Abstract

Light scattering was thought to be the fundamental limitation for the depth at which optical imaging methods can retain their resolution and sensitivity. However, it was shown that light can be focused inside even the most strongly scattering objects by spatially shaping the wavefront of the incident light. This review summarizes recently developed feedback-based approaches for focusing light inside and through scattering objects.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Seeing through turbidity with harmonic holography [Invited]

Ye Pu and Demetri Psaltis
Appl. Opt. 52(4) 567-578 (2013)

Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers

Ori Katz, Eran Small, Yefeng Guan, and Yaron Silberberg
Optica 1(3) 170-174 (2014)

Detecting relative speed changes of moving objects through scattering medium by using wavefront shaping and laser speckle contrast analysis

Yangyang Li, Rui Liu, Yang Wang, Dong Wen, Liangwei Meng, Jinling Lu, and Pengcheng Li
Opt. Express 24(8) 8382-8390 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Ishimaru, “Limitation on image resolution imposed by a random medium,” Appl. Opt. 17(3), 348–352 (1978).
    [Crossref] [PubMed]
  2. M. Minsky, “Microscopy apparatus,” Patent US3013467 A (1961).
  3. P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
    [Crossref] [PubMed]
  4. J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Methods 8(10), 811–819 (2011).
    [Crossref] [PubMed]
  5. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  6. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
    [Crossref] [PubMed]
  7. P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
    [Crossref] [PubMed]
  8. P. Sebbah, ed., Waves and Imaging Through Complex Media (Kluwer Academic, 2001).
  9. V. Ntziachristos, “Going deeper than microscopy: The optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
    [Crossref] [PubMed]
  10. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
    [Crossref] [PubMed]
  11. I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express 16(1), 67–80 (2008).
    [Crossref] [PubMed]
  12. X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
    [Crossref] [PubMed]
  13. Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928(2012).
    [Crossref] [PubMed]
  14. B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (trove),” Nat. Photonics 7(4), 300–305 (2013).
    [Crossref] [PubMed]
  15. K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
    [Crossref] [PubMed]
  16. T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
    [Crossref] [PubMed]
  17. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20(10), 10583–10590 (2012).
    [Crossref] [PubMed]
  18. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber,” Biomed. Opt. Express 4(2), 260–270 (2013).
    [Crossref] [PubMed]
  19. Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
    [Crossref] [PubMed]
  20. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
    [Crossref]
  21. E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106(19), 193905 (2011).
    [Crossref] [PubMed]
  22. C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Lee, Y. H. Cho, and Y. Park, “Full-field subwavelength imaging using a scattering superlens,” Phys. Rev. Lett. 113(11), 113901 (2014).
    [Crossref] [PubMed]
  23. E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Nonimaging speckle interferometry for high-speed nanometer-scale position detection,” Opt. Lett. 37(6), 1070–1072 (2012).
    [Crossref] [PubMed]
  24. R. Horstmeyer, B. Judkewitz, I. M. Vellekoop, S. Assawaworrarit, and C. Yang, “Physical key-protected one-time pad,” Sci Rep 3, 3543 (2013).
    [Crossref] [PubMed]
  25. S. A. Goorden, M. Horstmann, A. P. Mosk, B. Škorić, and P. W. Pinkse, “Quantum-secure authentication of a physical unclonable key,” Optica 1(6), 421–424 (2014).
    [Crossref]
  26. R. Horstmeyer, B. Judkewitz, I. Vellekoop, and C. Yang, “Secure storage of cryptographic keys within random volumetric materials,” in CLEO: Applications and Technology, (Optical Society of America, 2013), AF1H. 6.
  27. R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront shaping for focusing light into biological tissue,” Submitted. (2015).
  28. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
    [Crossref]
  29. M. C. W. van Rossum and T. M. Nieuwenhuizen, “Multiple scattering of classical waves,” Rev. Mod. Phys. 71(1), 313–371 (1999).
    [Crossref]
  30. J. W. Goodman, Statistical Optics (Wiley, 2000).
  31. C. W. J. Beenakker, “Random-matrix theory of quantum transport,” Rev. Mod. Phys. 69(3), 731–808 (1997).
    [Crossref]
  32. I. M. Vellekoop, “Controlling the propagation of light in disordered scattering media,” PhD Thesis (University of Twente, Enschede, 2008).
  33. I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101(12), 120601 (2008).
    [Crossref] [PubMed]
  34. D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, and A. P. Mosk, “Focusing light through random photonic media by binary amplitude modulation,” Opt. Express 19(5), 4017–4029 (2011).
    [Crossref] [PubMed]
  35. H. Yılmaz, W. L. Vos, and A. P. Mosk, “Optimal control of light propagation through multiple-scattering media in the presence of noise,” Biomed. Opt. Express 4(9), 1759–1768 (2013).
    [Crossref] [PubMed]
  36. I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 081108 (2012).
    [Crossref] [PubMed]
  37. S. N. Chandrasekaran, H. Ligtenberg, W. Steenbergen, and I. M. Vellekoop, “Using digital micromirror devices for focusing light through turbid media,” in SPIE MOEMS-MEMS, (International Society for Optics and Photonics, 2014), 897905.
  38. O. Dorokhov, “On the coexistence of localized and extended electronic states in the metallic phase,” Solid State Commun. 51(6), 381–384 (1984).
    [Crossref]
  39. S. F. Liew, S. M. Popoff, A. P. Mosk, W. L. Vos, and H. Cao, “Transmission channels for light in absorbing random media: From diffusive to ballistic-like transport,” Phys. Rev. B 89(22), 224202 (2014).
    [Crossref]
  40. S. M. Popoff, A. Goetschy, S. F. Liew, A. D. Stone, and H. Cao, “Coherent control of total transmission of light through disordered media,” Phys. Rev. Lett. 112(13), 133903 (2014).
    [Crossref] [PubMed]
  41. M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 583–585 (2012).
    [Crossref]
  42. I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281(11), 3071–3080 (2008).
    [Crossref]
  43. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
    [Crossref] [PubMed]
  44. D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20(2), 1733–1740 (2012).
    [Crossref] [PubMed]
  45. W. B. Bridges, P. T. Brunner, S. P. Lazzara, T. A. Nussmeier, T. R. O’Meara, J. A. Sanguinet, and W. P. Brown., “Coherent optical adaptive techniques,” Appl. Opt. 13(2), 291–300 (1974).
    [Crossref] [PubMed]
  46. M. Cui, “Parallel wavefront optimization method for focusing light through random scattering media,” Opt. Lett. 36(6), 870–872 (2011).
    [Crossref] [PubMed]
  47. S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
    [Crossref] [PubMed]
  48. D. B. Conkey and R. Piestun, “Color image projection through a strongly scattering wall,” Opt. Express 20(25), 27312–27318 (2012).
    [Crossref] [PubMed]
  49. Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107(2), 023902 (2011).
    [Crossref] [PubMed]
  50. D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, and R. Piestun, “Genetic algorithm optimization for focusing through turbid media in noisy environments,” Opt. Express 20(5), 4840–4849 (2012).
    [Crossref] [PubMed]
  51. D. B. Conkey, A. M. Caravaca-Aguirre, J. D. Dove, H. Ju, T. W. Murray, and R. Piestun, “Super-resolution photoacoustic imaging through a scattering wall,” arXiv preprint arXiv:1310.5736 (2013).
  52. J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A. 109(22), 8434–8439 (2012).
    [Crossref] [PubMed]
  53. O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
    [Crossref]
  54. C. Draeger, J.-C. Aime, and M. Fink, “One-channel time-reversal in chaotic cavities: Experimental results,” J. Acoust. Soc. Am. 105(2), 618–625 (1999).
    [Crossref]
  55. C. Draeger and M. Fink, “One-channel time-reversal in chaotic cavities: Theoretical limits,” J. Acoust. Soc. Am. 105(2), 611–617 (1999).
    [Crossref]
  56. J. Aulbach, B. Gjonaj, P. Johnson, and A. Lagendijk, “Spatiotemporal focusing in opaque scattering media by wave front shaping with nonlinear feedback,” Opt. Express 20(28), 29237–29251 (2012).
    [Crossref] [PubMed]
  57. P. Lai, L. Wang, J. W. Tay, and L. V. Wang, “Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media,” Nat. Photonics 9(2), 126–132 (2015).
    [Crossref]
  58. O. Katz, E. Small, Y. Guan, and Y. Silberberg, “Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers,” Optica 1(3), 170–174 (2014).
    [Crossref]
  59. H. P. Paudel, C. Stockbridge, J. Mertz, and T. Bifano, “Focusing polychromatic light through strongly scattering media,” Opt. Express 21(14), 17299–17308 (2013).
    [Crossref] [PubMed]
  60. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: The evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
    [Crossref] [PubMed]
  61. F. Kong, R. H. Silverman, L. Liu, P. V. Chitnis, K. K. Lee, and Y.-C. Chen, “Photoacoustic-guided convergence of light through optically diffusive media,” Opt. Lett. 36(11), 2053–2055 (2011).
    [Crossref] [PubMed]
  62. T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2013).
    [Crossref]
  63. A. M. Caravaca-Aguirre, D. B. Conkey, J. D. Dove, H. Ju, T. W. Murray, and R. Piestun, “High contrast three-dimensional photoacoustic imaging through scattering media by localized optical fluence enhancement,” Opt. Express 21(22), 26671–26676 (2013).
    [Crossref] [PubMed]
  64. J. W. Tay, P. Lai, Y. Suzuki, and L. V. Wang, “Ultrasonically encoded wavefront shaping for focusing into random media,” Sci Rep 4, 3918 (2014).
    [Crossref] [PubMed]
  65. Y. Guan, O. Katz, E. Small, J. Zhou, and Y. Silberberg, “Polarization control of multiply scattered light through random media by wavefront shaping,” Opt. Lett. 37(22), 4663–4665 (2012).
    [Crossref] [PubMed]
  66. J.-H. Park, C. Park, H. Yu, Y.-H. Cho, and Y. Park, “Dynamic active wave plate using random nanoparticles,” Opt. Express 20(15), 17010–17016 (2012).
    [Crossref]
  67. M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7(11), 919–924 (2013).
    [Crossref]
  68. J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J.-H. Park, W.-Y. Oh, W. Jang, S. Lee, and Y. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21(3), 2890–2902 (2013).
    [Crossref] [PubMed]
  69. H. Yu, J. Jang, J. Lim, J.-H. Park, W. Jang, J.-Y. Kim, and Y. Park, “Depth-enhanced 2-D optical coherence tomography using complex wavefront shaping,” Opt. Express 22(7), 7514–7523 (2014).
    [Crossref] [PubMed]
  70. J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106(10), 103901 (2011).
    [Crossref] [PubMed]
  71. C. Stockbridge, Y. Lu, J. Moore, S. Hoffman, R. Paxman, K. Toussaint, and T. Bifano, “Focusing through dynamic scattering media,” Opt. Express 20(14), 15086–15092 (2012).
    [Crossref] [PubMed]
  72. D. B. Conkey, A. M. Caravaca-Aguirre, E. Niv, and R. Piestun, “High-speed phase-control of wavefronts with binary amplitude dmd for light control through dynamic turbid media,” in SPIE MOEMS-MEMS, (International Society for Optics and Photonics, 2013), 86170I.
  73. I. M. Vellekoop and C. M. Aegerter, “Focusing light through living tissue,” in (SPIE, 2010), 755430.
  74. M. Jang, H. Ruan, I. M. Vellekoop, B. Judkewitz, E. Chung, and C. Yang, “Relation between speckle decorrelation and optical phase conjugation (opc)-based turbidity suppression through dynamic scattering media: A study on in vivo mouse skin,” Biomed. Opt. Express 6(1), 72–85 (2015).
    [Crossref] [PubMed]
  75. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
    [Crossref] [PubMed]
  76. E. Larose, L. Margerin, A. Derode, B. van Tiggelen, M. Campillo, N. Shapiro, A. Paul, L. Stehly, and M. Tanter, “Correlation of random wavefields: An interdisciplinary review,” Geophysics 71(4), SI11–SI21 (2006).
    [Crossref]
  77. F. van Beijnum, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Frequency bandwidth of light focused through turbid media,” Opt. Lett. 36(3), 373–375 (2011).
    [Crossref] [PubMed]
  78. H. F. Arnoldus and T. F. George, “Phase-conjugated fluorescence,” Phys. Rev. A 43(7), 3675–3689 (1991).
    [Crossref] [PubMed]
  79. S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61(7), 834–837 (1988).
    [Crossref] [PubMed]
  80. I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
    [Crossref] [PubMed]
  81. J. H. Li and A. Z. Genack, “Correlation in laser speckle,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(5), 4530–4533 (1994).
    [Crossref] [PubMed]
  82. I. M. Vellekoop and C. M. Aegerter, “Scattered light fluorescence microscopy: Imaging through turbid layers,” Opt. Lett. 35(8), 1245–1247 (2010).
    [Crossref] [PubMed]
  83. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
    [Crossref] [PubMed]
  84. O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
    [Crossref]
  85. B. Judkewitz, R. Horstmeyer, I. M. Vellekoop, and C. Yang, “Translation correlations in anisotropically scattering media,” submitted arXiv:1411.7157 [physics.optics](2014).
  86. S. Schott, J. Bertolotti, J.-F. Léger, L. Bourdieu, and S. Gigan, “Characterization of the angular memory effect of scattered light in biological tissues,” arXiv preprint arXiv:1502.00270 (2015).
  87. R. K. Tyson, Principles of Adaptive Optics (Academic Press, 1998).
  88. A. Lagendijk, M. P. van Albada, and A. Lagendijk, “Transmission and intensity correlations in wave propagation through random media,” Phys. Rev. B Condens. Matter 45(2), 658–666 (1992).
    [Crossref] [PubMed]
  89. D. E. Milkie, E. Betzig, and N. Ji, “Pupil-segmentation-based adaptive optical microscopy with full-pupil illumination,” Opt. Lett. 36(21), 4206–4208 (2011).
    [Crossref] [PubMed]
  90. B. Y. Zel’dovich, V. I. Popovichev, V. V. Ragul’skii, and F. S. Faisullov, “Connection between the wave fronts of the reflected and exciting light in stimulated mandel'shtam-brillouin scattering,” JETP Lett. 15, 109 (1972).
  91. A. Yariv, “Phase conjugate optics and real-time holography [invited paper],” IEEE J. Quantum Electron. 14(9), 650–660 (1978).
    [Crossref]
  92. R. A. Fisher, Optical Phase Conjugation (Academic Press, 1983).
  93. M. Cui and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18(4), 3444–3455 (2010).
    [Crossref] [PubMed]
  94. C.-L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18(12), 12283–12290 (2010).
    [Crossref] [PubMed]
  95. M. Fink, C. Prada, F. Wu, and D. Cassereau, “Self focusing in inhomogeneous media with time reversal acoustic mirrors,” IEEE Ultrason. Symp. Proc. 2, 681–686 (1989).
    [Crossref]
  96. C. Prada, J. L. Thomas, and M. Fink, “The iterative time reversal process: Analysis of the convergence,” J. Acoust. Soc. Am. 97(1), 62–71 (1995).
    [Crossref]
  97. X. Yang, Y. Pu, and D. Psaltis, “Imaging blood cells through scattering biological tissue using speckle scanning microscopy,” Opt. Express 22(3), 3405–3413 (2014).
    [Crossref] [PubMed]
  98. R. Barankov and J. Mertz, “High-throughput imaging of self-luminous objects through a single optical fibre,” Nat. Commun. 5, 5581 (2014).
    [Crossref] [PubMed]
  99. A. M. Caravaca-Aguirre, E. Niv, D. B. Conkey, and R. Piestun, “Real-time resilient focusing through a bending multimode fiber,” Opt. Express 21(10), 12881–12887 (2013).
    [Crossref] [PubMed]
  100. I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
    [Crossref]
  101. E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Optimal concentration of light in turbid materials,” J. Opt. Soc. Am. B 28(5), 1200–1203 (2011).
    [Crossref]
  102. B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Active spatial control of plasmonic fields,” Nat. Photonics 5(6), 360–363 (2011).
    [Crossref]
  103. B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Focusing and scanning microscopy with propagating surface plasmons,” Phys. Rev. Lett. 110(26), 266804 (2013).
    [Crossref] [PubMed]
  104. S. R. Huisman, T. J. Huisman, S. A. Goorden, A. P. Mosk, and P. W. Pinkse, “Programming balanced optical beam splitters in white paint,” Opt. Express 22(7), 8320–8332 (2014).
    [Crossref] [PubMed]
  105. J.-H. Park, C. Park, H. Yu, Y.-H. Cho, and Y. Park, “Active spectral filtering through turbid media,” Opt. Lett. 37(15), 3261–3263 (2012).
    [Crossref] [PubMed]
  106. T. J. Huisman, S. R. Huisman, A. P. Mosk, and P. W. Pinkse, “Controlling single-photon fock-state propagation through opaque scattering media,” Appl. Phys. B 3, 1–5 (2013).
  107. R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way functions,” Science 297(5589), 2026–2030 (2002).
    [Crossref] [PubMed]

2015 (2)

2014 (11)

S. A. Goorden, M. Horstmann, A. P. Mosk, B. Škorić, and P. W. Pinkse, “Quantum-secure authentication of a physical unclonable key,” Optica 1(6), 421–424 (2014).
[Crossref]

X. Yang, Y. Pu, and D. Psaltis, “Imaging blood cells through scattering biological tissue using speckle scanning microscopy,” Opt. Express 22(3), 3405–3413 (2014).
[Crossref] [PubMed]

H. Yu, J. Jang, J. Lim, J.-H. Park, W. Jang, J.-Y. Kim, and Y. Park, “Depth-enhanced 2-D optical coherence tomography using complex wavefront shaping,” Opt. Express 22(7), 7514–7523 (2014).
[Crossref] [PubMed]

S. R. Huisman, T. J. Huisman, S. A. Goorden, A. P. Mosk, and P. W. Pinkse, “Programming balanced optical beam splitters in white paint,” Opt. Express 22(7), 8320–8332 (2014).
[Crossref] [PubMed]

O. Katz, E. Small, Y. Guan, and Y. Silberberg, “Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers,” Optica 1(3), 170–174 (2014).
[Crossref]

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Lee, Y. H. Cho, and Y. Park, “Full-field subwavelength imaging using a scattering superlens,” Phys. Rev. Lett. 113(11), 113901 (2014).
[Crossref] [PubMed]

S. F. Liew, S. M. Popoff, A. P. Mosk, W. L. Vos, and H. Cao, “Transmission channels for light in absorbing random media: From diffusive to ballistic-like transport,” Phys. Rev. B 89(22), 224202 (2014).
[Crossref]

S. M. Popoff, A. Goetschy, S. F. Liew, A. D. Stone, and H. Cao, “Coherent control of total transmission of light through disordered media,” Phys. Rev. Lett. 112(13), 133903 (2014).
[Crossref] [PubMed]

J. W. Tay, P. Lai, Y. Suzuki, and L. V. Wang, “Ultrasonically encoded wavefront shaping for focusing into random media,” Sci Rep 4, 3918 (2014).
[Crossref] [PubMed]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

R. Barankov and J. Mertz, “High-throughput imaging of self-luminous objects through a single optical fibre,” Nat. Commun. 5, 5581 (2014).
[Crossref] [PubMed]

2013 (12)

T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2013).
[Crossref]

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7(11), 919–924 (2013).
[Crossref]

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Focusing and scanning microscopy with propagating surface plasmons,” Phys. Rev. Lett. 110(26), 266804 (2013).
[Crossref] [PubMed]

T. J. Huisman, S. R. Huisman, A. P. Mosk, and P. W. Pinkse, “Controlling single-photon fock-state propagation through opaque scattering media,” Appl. Phys. B 3, 1–5 (2013).

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (trove),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

R. Horstmeyer, B. Judkewitz, I. M. Vellekoop, S. Assawaworrarit, and C. Yang, “Physical key-protected one-time pad,” Sci Rep 3, 3543 (2013).
[Crossref] [PubMed]

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber,” Biomed. Opt. Express 4(2), 260–270 (2013).
[Crossref] [PubMed]

J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J.-H. Park, W.-Y. Oh, W. Jang, S. Lee, and Y. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21(3), 2890–2902 (2013).
[Crossref] [PubMed]

A. M. Caravaca-Aguirre, E. Niv, D. B. Conkey, and R. Piestun, “Real-time resilient focusing through a bending multimode fiber,” Opt. Express 21(10), 12881–12887 (2013).
[Crossref] [PubMed]

H. P. Paudel, C. Stockbridge, J. Mertz, and T. Bifano, “Focusing polychromatic light through strongly scattering media,” Opt. Express 21(14), 17299–17308 (2013).
[Crossref] [PubMed]

H. Yılmaz, W. L. Vos, and A. P. Mosk, “Optimal control of light propagation through multiple-scattering media in the presence of noise,” Biomed. Opt. Express 4(9), 1759–1768 (2013).
[Crossref] [PubMed]

A. M. Caravaca-Aguirre, D. B. Conkey, J. D. Dove, H. Ju, T. W. Murray, and R. Piestun, “High contrast three-dimensional photoacoustic imaging through scattering media by localized optical fluence enhancement,” Opt. Express 21(22), 26671–26676 (2013).
[Crossref] [PubMed]

2012 (19)

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 081108 (2012).
[Crossref] [PubMed]

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A. 109(22), 8434–8439 (2012).
[Crossref] [PubMed]

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
[Crossref] [PubMed]

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref] [PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 583–585 (2012).
[Crossref]

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928(2012).
[Crossref] [PubMed]

D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20(2), 1733–1740 (2012).
[Crossref] [PubMed]

D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, and R. Piestun, “Genetic algorithm optimization for focusing through turbid media in noisy environments,” Opt. Express 20(5), 4840–4849 (2012).
[Crossref] [PubMed]

E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Nonimaging speckle interferometry for high-speed nanometer-scale position detection,” Opt. Lett. 37(6), 1070–1072 (2012).
[Crossref] [PubMed]

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20(10), 10583–10590 (2012).
[Crossref] [PubMed]

C. Stockbridge, Y. Lu, J. Moore, S. Hoffman, R. Paxman, K. Toussaint, and T. Bifano, “Focusing through dynamic scattering media,” Opt. Express 20(14), 15086–15092 (2012).
[Crossref] [PubMed]

J.-H. Park, C. Park, H. Yu, Y.-H. Cho, and Y. Park, “Dynamic active wave plate using random nanoparticles,” Opt. Express 20(15), 17010–17016 (2012).
[Crossref]

J.-H. Park, C. Park, H. Yu, Y.-H. Cho, and Y. Park, “Active spectral filtering through turbid media,” Opt. Lett. 37(15), 3261–3263 (2012).
[Crossref] [PubMed]

Y. Guan, O. Katz, E. Small, J. Zhou, and Y. Silberberg, “Polarization control of multiply scattered light through random media by wavefront shaping,” Opt. Lett. 37(22), 4663–4665 (2012).
[Crossref] [PubMed]

D. B. Conkey and R. Piestun, “Color image projection through a strongly scattering wall,” Opt. Express 20(25), 27312–27318 (2012).
[Crossref] [PubMed]

J. Aulbach, B. Gjonaj, P. Johnson, and A. Lagendijk, “Spatiotemporal focusing in opaque scattering media by wave front shaping with nonlinear feedback,” Opt. Express 20(28), 29237–29251 (2012).
[Crossref] [PubMed]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

2011 (13)

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106(10), 103901 (2011).
[Crossref] [PubMed]

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Active spatial control of plasmonic fields,” Nat. Photonics 5(6), 360–363 (2011).
[Crossref]

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref] [PubMed]

J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Methods 8(10), 811–819 (2011).
[Crossref] [PubMed]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107(2), 023902 (2011).
[Crossref] [PubMed]

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106(19), 193905 (2011).
[Crossref] [PubMed]

F. van Beijnum, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Frequency bandwidth of light focused through turbid media,” Opt. Lett. 36(3), 373–375 (2011).
[Crossref] [PubMed]

D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, and A. P. Mosk, “Focusing light through random photonic media by binary amplitude modulation,” Opt. Express 19(5), 4017–4029 (2011).
[Crossref] [PubMed]

M. Cui, “Parallel wavefront optimization method for focusing light through random scattering media,” Opt. Lett. 36(6), 870–872 (2011).
[Crossref] [PubMed]

E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Optimal concentration of light in turbid materials,” J. Opt. Soc. Am. B 28(5), 1200–1203 (2011).
[Crossref]

F. Kong, R. H. Silverman, L. Liu, P. V. Chitnis, K. K. Lee, and Y.-C. Chen, “Photoacoustic-guided convergence of light through optically diffusive media,” Opt. Lett. 36(11), 2053–2055 (2011).
[Crossref] [PubMed]

D. E. Milkie, E. Betzig, and N. Ji, “Pupil-segmentation-based adaptive optical microscopy with full-pupil illumination,” Opt. Lett. 36(21), 4206–4208 (2011).
[Crossref] [PubMed]

2010 (8)

M. Cui and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18(4), 3444–3455 (2010).
[Crossref] [PubMed]

I. M. Vellekoop and C. M. Aegerter, “Scattered light fluorescence microscopy: Imaging through turbid layers,” Opt. Lett. 35(8), 1245–1247 (2010).
[Crossref] [PubMed]

C.-L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18(12), 12283–12290 (2010).
[Crossref] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

V. Ntziachristos, “Going deeper than microscopy: The optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref] [PubMed]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[Crossref]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

2008 (5)

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281(11), 3071–3080 (2008).
[Crossref]

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101(12), 120601 (2008).
[Crossref] [PubMed]

I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express 16(1), 67–80 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (1)

E. Larose, L. Margerin, A. Derode, B. van Tiggelen, M. Campillo, N. Shapiro, A. Paul, L. Stehly, and M. Tanter, “Correlation of random wavefields: An interdisciplinary review,” Geophysics 71(4), SI11–SI21 (2006).
[Crossref]

2005 (2)

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: The evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[Crossref] [PubMed]

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

2002 (1)

R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way functions,” Science 297(5589), 2026–2030 (2002).
[Crossref] [PubMed]

2000 (1)

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[Crossref] [PubMed]

1999 (3)

C. Draeger, J.-C. Aime, and M. Fink, “One-channel time-reversal in chaotic cavities: Experimental results,” J. Acoust. Soc. Am. 105(2), 618–625 (1999).
[Crossref]

C. Draeger and M. Fink, “One-channel time-reversal in chaotic cavities: Theoretical limits,” J. Acoust. Soc. Am. 105(2), 611–617 (1999).
[Crossref]

M. C. W. van Rossum and T. M. Nieuwenhuizen, “Multiple scattering of classical waves,” Rev. Mod. Phys. 71(1), 313–371 (1999).
[Crossref]

1997 (1)

C. W. J. Beenakker, “Random-matrix theory of quantum transport,” Rev. Mod. Phys. 69(3), 731–808 (1997).
[Crossref]

1995 (1)

C. Prada, J. L. Thomas, and M. Fink, “The iterative time reversal process: Analysis of the convergence,” J. Acoust. Soc. Am. 97(1), 62–71 (1995).
[Crossref]

1994 (1)

J. H. Li and A. Z. Genack, “Correlation in laser speckle,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(5), 4530–4533 (1994).
[Crossref] [PubMed]

1992 (1)

A. Lagendijk, M. P. van Albada, and A. Lagendijk, “Transmission and intensity correlations in wave propagation through random media,” Phys. Rev. B Condens. Matter 45(2), 658–666 (1992).
[Crossref] [PubMed]

1991 (2)

H. F. Arnoldus and T. F. George, “Phase-conjugated fluorescence,” Phys. Rev. A 43(7), 3675–3689 (1991).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

1988 (2)

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61(7), 834–837 (1988).
[Crossref] [PubMed]

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[Crossref] [PubMed]

1984 (1)

O. Dorokhov, “On the coexistence of localized and extended electronic states in the metallic phase,” Solid State Commun. 51(6), 381–384 (1984).
[Crossref]

1978 (2)

A. Yariv, “Phase conjugate optics and real-time holography [invited paper],” IEEE J. Quantum Electron. 14(9), 650–660 (1978).
[Crossref]

A. Ishimaru, “Limitation on image resolution imposed by a random medium,” Appl. Opt. 17(3), 348–352 (1978).
[Crossref] [PubMed]

1974 (1)

1972 (1)

B. Y. Zel’dovich, V. I. Popovichev, V. V. Ragul’skii, and F. S. Faisullov, “Connection between the wave fronts of the reflected and exciting light in stimulated mandel'shtam-brillouin scattering,” JETP Lett. 15, 109 (1972).

Aegerter, C. M.

Aime, J.-C.

C. Draeger, J.-C. Aime, and M. Fink, “One-channel time-reversal in chaotic cavities: Experimental results,” J. Acoust. Soc. Am. 105(2), 618–625 (1999).
[Crossref]

Akbulut, D.

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106(19), 193905 (2011).
[Crossref] [PubMed]

D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, and A. P. Mosk, “Focusing light through random photonic media by binary amplitude modulation,” Opt. Express 19(5), 4017–4029 (2011).
[Crossref] [PubMed]

Arnoldus, H. F.

H. F. Arnoldus and T. F. George, “Phase-conjugated fluorescence,” Phys. Rev. A 43(7), 3675–3689 (1991).
[Crossref] [PubMed]

Assawaworrarit, S.

R. Horstmeyer, B. Judkewitz, I. M. Vellekoop, S. Assawaworrarit, and C. Yang, “Physical key-protected one-time pad,” Sci Rep 3, 3543 (2013).
[Crossref] [PubMed]

Aulbach, J.

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Focusing and scanning microscopy with propagating surface plasmons,” Phys. Rev. Lett. 110(26), 266804 (2013).
[Crossref] [PubMed]

J. Aulbach, B. Gjonaj, P. Johnson, and A. Lagendijk, “Spatiotemporal focusing in opaque scattering media by wave front shaping with nonlinear feedback,” Opt. Express 20(28), 29237–29251 (2012).
[Crossref] [PubMed]

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Active spatial control of plasmonic fields,” Nat. Photonics 5(6), 360–363 (2011).
[Crossref]

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106(10), 103901 (2011).
[Crossref] [PubMed]

Barankov, R.

R. Barankov and J. Mertz, “High-throughput imaging of self-luminous objects through a single optical fibre,” Nat. Commun. 5, 5581 (2014).
[Crossref] [PubMed]

Beenakker, C. W. J.

C. W. J. Beenakker, “Random-matrix theory of quantum transport,” Rev. Mod. Phys. 69(3), 731–808 (1997).
[Crossref]

Berland, K. M.

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[Crossref] [PubMed]

Bertolotti, J.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106(19), 193905 (2011).
[Crossref] [PubMed]

Betzig, E.

Bifano, T.

Blum, C.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Boccara, A. C.

T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2013).
[Crossref]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Bossy, E.

T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2013).
[Crossref]

Bridges, W. B.

Bromberg, Y.

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7(11), 919–924 (2013).
[Crossref]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

Brown, A. N.

Brown, W. P.

Brunner, P. T.

Campillo, M.

E. Larose, L. Margerin, A. Derode, B. van Tiggelen, M. Campillo, N. Shapiro, A. Paul, L. Stehly, and M. Tanter, “Correlation of random wavefields: An interdisciplinary review,” Geophysics 71(4), SI11–SI21 (2006).
[Crossref]

Cao, H.

S. F. Liew, S. M. Popoff, A. P. Mosk, W. L. Vos, and H. Cao, “Transmission channels for light in absorbing random media: From diffusive to ballistic-like transport,” Phys. Rev. B 89(22), 224202 (2014).
[Crossref]

S. M. Popoff, A. Goetschy, S. F. Liew, A. D. Stone, and H. Cao, “Coherent control of total transmission of light through disordered media,” Phys. Rev. Lett. 112(13), 133903 (2014).
[Crossref] [PubMed]

Caravaca-Aguirre, A. M.

Carminati, R.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Cassereau, D.

M. Fink, C. Prada, F. Wu, and D. Cassereau, “Self focusing in inhomogeneous media with time reversal acoustic mirrors,” IEEE Ultrason. Symp. Proc. 2, 681–686 (1989).
[Crossref]

Chaigne, T.

T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2013).
[Crossref]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, Y.-C.

Chitnis, P. V.

Cho, Y. H.

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Lee, Y. H. Cho, and Y. Park, “Full-field subwavelength imaging using a scattering superlens,” Phys. Rev. Lett. 113(11), 113901 (2014).
[Crossref] [PubMed]

Cho, Y.-H.

Choi, H.

Choi, W.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 583–585 (2012).
[Crossref]

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 583–585 (2012).
[Crossref]

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107(2), 023902 (2011).
[Crossref] [PubMed]

Choi, Y.

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 583–585 (2012).
[Crossref]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107(2), 023902 (2011).
[Crossref] [PubMed]

Chung, E.

Cižmár, T.

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref] [PubMed]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[Crossref]

Conkey, D. B.

Cui, M.

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 081108 (2012).
[Crossref] [PubMed]

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
[Crossref] [PubMed]

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A. 109(22), 8434–8439 (2012).
[Crossref] [PubMed]

M. Cui, “Parallel wavefront optimization method for focusing light through random scattering media,” Opt. Lett. 36(6), 870–872 (2011).
[Crossref] [PubMed]

M. Cui and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18(4), 3444–3455 (2010).
[Crossref] [PubMed]

Dasari, R. R.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107(2), 023902 (2011).
[Crossref] [PubMed]

Davidson, N.

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7(11), 919–924 (2013).
[Crossref]

Denk, W.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

Derode, A.

E. Larose, L. Margerin, A. Derode, B. van Tiggelen, M. Campillo, N. Shapiro, A. Paul, L. Stehly, and M. Tanter, “Correlation of random wavefields: An interdisciplinary review,” Geophysics 71(4), SI11–SI21 (2006).
[Crossref]

Dholakia, K.

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref] [PubMed]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[Crossref]

Dimarzio, C. A.

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928(2012).
[Crossref] [PubMed]

Dong, C. Y.

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[Crossref] [PubMed]

Dorokhov, O.

O. Dorokhov, “On the coexistence of localized and extended electronic states in the metallic phase,” Solid State Commun. 51(6), 381–384 (1984).
[Crossref]

Dove, J. D.

Draeger, C.

C. Draeger, J.-C. Aime, and M. Fink, “One-channel time-reversal in chaotic cavities: Experimental results,” J. Acoust. Soc. Am. 105(2), 618–625 (1999).
[Crossref]

C. Draeger and M. Fink, “One-channel time-reversal in chaotic cavities: Theoretical limits,” J. Acoust. Soc. Am. 105(2), 611–617 (1999).
[Crossref]

et,

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Faisullov, F. S.

B. Y. Zel’dovich, V. I. Popovichev, V. V. Ragul’skii, and F. S. Faisullov, “Connection between the wave fronts of the reflected and exciting light in stimulated mandel'shtam-brillouin scattering,” JETP Lett. 15, 109 (1972).

Fang-Yen, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107(2), 023902 (2011).
[Crossref] [PubMed]

Farahi, S.

Feld, M. S.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107(2), 023902 (2011).
[Crossref] [PubMed]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

Feng, S.

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[Crossref] [PubMed]

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61(7), 834–837 (1988).
[Crossref] [PubMed]

Fink, M.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2013).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

C. Draeger and M. Fink, “One-channel time-reversal in chaotic cavities: Theoretical limits,” J. Acoust. Soc. Am. 105(2), 611–617 (1999).
[Crossref]

C. Draeger, J.-C. Aime, and M. Fink, “One-channel time-reversal in chaotic cavities: Experimental results,” J. Acoust. Soc. Am. 105(2), 618–625 (1999).
[Crossref]

C. Prada, J. L. Thomas, and M. Fink, “The iterative time reversal process: Analysis of the convergence,” J. Acoust. Soc. Am. 97(1), 62–71 (1995).
[Crossref]

M. Fink, C. Prada, F. Wu, and D. Cassereau, “Self focusing in inhomogeneous media with time reversal acoustic mirrors,” IEEE Ultrason. Symp. Proc. 2, 681–686 (1989).
[Crossref]

Fiolka, R.

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Freund, I.

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[Crossref] [PubMed]

Friesem, A. A.

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7(11), 919–924 (2013).
[Crossref]

Genack, A. Z.

J. H. Li and A. Z. Genack, “Correlation in laser speckle,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(5), 4530–4533 (1994).
[Crossref] [PubMed]

George, T. F.

H. F. Arnoldus and T. F. George, “Phase-conjugated fluorescence,” Phys. Rev. A 43(7), 3675–3689 (1991).
[Crossref] [PubMed]

Germain, R. N.

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A. 109(22), 8434–8439 (2012).
[Crossref] [PubMed]

Gershenfeld, N.

R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way functions,” Science 297(5589), 2026–2030 (2002).
[Crossref] [PubMed]

Gigan, S.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2013).
[Crossref]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Gjonaj, B.

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Focusing and scanning microscopy with propagating surface plasmons,” Phys. Rev. Lett. 110(26), 266804 (2013).
[Crossref] [PubMed]

J. Aulbach, B. Gjonaj, P. Johnson, and A. Lagendijk, “Spatiotemporal focusing in opaque scattering media by wave front shaping with nonlinear feedback,” Opt. Express 20(28), 29237–29251 (2012).
[Crossref] [PubMed]

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106(10), 103901 (2011).
[Crossref] [PubMed]

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Active spatial control of plasmonic fields,” Nat. Photonics 5(6), 360–363 (2011).
[Crossref]

Goetschy, A.

S. M. Popoff, A. Goetschy, S. F. Liew, A. D. Stone, and H. Cao, “Coherent control of total transmission of light through disordered media,” Phys. Rev. Lett. 112(13), 133903 (2014).
[Crossref] [PubMed]

Goorden, S. A.

Grange, R.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Guan, Y.

Ha, J.

Han, S.

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Lee, Y. H. Cho, and Y. Park, “Full-field subwavelength imaging using a scattering superlens,” Phys. Rev. Lett. 113(11), 113901 (2014).
[Crossref] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Heidmann, P.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

Hoffman, S.

Horstmann, M.

Horstmeyer, R.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (trove),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

R. Horstmeyer, B. Judkewitz, I. M. Vellekoop, S. Assawaworrarit, and C. Yang, “Physical key-protected one-time pad,” Sci Rep 3, 3543 (2013).
[Crossref] [PubMed]

Hsieh, C.-L.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huisman, S. R.

S. R. Huisman, T. J. Huisman, S. A. Goorden, A. P. Mosk, and P. W. Pinkse, “Programming balanced optical beam splitters in white paint,” Opt. Express 22(7), 8320–8332 (2014).
[Crossref] [PubMed]

T. J. Huisman, S. R. Huisman, A. P. Mosk, and P. W. Pinkse, “Controlling single-photon fock-state propagation through opaque scattering media,” Appl. Phys. B 3, 1–5 (2013).

Huisman, T. J.

Ishimaru, A.

Jang, J.

Jang, M.

Jang, W.

Ji, N.

Jin, K.

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Lee, Y. H. Cho, and Y. Park, “Full-field subwavelength imaging using a scattering superlens,” Phys. Rev. Lett. 113(11), 113901 (2014).
[Crossref] [PubMed]

Johnson, P.

Johnson, P. M.

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Focusing and scanning microscopy with propagating surface plasmons,” Phys. Rev. Lett. 110(26), 266804 (2013).
[Crossref] [PubMed]

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Active spatial control of plasmonic fields,” Nat. Photonics 5(6), 360–363 (2011).
[Crossref]

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106(10), 103901 (2011).
[Crossref] [PubMed]

Ju, H.

Judkewitz, B.

M. Jang, H. Ruan, I. M. Vellekoop, B. Judkewitz, E. Chung, and C. Yang, “Relation between speckle decorrelation and optical phase conjugation (opc)-based turbidity suppression through dynamic scattering media: A study on in vivo mouse skin,” Biomed. Opt. Express 6(1), 72–85 (2015).
[Crossref] [PubMed]

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (trove),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

R. Horstmeyer, B. Judkewitz, I. M. Vellekoop, S. Assawaworrarit, and C. Yang, “Physical key-protected one-time pad,” Sci Rep 3, 3543 (2013).
[Crossref] [PubMed]

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928(2012).
[Crossref] [PubMed]

Kane, C.

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61(7), 834–837 (1988).
[Crossref] [PubMed]

Kang, P.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107(2), 023902 (2011).
[Crossref] [PubMed]

Katz, O.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

O. Katz, E. Small, Y. Guan, and Y. Silberberg, “Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers,” Optica 1(3), 170–174 (2014).
[Crossref]

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7(11), 919–924 (2013).
[Crossref]

T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2013).
[Crossref]

Y. Guan, O. Katz, E. Small, J. Zhou, and Y. Silberberg, “Polarization control of multiply scattered light through random media by wavefront shaping,” Opt. Lett. 37(22), 4663–4665 (2012).
[Crossref] [PubMed]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

Keller, P. J.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

Kim, J.

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 583–585 (2012).
[Crossref]

Kim, J.-Y.

Kim, M.

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Lee, Y. H. Cho, and Y. Park, “Full-field subwavelength imaging using a scattering superlens,” Phys. Rev. Lett. 113(11), 113901 (2014).
[Crossref] [PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 583–585 (2012).
[Crossref]

Ko, S. H.

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Lee, Y. H. Cho, and Y. Park, “Full-field subwavelength imaging using a scattering superlens,” Phys. Rev. Lett. 113(11), 113901 (2014).
[Crossref] [PubMed]

Kong, F.

Kuipers, L.

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Focusing and scanning microscopy with propagating surface plasmons,” Phys. Rev. Lett. 110(26), 266804 (2013).
[Crossref] [PubMed]

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Active spatial control of plasmonic fields,” Nat. Photonics 5(6), 360–363 (2011).
[Crossref]

Lagendijk, A.

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Focusing and scanning microscopy with propagating surface plasmons,” Phys. Rev. Lett. 110(26), 266804 (2013).
[Crossref] [PubMed]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

J. Aulbach, B. Gjonaj, P. Johnson, and A. Lagendijk, “Spatiotemporal focusing in opaque scattering media by wave front shaping with nonlinear feedback,” Opt. Express 20(28), 29237–29251 (2012).
[Crossref] [PubMed]

E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Nonimaging speckle interferometry for high-speed nanometer-scale position detection,” Opt. Lett. 37(6), 1070–1072 (2012).
[Crossref] [PubMed]

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106(19), 193905 (2011).
[Crossref] [PubMed]

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106(10), 103901 (2011).
[Crossref] [PubMed]

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Active spatial control of plasmonic fields,” Nat. Photonics 5(6), 360–363 (2011).
[Crossref]

E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Optimal concentration of light in turbid materials,” J. Opt. Soc. Am. B 28(5), 1200–1203 (2011).
[Crossref]

F. van Beijnum, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Frequency bandwidth of light focused through turbid media,” Opt. Lett. 36(3), 373–375 (2011).
[Crossref] [PubMed]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express 16(1), 67–80 (2008).
[Crossref] [PubMed]

A. Lagendijk, M. P. van Albada, and A. Lagendijk, “Transmission and intensity correlations in wave propagation through random media,” Phys. Rev. B Condens. Matter 45(2), 658–666 (1992).
[Crossref] [PubMed]

A. Lagendijk, M. P. van Albada, and A. Lagendijk, “Transmission and intensity correlations in wave propagation through random media,” Phys. Rev. B Condens. Matter 45(2), 658–666 (1992).
[Crossref] [PubMed]

Lai, P.

P. Lai, L. Wang, J. W. Tay, and L. V. Wang, “Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media,” Nat. Photonics 9(2), 126–132 (2015).
[Crossref]

J. W. Tay, P. Lai, Y. Suzuki, and L. V. Wang, “Ultrasonically encoded wavefront shaping for focusing into random media,” Sci Rep 4, 3918 (2014).
[Crossref] [PubMed]

Larose, E.

E. Larose, L. Margerin, A. Derode, B. van Tiggelen, M. Campillo, N. Shapiro, A. Paul, L. Stehly, and M. Tanter, “Correlation of random wavefields: An interdisciplinary review,” Geophysics 71(4), SI11–SI21 (2006).
[Crossref]

Lazzara, S. P.

Lee, K. J.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107(2), 023902 (2011).
[Crossref] [PubMed]

Lee, K. K.

Lee, P. A.

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61(7), 834–837 (1988).
[Crossref] [PubMed]

Lee, S.

Lee, Y. H.

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Lee, Y. H. Cho, and Y. Park, “Full-field subwavelength imaging using a scattering superlens,” Phys. Rev. Lett. 113(11), 113901 (2014).
[Crossref] [PubMed]

Lerosey, G.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

Li, J. H.

J. H. Li and A. Z. Genack, “Correlation in laser speckle,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(5), 4530–4533 (1994).
[Crossref] [PubMed]

Liew, S. F.

S. M. Popoff, A. Goetschy, S. F. Liew, A. D. Stone, and H. Cao, “Coherent control of total transmission of light through disordered media,” Phys. Rev. Lett. 112(13), 133903 (2014).
[Crossref] [PubMed]

S. F. Liew, S. M. Popoff, A. P. Mosk, W. L. Vos, and H. Cao, “Transmission channels for light in absorbing random media: From diffusive to ballistic-like transport,” Phys. Rev. B 89(22), 224202 (2014).
[Crossref]

Lim, J.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Liu, H.

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref] [PubMed]

Liu, L.

Lu, Y.

Margerin, L.

E. Larose, L. Margerin, A. Derode, B. van Tiggelen, M. Campillo, N. Shapiro, A. Paul, L. Stehly, and M. Tanter, “Correlation of random wavefields: An interdisciplinary review,” Geophysics 71(4), SI11–SI21 (2006).
[Crossref]

Masters, B. R.

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[Crossref] [PubMed]

Mathy, A.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (trove),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

Mazilu, M.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[Crossref]

Mertz, J.

R. Barankov and J. Mertz, “High-throughput imaging of self-luminous objects through a single optical fibre,” Nat. Commun. 5, 5581 (2014).
[Crossref] [PubMed]

H. P. Paudel, C. Stockbridge, J. Mertz, and T. Bifano, “Focusing polychromatic light through strongly scattering media,” Opt. Express 21(14), 17299–17308 (2013).
[Crossref] [PubMed]

J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Methods 8(10), 811–819 (2011).
[Crossref] [PubMed]

Milkie, D. E.

Moore, J.

Moser, C.

Mosk, A. P.

S. R. Huisman, T. J. Huisman, S. A. Goorden, A. P. Mosk, and P. W. Pinkse, “Programming balanced optical beam splitters in white paint,” Opt. Express 22(7), 8320–8332 (2014).
[Crossref] [PubMed]

S. A. Goorden, M. Horstmann, A. P. Mosk, B. Škorić, and P. W. Pinkse, “Quantum-secure authentication of a physical unclonable key,” Optica 1(6), 421–424 (2014).
[Crossref]

S. F. Liew, S. M. Popoff, A. P. Mosk, W. L. Vos, and H. Cao, “Transmission channels for light in absorbing random media: From diffusive to ballistic-like transport,” Phys. Rev. B 89(22), 224202 (2014).
[Crossref]

T. J. Huisman, S. R. Huisman, A. P. Mosk, and P. W. Pinkse, “Controlling single-photon fock-state propagation through opaque scattering media,” Appl. Phys. B 3, 1–5 (2013).

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Focusing and scanning microscopy with propagating surface plasmons,” Phys. Rev. Lett. 110(26), 266804 (2013).
[Crossref] [PubMed]

H. Yılmaz, W. L. Vos, and A. P. Mosk, “Optimal control of light propagation through multiple-scattering media in the presence of noise,” Biomed. Opt. Express 4(9), 1759–1768 (2013).
[Crossref] [PubMed]

E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Nonimaging speckle interferometry for high-speed nanometer-scale position detection,” Opt. Lett. 37(6), 1070–1072 (2012).
[Crossref] [PubMed]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106(19), 193905 (2011).
[Crossref] [PubMed]

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106(10), 103901 (2011).
[Crossref] [PubMed]

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Active spatial control of plasmonic fields,” Nat. Photonics 5(6), 360–363 (2011).
[Crossref]

F. van Beijnum, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Frequency bandwidth of light focused through turbid media,” Opt. Lett. 36(3), 373–375 (2011).
[Crossref] [PubMed]

D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, and A. P. Mosk, “Focusing light through random photonic media by binary amplitude modulation,” Opt. Express 19(5), 4017–4029 (2011).
[Crossref] [PubMed]

E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Optimal concentration of light in turbid materials,” J. Opt. Soc. Am. B 28(5), 1200–1203 (2011).
[Crossref]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express 16(1), 67–80 (2008).
[Crossref] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281(11), 3071–3080 (2008).
[Crossref]

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101(12), 120601 (2008).
[Crossref] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
[Crossref] [PubMed]

Murray, T. W.

Nam, K. T.

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Lee, Y. H. Cho, and Y. Park, “Full-field subwavelength imaging using a scattering superlens,” Phys. Rev. Lett. 113(11), 113901 (2014).
[Crossref] [PubMed]

Nieuwenhuizen, T. M.

M. C. W. van Rossum and T. M. Nieuwenhuizen, “Multiple scattering of classical waves,” Rev. Mod. Phys. 71(1), 313–371 (1999).
[Crossref]

Niv, E.

Nixon, M.

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7(11), 919–924 (2013).
[Crossref]

Ntziachristos, V.

V. Ntziachristos, “Going deeper than microscopy: The optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref] [PubMed]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: The evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[Crossref] [PubMed]

Nussmeier, T. A.

O’Meara, T. R.

Oh, W.-Y.

Papadopoulos, I. N.

Pappu, R.

R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way functions,” Science 297(5589), 2026–2030 (2002).
[Crossref] [PubMed]

Park, C.

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Lee, Y. H. Cho, and Y. Park, “Full-field subwavelength imaging using a scattering superlens,” Phys. Rev. Lett. 113(11), 113901 (2014).
[Crossref] [PubMed]

J.-H. Park, C. Park, H. Yu, Y.-H. Cho, and Y. Park, “Dynamic active wave plate using random nanoparticles,” Opt. Express 20(15), 17010–17016 (2012).
[Crossref]

J.-H. Park, C. Park, H. Yu, Y.-H. Cho, and Y. Park, “Active spectral filtering through turbid media,” Opt. Lett. 37(15), 3261–3263 (2012).
[Crossref] [PubMed]

Park, J.-H.

Park, Q. H.

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 583–585 (2012).
[Crossref]

Park, Y.

Paudel, H. P.

Paul, A.

E. Larose, L. Margerin, A. Derode, B. van Tiggelen, M. Campillo, N. Shapiro, A. Paul, L. Stehly, and M. Tanter, “Correlation of random wavefields: An interdisciplinary review,” Geophysics 71(4), SI11–SI21 (2006).
[Crossref]

Paxman, R.

Piestun, R.

Pinkse, P. W.

Popoff, S.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

Popoff, S. M.

S. M. Popoff, A. Goetschy, S. F. Liew, A. D. Stone, and H. Cao, “Coherent control of total transmission of light through disordered media,” Phys. Rev. Lett. 112(13), 133903 (2014).
[Crossref] [PubMed]

S. F. Liew, S. M. Popoff, A. P. Mosk, W. L. Vos, and H. Cao, “Transmission channels for light in absorbing random media: From diffusive to ballistic-like transport,” Phys. Rev. B 89(22), 224202 (2014).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Popovichev, V. I.

B. Y. Zel’dovich, V. I. Popovichev, V. V. Ragul’skii, and F. S. Faisullov, “Connection between the wave fronts of the reflected and exciting light in stimulated mandel'shtam-brillouin scattering,” JETP Lett. 15, 109 (1972).

Prada, C.

C. Prada, J. L. Thomas, and M. Fink, “The iterative time reversal process: Analysis of the convergence,” J. Acoust. Soc. Am. 97(1), 62–71 (1995).
[Crossref]

M. Fink, C. Prada, F. Wu, and D. Cassereau, “Self focusing in inhomogeneous media with time reversal acoustic mirrors,” IEEE Ultrason. Symp. Proc. 2, 681–686 (1989).
[Crossref]

Psaltis, D.

Pu, Y.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Ragul’skii, V. V.

B. Y. Zel’dovich, V. I. Popovichev, V. V. Ragul’skii, and F. S. Faisullov, “Connection between the wave fronts of the reflected and exciting light in stimulated mandel'shtam-brillouin scattering,” JETP Lett. 15, 109 (1972).

Recht, B.

R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way functions,” Science 297(5589), 2026–2030 (2002).
[Crossref] [PubMed]

Ripoll, J.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: The evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[Crossref] [PubMed]

Rodriguez, C.

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Lee, Y. H. Cho, and Y. Park, “Full-field subwavelength imaging using a scattering superlens,” Phys. Rev. Lett. 113(11), 113901 (2014).
[Crossref] [PubMed]

Rosenbluh, M.

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[Crossref] [PubMed]

Ruan, H.

Sanguinet, J. A.

Schmidt, A. D.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Shapiro, N.

E. Larose, L. Margerin, A. Derode, B. van Tiggelen, M. Campillo, N. Shapiro, A. Paul, L. Stehly, and M. Tanter, “Correlation of random wavefields: An interdisciplinary review,” Geophysics 71(4), SI11–SI21 (2006).
[Crossref]

Shin, J.

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Lee, Y. H. Cho, and Y. Park, “Full-field subwavelength imaging using a scattering superlens,” Phys. Rev. Lett. 113(11), 113901 (2014).
[Crossref] [PubMed]

Si, K.

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
[Crossref] [PubMed]

Silberberg, Y.

O. Katz, E. Small, Y. Guan, and Y. Silberberg, “Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers,” Optica 1(3), 170–174 (2014).
[Crossref]

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7(11), 919–924 (2013).
[Crossref]

Y. Guan, O. Katz, E. Small, J. Zhou, and Y. Silberberg, “Polarization control of multiply scattered light through random media by wavefront shaping,” Opt. Lett. 37(22), 4663–4665 (2012).
[Crossref] [PubMed]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

Silverman, R. H.

Škoric, B.

Small, E.

O. Katz, E. Small, Y. Guan, and Y. Silberberg, “Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers,” Optica 1(3), 170–174 (2014).
[Crossref]

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7(11), 919–924 (2013).
[Crossref]

Y. Guan, O. Katz, E. Small, J. Zhou, and Y. Silberberg, “Polarization control of multiply scattered light through random media by wavefront shaping,” Opt. Lett. 37(22), 4663–4665 (2012).
[Crossref] [PubMed]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

So, P. T. C.

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[Crossref] [PubMed]

Stehly, L.

E. Larose, L. Margerin, A. Derode, B. van Tiggelen, M. Campillo, N. Shapiro, A. Paul, L. Stehly, and M. Tanter, “Correlation of random wavefields: An interdisciplinary review,” Geophysics 71(4), SI11–SI21 (2006).
[Crossref]

Stelzer, E. H. K.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Stockbridge, C.

Stone, A. D.

S. M. Popoff, A. Goetschy, S. F. Liew, A. D. Stone, and H. Cao, “Coherent control of total transmission of light through disordered media,” Phys. Rev. Lett. 112(13), 133903 (2014).
[Crossref] [PubMed]

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61(7), 834–837 (1988).
[Crossref] [PubMed]

Suzuki, Y.

J. W. Tay, P. Lai, Y. Suzuki, and L. V. Wang, “Ultrasonically encoded wavefront shaping for focusing into random media,” Sci Rep 4, 3918 (2014).
[Crossref] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Tang, J.

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A. 109(22), 8434–8439 (2012).
[Crossref] [PubMed]

Tanter, M.

E. Larose, L. Margerin, A. Derode, B. van Tiggelen, M. Campillo, N. Shapiro, A. Paul, L. Stehly, and M. Tanter, “Correlation of random wavefields: An interdisciplinary review,” Geophysics 71(4), SI11–SI21 (2006).
[Crossref]

Tay, J. W.

P. Lai, L. Wang, J. W. Tay, and L. V. Wang, “Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media,” Nat. Photonics 9(2), 126–132 (2015).
[Crossref]

J. W. Tay, P. Lai, Y. Suzuki, and L. V. Wang, “Ultrasonically encoded wavefront shaping for focusing into random media,” Sci Rep 4, 3918 (2014).
[Crossref] [PubMed]

Taylor, J.

R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way functions,” Science 297(5589), 2026–2030 (2002).
[Crossref] [PubMed]

Thomas, J. L.

C. Prada, J. L. Thomas, and M. Fink, “The iterative time reversal process: Analysis of the convergence,” J. Acoust. Soc. Am. 97(1), 62–71 (1995).
[Crossref]

Toussaint, K.

van Albada, M. P.

A. Lagendijk, M. P. van Albada, and A. Lagendijk, “Transmission and intensity correlations in wave propagation through random media,” Phys. Rev. B Condens. Matter 45(2), 658–666 (1992).
[Crossref] [PubMed]

van Beijnum, F.

van Putten, E. G.

van Rossum, M. C. W.

M. C. W. van Rossum and T. M. Nieuwenhuizen, “Multiple scattering of classical waves,” Rev. Mod. Phys. 71(1), 313–371 (1999).
[Crossref]

van Tiggelen, B.

E. Larose, L. Margerin, A. Derode, B. van Tiggelen, M. Campillo, N. Shapiro, A. Paul, L. Stehly, and M. Tanter, “Correlation of random wavefields: An interdisciplinary review,” Geophysics 71(4), SI11–SI21 (2006).
[Crossref]

Vellekoop, I. M.

M. Jang, H. Ruan, I. M. Vellekoop, B. Judkewitz, E. Chung, and C. Yang, “Relation between speckle decorrelation and optical phase conjugation (opc)-based turbidity suppression through dynamic scattering media: A study on in vivo mouse skin,” Biomed. Opt. Express 6(1), 72–85 (2015).
[Crossref] [PubMed]

R. Horstmeyer, B. Judkewitz, I. M. Vellekoop, S. Assawaworrarit, and C. Yang, “Physical key-protected one-time pad,” Sci Rep 3, 3543 (2013).
[Crossref] [PubMed]

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 081108 (2012).
[Crossref] [PubMed]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

I. M. Vellekoop and C. M. Aegerter, “Scattered light fluorescence microscopy: Imaging through turbid layers,” Opt. Lett. 35(8), 1245–1247 (2010).
[Crossref] [PubMed]

I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express 16(1), 67–80 (2008).
[Crossref] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101(12), 120601 (2008).
[Crossref] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281(11), 3071–3080 (2008).
[Crossref]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
[Crossref] [PubMed]

Vos, W. L.

S. F. Liew, S. M. Popoff, A. P. Mosk, W. L. Vos, and H. Cao, “Transmission channels for light in absorbing random media: From diffusive to ballistic-like transport,” Phys. Rev. B 89(22), 224202 (2014).
[Crossref]

H. Yılmaz, W. L. Vos, and A. P. Mosk, “Optimal control of light propagation through multiple-scattering media in the presence of noise,” Biomed. Opt. Express 4(9), 1759–1768 (2013).
[Crossref] [PubMed]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, and A. P. Mosk, “Focusing light through random photonic media by binary amplitude modulation,” Opt. Express 19(5), 4017–4029 (2011).
[Crossref] [PubMed]

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106(19), 193905 (2011).
[Crossref] [PubMed]

Wang, L.

P. Lai, L. Wang, J. W. Tay, and L. V. Wang, “Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media,” Nat. Photonics 9(2), 126–132 (2015).
[Crossref]

Wang, L. V.

P. Lai, L. Wang, J. W. Tay, and L. V. Wang, “Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media,” Nat. Photonics 9(2), 126–132 (2015).
[Crossref]

J. W. Tay, P. Lai, Y. Suzuki, and L. V. Wang, “Ultrasonically encoded wavefront shaping for focusing into random media,” Sci Rep 4, 3918 (2014).
[Crossref] [PubMed]

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref] [PubMed]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: The evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[Crossref] [PubMed]

Wang, Y. M.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (trove),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928(2012).
[Crossref] [PubMed]

Weissleder, R.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: The evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[Crossref] [PubMed]

Wittbrodt, J.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

Wu, F.

M. Fink, C. Prada, F. Wu, and D. Cassereau, “Self focusing in inhomogeneous media with time reversal acoustic mirrors,” IEEE Ultrason. Symp. Proc. 2, 681–686 (1989).
[Crossref]

Xu, X.

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref] [PubMed]

Yang, C.

M. Jang, H. Ruan, I. M. Vellekoop, B. Judkewitz, E. Chung, and C. Yang, “Relation between speckle decorrelation and optical phase conjugation (opc)-based turbidity suppression through dynamic scattering media: A study on in vivo mouse skin,” Biomed. Opt. Express 6(1), 72–85 (2015).
[Crossref] [PubMed]

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (trove),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

R. Horstmeyer, B. Judkewitz, I. M. Vellekoop, S. Assawaworrarit, and C. Yang, “Physical key-protected one-time pad,” Sci Rep 3, 3543 (2013).
[Crossref] [PubMed]

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928(2012).
[Crossref] [PubMed]

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 081108 (2012).
[Crossref] [PubMed]

M. Cui and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18(4), 3444–3455 (2010).
[Crossref] [PubMed]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

Yang, T. D.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107(2), 023902 (2011).
[Crossref] [PubMed]

Yang, X.

Yaqoob, Z.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

Yariv, A.

A. Yariv, “Phase conjugate optics and real-time holography [invited paper],” IEEE J. Quantum Electron. 14(9), 650–660 (1978).
[Crossref]

Yilmaz, H.

Yoon, C.

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 583–585 (2012).
[Crossref]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Yu, H.

Zel’dovich, B. Y.

B. Y. Zel’dovich, V. I. Popovichev, V. V. Ragul’skii, and F. S. Faisullov, “Connection between the wave fronts of the reflected and exciting light in stimulated mandel'shtam-brillouin scattering,” JETP Lett. 15, 109 (1972).

Zhou, J.

Annu. Rev. Biomed. Eng. (1)

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. B (1)

T. J. Huisman, S. R. Huisman, A. P. Mosk, and P. W. Pinkse, “Controlling single-photon fock-state propagation through opaque scattering media,” Appl. Phys. B 3, 1–5 (2013).

Appl. Phys. Lett. (1)

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 081108 (2012).
[Crossref] [PubMed]

Biomed. Opt. Express (3)

Geophysics (1)

E. Larose, L. Margerin, A. Derode, B. van Tiggelen, M. Campillo, N. Shapiro, A. Paul, L. Stehly, and M. Tanter, “Correlation of random wavefields: An interdisciplinary review,” Geophysics 71(4), SI11–SI21 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Yariv, “Phase conjugate optics and real-time holography [invited paper],” IEEE J. Quantum Electron. 14(9), 650–660 (1978).
[Crossref]

J. Acoust. Soc. Am. (3)

C. Prada, J. L. Thomas, and M. Fink, “The iterative time reversal process: Analysis of the convergence,” J. Acoust. Soc. Am. 97(1), 62–71 (1995).
[Crossref]

C. Draeger, J.-C. Aime, and M. Fink, “One-channel time-reversal in chaotic cavities: Experimental results,” J. Acoust. Soc. Am. 105(2), 618–625 (1999).
[Crossref]

C. Draeger and M. Fink, “One-channel time-reversal in chaotic cavities: Theoretical limits,” J. Acoust. Soc. Am. 105(2), 611–617 (1999).
[Crossref]

J. Opt. Soc. Am. B (1)

JETP Lett. (1)

B. Y. Zel’dovich, V. I. Popovichev, V. V. Ragul’skii, and F. S. Faisullov, “Connection between the wave fronts of the reflected and exciting light in stimulated mandel'shtam-brillouin scattering,” JETP Lett. 15, 109 (1972).

Nat. Biotechnol. (1)

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: The evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[Crossref] [PubMed]

Nat. Commun. (4)

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928(2012).
[Crossref] [PubMed]

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref] [PubMed]

R. Barankov and J. Mertz, “High-throughput imaging of self-luminous objects through a single optical fibre,” Nat. Commun. 5, 5581 (2014).
[Crossref] [PubMed]

Nat. Methods (3)

V. Ntziachristos, “Going deeper than microscopy: The optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref] [PubMed]

J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Methods 8(10), 811–819 (2011).
[Crossref] [PubMed]

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

Nat. Photonics (14)

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref] [PubMed]

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (trove),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
[Crossref] [PubMed]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 583–585 (2012).
[Crossref]

T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2013).
[Crossref]

P. Lai, L. Wang, J. W. Tay, and L. V. Wang, “Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media,” Nat. Photonics 9(2), 126–132 (2015).
[Crossref]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7(11), 919–924 (2013).
[Crossref]

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Active spatial control of plasmonic fields,” Nat. Photonics 5(6), 360–363 (2011).
[Crossref]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

Nature (1)

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Opt. Commun. (1)

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281(11), 3071–3080 (2008).
[Crossref]

Opt. Express (18)

D. B. Conkey and R. Piestun, “Color image projection through a strongly scattering wall,” Opt. Express 20(25), 27312–27318 (2012).
[Crossref] [PubMed]

D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, and R. Piestun, “Genetic algorithm optimization for focusing through turbid media in noisy environments,” Opt. Express 20(5), 4840–4849 (2012).
[Crossref] [PubMed]

J. Aulbach, B. Gjonaj, P. Johnson, and A. Lagendijk, “Spatiotemporal focusing in opaque scattering media by wave front shaping with nonlinear feedback,” Opt. Express 20(28), 29237–29251 (2012).
[Crossref] [PubMed]

D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20(2), 1733–1740 (2012).
[Crossref] [PubMed]

J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J.-H. Park, W.-Y. Oh, W. Jang, S. Lee, and Y. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21(3), 2890–2902 (2013).
[Crossref] [PubMed]

H. Yu, J. Jang, J. Lim, J.-H. Park, W. Jang, J.-Y. Kim, and Y. Park, “Depth-enhanced 2-D optical coherence tomography using complex wavefront shaping,” Opt. Express 22(7), 7514–7523 (2014).
[Crossref] [PubMed]

J.-H. Park, C. Park, H. Yu, Y.-H. Cho, and Y. Park, “Dynamic active wave plate using random nanoparticles,” Opt. Express 20(15), 17010–17016 (2012).
[Crossref]

C. Stockbridge, Y. Lu, J. Moore, S. Hoffman, R. Paxman, K. Toussaint, and T. Bifano, “Focusing through dynamic scattering media,” Opt. Express 20(14), 15086–15092 (2012).
[Crossref] [PubMed]

H. P. Paudel, C. Stockbridge, J. Mertz, and T. Bifano, “Focusing polychromatic light through strongly scattering media,” Opt. Express 21(14), 17299–17308 (2013).
[Crossref] [PubMed]

A. M. Caravaca-Aguirre, D. B. Conkey, J. D. Dove, H. Ju, T. W. Murray, and R. Piestun, “High contrast three-dimensional photoacoustic imaging through scattering media by localized optical fluence enhancement,” Opt. Express 21(22), 26671–26676 (2013).
[Crossref] [PubMed]

D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, and A. P. Mosk, “Focusing light through random photonic media by binary amplitude modulation,” Opt. Express 19(5), 4017–4029 (2011).
[Crossref] [PubMed]

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20(10), 10583–10590 (2012).
[Crossref] [PubMed]

I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express 16(1), 67–80 (2008).
[Crossref] [PubMed]

S. R. Huisman, T. J. Huisman, S. A. Goorden, A. P. Mosk, and P. W. Pinkse, “Programming balanced optical beam splitters in white paint,” Opt. Express 22(7), 8320–8332 (2014).
[Crossref] [PubMed]

A. M. Caravaca-Aguirre, E. Niv, D. B. Conkey, and R. Piestun, “Real-time resilient focusing through a bending multimode fiber,” Opt. Express 21(10), 12881–12887 (2013).
[Crossref] [PubMed]

X. Yang, Y. Pu, and D. Psaltis, “Imaging blood cells through scattering biological tissue using speckle scanning microscopy,” Opt. Express 22(3), 3405–3413 (2014).
[Crossref] [PubMed]

M. Cui and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18(4), 3444–3455 (2010).
[Crossref] [PubMed]

C.-L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18(12), 12283–12290 (2010).
[Crossref] [PubMed]

Opt. Lett. (9)

J.-H. Park, C. Park, H. Yu, Y.-H. Cho, and Y. Park, “Active spectral filtering through turbid media,” Opt. Lett. 37(15), 3261–3263 (2012).
[Crossref] [PubMed]

D. E. Milkie, E. Betzig, and N. Ji, “Pupil-segmentation-based adaptive optical microscopy with full-pupil illumination,” Opt. Lett. 36(21), 4206–4208 (2011).
[Crossref] [PubMed]

I. M. Vellekoop and C. M. Aegerter, “Scattered light fluorescence microscopy: Imaging through turbid layers,” Opt. Lett. 35(8), 1245–1247 (2010).
[Crossref] [PubMed]

F. van Beijnum, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Frequency bandwidth of light focused through turbid media,” Opt. Lett. 36(3), 373–375 (2011).
[Crossref] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
[Crossref] [PubMed]

E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Nonimaging speckle interferometry for high-speed nanometer-scale position detection,” Opt. Lett. 37(6), 1070–1072 (2012).
[Crossref] [PubMed]

F. Kong, R. H. Silverman, L. Liu, P. V. Chitnis, K. K. Lee, and Y.-C. Chen, “Photoacoustic-guided convergence of light through optically diffusive media,” Opt. Lett. 36(11), 2053–2055 (2011).
[Crossref] [PubMed]

Y. Guan, O. Katz, E. Small, J. Zhou, and Y. Silberberg, “Polarization control of multiply scattered light through random media by wavefront shaping,” Opt. Lett. 37(22), 4663–4665 (2012).
[Crossref] [PubMed]

M. Cui, “Parallel wavefront optimization method for focusing light through random scattering media,” Opt. Lett. 36(6), 870–872 (2011).
[Crossref] [PubMed]

Optica (2)

Phys. Rev. A (1)

H. F. Arnoldus and T. F. George, “Phase-conjugated fluorescence,” Phys. Rev. A 43(7), 3675–3689 (1991).
[Crossref] [PubMed]

Phys. Rev. B (1)

S. F. Liew, S. M. Popoff, A. P. Mosk, W. L. Vos, and H. Cao, “Transmission channels for light in absorbing random media: From diffusive to ballistic-like transport,” Phys. Rev. B 89(22), 224202 (2014).
[Crossref]

Phys. Rev. B Condens. Matter (1)

A. Lagendijk, M. P. van Albada, and A. Lagendijk, “Transmission and intensity correlations in wave propagation through random media,” Phys. Rev. B Condens. Matter 45(2), 658–666 (1992).
[Crossref] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

J. H. Li and A. Z. Genack, “Correlation in laser speckle,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(5), 4530–4533 (1994).
[Crossref] [PubMed]

Phys. Rev. Lett. (11)

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61(7), 834–837 (1988).
[Crossref] [PubMed]

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[Crossref] [PubMed]

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Focusing and scanning microscopy with propagating surface plasmons,” Phys. Rev. Lett. 110(26), 266804 (2013).
[Crossref] [PubMed]

S. M. Popoff, A. Goetschy, S. F. Liew, A. D. Stone, and H. Cao, “Coherent control of total transmission of light through disordered media,” Phys. Rev. Lett. 112(13), 133903 (2014).
[Crossref] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107(2), 023902 (2011).
[Crossref] [PubMed]

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106(10), 103901 (2011).
[Crossref] [PubMed]

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106(19), 193905 (2011).
[Crossref] [PubMed]

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Lee, Y. H. Cho, and Y. Park, “Full-field subwavelength imaging using a scattering superlens,” Phys. Rev. Lett. 113(11), 113901 (2014).
[Crossref] [PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101(12), 120601 (2008).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A. 109(22), 8434–8439 (2012).
[Crossref] [PubMed]

Rev. Mod. Phys. (2)

M. C. W. van Rossum and T. M. Nieuwenhuizen, “Multiple scattering of classical waves,” Rev. Mod. Phys. 71(1), 313–371 (1999).
[Crossref]

C. W. J. Beenakker, “Random-matrix theory of quantum transport,” Rev. Mod. Phys. 69(3), 731–808 (1997).
[Crossref]

Sci Rep (2)

R. Horstmeyer, B. Judkewitz, I. M. Vellekoop, S. Assawaworrarit, and C. Yang, “Physical key-protected one-time pad,” Sci Rep 3, 3543 (2013).
[Crossref] [PubMed]

J. W. Tay, P. Lai, Y. Suzuki, and L. V. Wang, “Ultrasonically encoded wavefront shaping for focusing into random media,” Sci Rep 4, 3918 (2014).
[Crossref] [PubMed]

Science (3)

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way functions,” Science 297(5589), 2026–2030 (2002).
[Crossref] [PubMed]

Solid State Commun. (1)

O. Dorokhov, “On the coexistence of localized and extended electronic states in the metallic phase,” Solid State Commun. 51(6), 381–384 (1984).
[Crossref]

Other (15)

D. B. Conkey, A. M. Caravaca-Aguirre, J. D. Dove, H. Ju, T. W. Murray, and R. Piestun, “Super-resolution photoacoustic imaging through a scattering wall,” arXiv preprint arXiv:1310.5736 (2013).

D. B. Conkey, A. M. Caravaca-Aguirre, E. Niv, and R. Piestun, “High-speed phase-control of wavefronts with binary amplitude dmd for light control through dynamic turbid media,” in SPIE MOEMS-MEMS, (International Society for Optics and Photonics, 2013), 86170I.

I. M. Vellekoop and C. M. Aegerter, “Focusing light through living tissue,” in (SPIE, 2010), 755430.

M. Minsky, “Microscopy apparatus,” Patent US3013467 A (1961).

P. Sebbah, ed., Waves and Imaging Through Complex Media (Kluwer Academic, 2001).

R. Horstmeyer, B. Judkewitz, I. Vellekoop, and C. Yang, “Secure storage of cryptographic keys within random volumetric materials,” in CLEO: Applications and Technology, (Optical Society of America, 2013), AF1H. 6.

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront shaping for focusing light into biological tissue,” Submitted. (2015).

I. M. Vellekoop, “Controlling the propagation of light in disordered scattering media,” PhD Thesis (University of Twente, Enschede, 2008).

J. W. Goodman, Statistical Optics (Wiley, 2000).

S. N. Chandrasekaran, H. Ligtenberg, W. Steenbergen, and I. M. Vellekoop, “Using digital micromirror devices for focusing light through turbid media,” in SPIE MOEMS-MEMS, (International Society for Optics and Photonics, 2014), 897905.

M. Fink, C. Prada, F. Wu, and D. Cassereau, “Self focusing in inhomogeneous media with time reversal acoustic mirrors,” IEEE Ultrason. Symp. Proc. 2, 681–686 (1989).
[Crossref]

R. A. Fisher, Optical Phase Conjugation (Academic Press, 1983).

B. Judkewitz, R. Horstmeyer, I. M. Vellekoop, and C. Yang, “Translation correlations in anisotropically scattering media,” submitted arXiv:1411.7157 [physics.optics](2014).

S. Schott, J. Bertolotti, J.-F. Léger, L. Bourdieu, and S. Gigan, “Characterization of the angular memory effect of scattered light in biological tissues,” arXiv preprint arXiv:1502.00270 (2015).

R. K. Tyson, Principles of Adaptive Optics (Academic Press, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Principle of wavefront shaping. a) when a scattering sample is illuminated with a plane wave, the scattered light forms a disordered interference pattern known as laser speckle. b) measured intensity of speckle pattern (logarithmic color scale). c) a spatial light modulator is used to shape the wavefront of the incident beam; the light modulator is programmed using feedback from a detector placed behind the object. After completion, the feedback algorithm has found the optimum solution for focusing light through the sample the intensity in the target has increased by over three orders of magnitude (d). e) by combining feedback from multiple points, simple images can be projected through the object. f) phase of the incident wavefront that was used for measuring (e), no correlations can be observed in the incident field, indicating that the sample fully scrambles the incident wave. Image adapted from Vellekoop & Mosk [10].
Fig. 2
Fig. 2 Stepwise sequential algorithm. This algorithm measures a single row of the TM of a scattering sample. The light modulator is divided into a series of segments, and the phase of each consecutive segment is swept from 0 to 2π (depicted by the crossed out segment) while monitoring the feedback signal. This way, the phase and amplitude of the elements of the TM row are measured. After all measurements are completed, the wavefront is updated (far right) to display the optimum wavefront for focusing. Image reproduced from [42].
Fig. 3
Fig. 3 Random partitioning algorithm. In this iterative approach, half of the segments of the light modulator is chosen at random (crossed squares). The phase of these selected segments is varied until the maximum intensity is reached. After that, the iteration is repeated with a different subset of selected segments. Image reproduced from [42].
Fig. 4
Fig. 4 Block diagram for the genetic algorithm. For each generation several wavefronts are displayed, and the ones giving the highest enhancement are mixed and mutated to generate the next generation of wavefronts. Reproduced from [50] with permission.
Fig. 5
Fig. 5 Simulated performance of different algorithms as a function of time step. a) with additive Gaussian noise at 30% of the initial average intensity. b) 100% additive noise. GA: genetic algorithm; CSA: continuous sequential algorithm (see [42]); TM: transmission matrix / stepwise sequential algorithm; PA: random partitioning algorithm. Figure reproduced from [50] with permission.
Fig. 6
Fig. 6 Temporal compression using only spatial wavefront shaping. a) in a conventional pulse shaper the pixels of the SLM are coupled to the spectral degrees of freedom by scattering from a grating; b) similarly, coherent scattering in a random medium couples each SLM pixel to a different linear combination of the spectral degrees of freedom, forming a new random spectral basis that is phase-controlled by the SLM. In both cases, the spectral resolution maximum is determined by the optical path lengths differences in the medium/shaper. Reproduced from [53] with permission.

Tables (2)

Tables Icon

Table 1 Relative maximum enhancement α for different wavefront shaping methods.

Tables Icon

Table 2 Key differences between adaptive optics and wavefront shaping. Both techniques represent different ends of the scattering spectrum.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E b = a t ba E a
I β = | a t βa E a | 2 a | t βa | 2 a' | E a' | 2
E a = E 0 t βa *
η I ^ β I β
η=α( N1 )+1
I β I in T β with T β a N | t βa | 2
I β ( ϕ α )= | E βα + E β0 | 2 = | E βα | 2 + | E β0 | 2 +2| E βα E β0 |cos( ϕ βα + ϕ α )

Metrics