dye mask layer,” Opt. Rev. 4(3), 385–389 (1997).
    [Crossref]
  12. J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. 22(32), 3578–3582 (2010).
    [Crossref] [PubMed]
  13. R. Wollhofen, J. Katzmann, C. Hrelescu, J. Jacak, and T. A. Klar, “120 nm resolution and 55 nm structure size in STED-lithography,” Opt. Express 21(9), 10831–10840 (2013).
    [Crossref] [PubMed]
  14. Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4(2061), 2061 (2013).
    [PubMed]
  15. C. Fonseca, M. Somervell, S. Scheer, Y. Kuwahara, K. Nafus, R. Gronheid, S. Tarutani, and Y. Enomoto, “Advances in dual-tone development for pitch frequency doubling,” Proc. SPIE 7640, 76400E (2010).
    [Crossref]
  16. R. Menon and H. I. Smith, “Absorbance-modulation optical lithography,” J. Opt. Soc. Am. A 23(9), 2290–2294 (2006).
    [Crossref] [PubMed]
  17. T. L. Andrew, H.-Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical Nanopatterning,” Science 324(5929), 917–921 (2009).
    [Crossref] [PubMed]
  18. F. Masid, T. L. Andrew, and R. Menon, “Optical patterning of features with spacing below the far-field diffraction limit using absorbance modulation,” Opt. Express 21(4), 5209–5214 (2013).
    [Crossref] [PubMed]
  19. G. Pariani, R. Castagna, R. Menon, C. Bertarelli, and A. Bianco, “Modeling absorbance-modulation optical lithography in photochromic films,” Opt. Lett. 38(16), 3024–3027 (2013).
    [Crossref] [PubMed]
  20. J. Foulkes and R. Blaikie, “Finite Element Simulation of Absorbance Modulation Optical Lithography,” in Proceedings of International Conference on Nanoscience and Nanotechnology (ICONN 2008), 184–187 (2008).
    [Crossref]
  21. R. Menon, D. Gil, and H. I. Smith, “Experimental characterization of focusing by high-numerical-aperture zone plates,” J. Opt. Soc. Am. A 23(3), 567–571 (2006).
    [Crossref] [PubMed]
  22. T. Ito, T. Yamada, Y. Inao, T. Yamaguchi, N. Mizutani, and R. Kuroda, “Fabrication of half-pitch 32 nm resist patterns using near-field lithography with a - Si mask,” Appl. Phys. Lett. 89(3), 033113 (2006).
    [Crossref]

2013 (4)

2010 (3)

C. Fonseca, M. Somervell, S. Scheer, Y. Kuwahara, K. Nafus, R. Gronheid, S. Tarutani, and Y. Enomoto, “Advances in dual-tone development for pitch frequency doubling,” Proc. SPIE 7640, 76400E (2010).
[Crossref]

J. T. Fourkas, “Nanoscale photolithography with visible light,” J. Phys. Chem. Lett. 1(8), 1221–1227 (2010).
[Crossref]

J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. 22(32), 3578–3582 (2010).
[Crossref] [PubMed]

2009 (3)

T. L. Andrew, H.-Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical Nanopatterning,” Science 324(5929), 917–921 (2009).
[Crossref] [PubMed]

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-Photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324(5929), 913–917 (2009).
[Crossref] [PubMed]

2006 (3)

1998 (1)

L. Novotny, B. Hecht, and D. Pohl, “Implications of high resolution to near-field optical microscopy,” Ultramicroscopy 71(1–4), 341–344 (1998).
[Crossref]

1997 (2)

T. Tsuujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-resolution disk with a photochromic mask layer,” Jpn. J. Appl. Phys. 36(Part 1, No. 1B), 526–529 (1997).
[Crossref]

T. Tsujioka, M. Kume, and M. Irie, “Theoretical analysis of super-resolution optical disk mastering using a photoreactive dye mask layer,” Opt. Rev. 4(3), 385–389 (1997).
[Crossref]

1994 (1)

1991 (1)

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991).
[Crossref] [PubMed]

1972 (1)

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237(5357), 510–512 (1972).
[Crossref] [PubMed]

1873 (1)

E. Abbé, “Beitragezurtheorie des mikroskops und der mikroskopischenwahrnehmung,” Arch. Mikrosk. Anat. Entwichlungsmech 9(1), 413–418 (1873).
[Crossref]

Abbé, E.

E. Abbé, “Beitragezurtheorie des mikroskops und der mikroskopischenwahrnehmung,” Arch. Mikrosk. Anat. Entwichlungsmech 9(1), 413–418 (1873).
[Crossref]

Andrew, T. L.

F. Masid, T. L. Andrew, and R. Menon, “Optical patterning of features with spacing below the far-field diffraction limit using absorbance modulation,” Opt. Express 21(4), 5209–5214 (2013).
[Crossref] [PubMed]

T. L. Andrew, H.-Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical Nanopatterning,” Science 324(5929), 917–921 (2009).
[Crossref] [PubMed]

Ash, E. A.

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237(5357), 510–512 (1972).
[Crossref] [PubMed]

Bertarelli, C.

Betzig, E.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991).
[Crossref] [PubMed]

Bianco, A.

Blaikie, R.

J. Foulkes and R. Blaikie, “Finite Element Simulation of Absorbance Modulation Optical Lithography,” in Proceedings of International Conference on Nanoscience and Nanotechnology (ICONN 2008), 184–187 (2008).
[Crossref]

Bowman, C. N.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-Photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324(5929), 913–917 (2009).
[Crossref] [PubMed]

Cao, Y.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4(2061), 2061 (2013).
[PubMed]

Castagna, R.

Enomoto, Y.

C. Fonseca, M. Somervell, S. Scheer, Y. Kuwahara, K. Nafus, R. Gronheid, S. Tarutani, and Y. Enomoto, “Advances in dual-tone development for pitch frequency doubling,” Proc. SPIE 7640, 76400E (2010).
[Crossref]

Evans, R. A.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4(2061), 2061 (2013).
[PubMed]

Fischer, J.

J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. 22(32), 3578–3582 (2010).
[Crossref] [PubMed]

Fonseca, C.

C. Fonseca, M. Somervell, S. Scheer, Y. Kuwahara, K. Nafus, R. Gronheid, S. Tarutani, and Y. Enomoto, “Advances in dual-tone development for pitch frequency doubling,” Proc. SPIE 7640, 76400E (2010).
[Crossref]

Foulkes, J.

J. Foulkes and R. Blaikie, “Finite Element Simulation of Absorbance Modulation Optical Lithography,” in Proceedings of International Conference on Nanoscience and Nanotechnology (ICONN 2008), 184–187 (2008).
[Crossref]

Fourkas, J. T.

J. T. Fourkas, “Nanoscale photolithography with visible light,” J. Phys. Chem. Lett. 1(8), 1221–1227 (2010).
[Crossref]

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

Gan, Z.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4(2061), 2061 (2013).
[PubMed]

Gattass, R. R.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

Gershgoren, E.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

Gil, D.

Gronheid, R.

C. Fonseca, M. Somervell, S. Scheer, Y. Kuwahara, K. Nafus, R. Gronheid, S. Tarutani, and Y. Enomoto, “Advances in dual-tone development for pitch frequency doubling,” Proc. SPIE 7640, 76400E (2010).
[Crossref]

Gu, M.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4(2061), 2061 (2013).
[PubMed]

Harris, T. D.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991).
[Crossref] [PubMed]

Hecht, B.

L. Novotny, B. Hecht, and D. Pohl, “Implications of high resolution to near-field optical microscopy,” Ultramicroscopy 71(1–4), 341–344 (1998).
[Crossref]

Hell, S. W.

Horikawa, Y.

T. Tsuujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-resolution disk with a photochromic mask layer,” Jpn. J. Appl. Phys. 36(Part 1, No. 1B), 526–529 (1997).
[Crossref]

Hrelescu, C.

Hwang, H.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

Inao, Y.

T. Ito, T. Yamada, Y. Inao, T. Yamaguchi, N. Mizutani, and R. Kuroda, “Fabrication of half-pitch 32 nm resist patterns using near-field lithography with a - Si mask,” Appl. Phys. Lett. 89(3), 033113 (2006).
[Crossref]

Irie, M.

T. Tsuujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-resolution disk with a photochromic mask layer,” Jpn. J. Appl. Phys. 36(Part 1, No. 1B), 526–529 (1997).
[Crossref]

T. Tsujioka, M. Kume, and M. Irie, “Theoretical analysis of super-resolution optical disk mastering using a photoreactive dye mask layer,” Opt. Rev. 4(3), 385–389 (1997).
[Crossref]

Ishikawa, A.

T. Tsuujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-resolution disk with a photochromic mask layer,” Jpn. J. Appl. Phys. 36(Part 1, No. 1B), 526–529 (1997).
[Crossref]

Ito, T.

T. Ito, T. Yamada, Y. Inao, T. Yamaguchi, N. Mizutani, and R. Kuroda, “Fabrication of half-pitch 32 nm resist patterns using near-field lithography with a - Si mask,” Appl. Phys. Lett. 89(3), 033113 (2006).
[Crossref]

Jacak, J.

Katzmann, J.

Klar, T. A.

Kostelak, R. L.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991).
[Crossref] [PubMed]

Kowalski, B. A.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-Photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324(5929), 913–917 (2009).
[Crossref] [PubMed]

Kume, M.

T. Tsuujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-resolution disk with a photochromic mask layer,” Jpn. J. Appl. Phys. 36(Part 1, No. 1B), 526–529 (1997).
[Crossref]

T. Tsujioka, M. Kume, and M. Irie, “Theoretical analysis of super-resolution optical disk mastering using a photoreactive dye mask layer,” Opt. Rev. 4(3), 385–389 (1997).
[Crossref]

Kuroda, R.

T. Ito, T. Yamada, Y. Inao, T. Yamaguchi, N. Mizutani, and R. Kuroda, “Fabrication of half-pitch 32 nm resist patterns using near-field lithography with a - Si mask,” Appl. Phys. Lett. 89(3), 033113 (2006).
[Crossref]

Kuwahara, Y.

C. Fonseca, M. Somervell, S. Scheer, Y. Kuwahara, K. Nafus, R. Gronheid, S. Tarutani, and Y. Enomoto, “Advances in dual-tone development for pitch frequency doubling,” Proc. SPIE 7640, 76400E (2010).
[Crossref]

Li, L.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

Masid, F.

McLeod, R. R.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-Photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324(5929), 913–917 (2009).
[Crossref] [PubMed]

Menon, R.

Mizutani, N.

T. Ito, T. Yamada, Y. Inao, T. Yamaguchi, N. Mizutani, and R. Kuroda, “Fabrication of half-pitch 32 nm resist patterns using near-field lithography with a - Si mask,” Appl. Phys. Lett. 89(3), 033113 (2006).
[Crossref]

Nafus, K.

C. Fonseca, M. Somervell, S. Scheer, Y. Kuwahara, K. Nafus, R. Gronheid, S. Tarutani, and Y. Enomoto, “Advances in dual-tone development for pitch frequency doubling,” Proc. SPIE 7640, 76400E (2010).
[Crossref]

Nicholls, G.

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237(5357), 510–512 (1972).
[Crossref] [PubMed]

Novotny, L.

L. Novotny, B. Hecht, and D. Pohl, “Implications of high resolution to near-field optical microscopy,” Ultramicroscopy 71(1–4), 341–344 (1998).
[Crossref]

Pariani, G.

Pohl, D.

L. Novotny, B. Hecht, and D. Pohl, “Implications of high resolution to near-field optical microscopy,” Ultramicroscopy 71(1–4), 341–344 (1998).
[Crossref]

Scheer, S.

C. Fonseca, M. Somervell, S. Scheer, Y. Kuwahara, K. Nafus, R. Gronheid, S. Tarutani, and Y. Enomoto, “Advances in dual-tone development for pitch frequency doubling,” Proc. SPIE 7640, 76400E (2010).
[Crossref]

Scott, T. F.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-Photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324(5929), 913–917 (2009).
[Crossref] [PubMed]

Smith, H. I.

Somervell, M.

C. Fonseca, M. Somervell, S. Scheer, Y. Kuwahara, K. Nafus, R. Gronheid, S. Tarutani, and Y. Enomoto, “Advances in dual-tone development for pitch frequency doubling,” Proc. SPIE 7640, 76400E (2010).
[Crossref]

Sullivan, A. C.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-Photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324(5929), 913–917 (2009).
[Crossref] [PubMed]

Tarutani, S.

C. Fonseca, M. Somervell, S. Scheer, Y. Kuwahara, K. Nafus, R. Gronheid, S. Tarutani, and Y. Enomoto, “Advances in dual-tone development for pitch frequency doubling,” Proc. SPIE 7640, 76400E (2010).
[Crossref]

Trautman, J. K.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991).
[Crossref] [PubMed]

Tsai, H.-Y.

T. L. Andrew, H.-Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical Nanopatterning,” Science 324(5929), 917–921 (2009).
[Crossref] [PubMed]

Tsujioka, T.

T. Tsujioka, M. Kume, and M. Irie, “Theoretical analysis of super-resolution optical disk mastering using a photoreactive dye mask layer,” Opt. Rev. 4(3), 385–389 (1997).
[Crossref]

Tsuujioka, T.

T. Tsuujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-resolution disk with a photochromic mask layer,” Jpn. J. Appl. Phys. 36(Part 1, No. 1B), 526–529 (1997).
[Crossref]

von Freymann, G.

J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. 22(32), 3578–3582 (2010).
[Crossref] [PubMed]

Wegener, M.

J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. 22(32), 3578–3582 (2010).
[Crossref] [PubMed]

Weiner, J. S.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991).
[Crossref] [PubMed]

Wichmann, J.

Wollhofen, R.

Yamada, T.

T. Ito, T. Yamada, Y. Inao, T. Yamaguchi, N. Mizutani, and R. Kuroda, “Fabrication of half-pitch 32 nm resist patterns using near-field lithography with a - Si mask,” Appl. Phys. Lett. 89(3), 033113 (2006).
[Crossref]

Yamaguchi, T.

T. Ito, T. Yamada, Y. Inao, T. Yamaguchi, N. Mizutani, and R. Kuroda, “Fabrication of half-pitch 32 nm resist patterns using near-field lithography with a - Si mask,” Appl. Phys. Lett. 89(3), 033113 (2006).
[Crossref]

Adv. Mater. (1)

J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. 22(32), 3578–3582 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

T. Ito, T. Yamada, Y. Inao, T. Yamaguchi, N. Mizutani, and R. Kuroda, “Fabrication of half-pitch 32 nm resist patterns using near-field lithography with a - Si mask,” Appl. Phys. Lett. 89(3), 033113 (2006).
[Crossref]

Arch. Mikrosk. Anat. Entwichlungsmech (1)

E. Abbé, “Beitragezurtheorie des mikroskops und der mikroskopischenwahrnehmung,” Arch. Mikrosk. Anat. Entwichlungsmech 9(1), 413–418 (1873).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Phys. Chem. Lett. (1)

J. T. Fourkas, “Nanoscale photolithography with visible light,” J. Phys. Chem. Lett. 1(8), 1221–1227 (2010).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Tsuujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-resolution disk with a photochromic mask layer,” Jpn. J. Appl. Phys. 36(Part 1, No. 1B), 526–529 (1997).
[Crossref]

Nat. Commun. (1)

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4(2061), 2061 (2013).
[PubMed]

Nature (1)

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237(5357), 510–512 (1972).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Opt. Rev. (1)

T. Tsujioka, M. Kume, and M. Irie, “Theoretical analysis of super-resolution optical disk mastering using a photoreactive dye mask layer,” Opt. Rev. 4(3), 385–389 (1997).
[Crossref]

Proc. SPIE (1)

C. Fonseca, M. Somervell, S. Scheer, Y. Kuwahara, K. Nafus, R. Gronheid, S. Tarutani, and Y. Enomoto, “Advances in dual-tone development for pitch frequency doubling,” Proc. SPIE 7640, 76400E (2010).
[Crossref]

Science (4)

T. L. Andrew, H.-Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical Nanopatterning,” Science 324(5929), 917–921 (2009).
[Crossref] [PubMed]

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-Photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324(5929), 913–917 (2009).
[Crossref] [PubMed]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991).
[Crossref] [PubMed]

Ultramicroscopy (1)

L. Novotny, B. Hecht, and D. Pohl, “Implications of high resolution to near-field optical microscopy,” Ultramicroscopy 71(1–4), 341–344 (1998).
[Crossref]

Other (2)

F. M. Scellenberg, “Selected papers on resolution enhancement techniques in optical lithography,” SPIE Milestone Services 178, (2004).

J. Foulkes and R. Blaikie, “Finite Element Simulation of Absorbance Modulation Optical Lithography,” in Proceedings of International Conference on Nanoscience and Nanotechnology (ICONN 2008), 184–187 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental set-up to perform AMOL. (a) Schematic of the modified Mach-Zehnder interferometer. Light at λ2 = 647nm interferes with itself to produce a standing wave while light at λ1 = 325nm uniformly illuminates the sample. The period of the λ2 standing wave is 457nm. (b) The sample stack is illuminated by a standing wave at λ2 and a uniform illumination at λ1. The competing action of both wavelengths through the absorbance modulation layer exposes the photoresist.

Fig. 2
Fig. 2

(a) Mapping of the line-spread function (LSF) for different values of the intensity ratio I2/I1. The circles represent the actual exposure results while the solid lines are fits to sinusoids using smoothing spline method. (b) Scanning electron micrographs of the fabricated lines whose measurements were used as the data for the plot shown in part (a). (c) Plot of the FWHM (Full-Width at Half-Maximum) of the smallest lines obtained for each ratio versus the intensity ratio shows the line-width scaling property of AMOL as a function of the intensity ratio of the two wavelengths.

Fig. 3
Fig. 3

UV-Vis measurements of the AML layer after simultaneous exposure to the two wavelengths at (a) 1000 intensity ratio, shows the decrease in the opacity of the AML to λ1, but (b) at 4000 intensity ratio – shows that the opacity of the AML to the λ1 wavelength is retained. (c) Comparison of the absorbance of the AML at 325 nm for different ratios of simultaneous exposures to λ1 and λ2. (d) UV-Vis measurements to show the photo-switch-ability of the AML layer. (e) Absorbance values at the λ1 and λ2 wavelengths show that the opacity of the AML layer to λ1 can be recovered repeatedly.

Fig. 4
Fig. 4

(a) Modified Lloyd’s mirror interferometer for proof-of-principle AMOL exposures. (b) Lines of width ~80 nm fabricated in S1813 photoresist at an intensity ratio of 4000. (c) Lines of width ~70-80nm created in sensitized M91Y photoresist at an intensity ratio of 4000.

Metrics