Abstract

A densely packed waveguide array (DPWA) structure for mode division multiplexing on a silicon chip is proposed. The DPWA consists of several narrow waveguides with different widths, which are densely packed with gaps of 100nm. The lateral dimension of the DPWA is comparable to the conventional multimode waveguide used for mode division multiplexing on silicon. An efficient and parallel (de)multiplexing structure is proposed. For a three-mode DPWA with a 15μm-long (de)multiplexing structure, insertion losses of –0.05dB and cross-talks of –20dB are achievable for all the modes in a wide wavelength range. The present DPWA favors a compact direct bending. In a 45μm-radius 90° bend, insertion losses of –0.1dB and cross-talks of –20dB are obtained. The proposed DPWA structure also shows a large fabrication tolerance.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental demonstration of simultaneous mode and polarization-division multiplexing based on silicon densely packed waveguide array

Kaixuan Chen, Siya Wang, Sitao Chen, Shipeng Wang, Chenzhao Zhang, Daoxin Dai, and Liu Liu
Opt. Lett. 40(20) 4655-4658 (2015)

Engineering of closely packed silicon-on-isolator waveguide arrays for mode division multiplexing applications

Isabella Cerutti, Nicola Andriolli, and Philippe Velha
J. Opt. Soc. Am. B 34(2) 497-506 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  2. Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21(8), 10376–10382 (2013).
    [Crossref] [PubMed]
  3. D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects,” Nanophotonics 3(4-5), 283–311 (2014).
    [Crossref]
  4. J. B. Driscoll, C. P. Chen, R. R. Grote, B. Souhan, J. I. Dadap, A. Stein, M. Lu, K. Bergman, and R. M. Osgood., “A 60 Gb/s MDM-WDM Si photonic link with < 0.7 dB power penalty per channel,” Opt. Express 22(15), 18543–18555 (2014).
    [Crossref] [PubMed]
  5. L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
    [Crossref] [PubMed]
  6. J. Sakaguchi, B. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber,” J. Lightwave Technol. 31(4), 554–562 (2013).
    [Crossref]
  7. S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R. J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
    [Crossref] [PubMed]
  8. Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38(25), 1701–1702 (2002).
    [Crossref]
  9. T. Uematsu, Y. Ishizaka, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “Design of a compact two-mode multi/demultiplexer consisting of multi-mode interference waveguides and a wavelength insensitive phase shifter for mode-division multiplexing transmission,” J. Lightwave Technol. 30(15), 2421–2426 (2012).
    [Crossref]
  10. J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, and R. M. Osgood, “Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing,” Opt. Lett. 38(11), 1854–1856 (2013).
    [Crossref] [PubMed]
  11. J. Xing, Z. Li, X. Xiao, J. Yu, and Y. Yu, “Two-mode multiplexer and demultiplexer based on adiabatic couplers,” Opt. Lett. 38(17), 3468–3470 (2013).
    [Crossref] [PubMed]
  12. D. Dai, J. Wang, and Y. Shi, “Silicon mode (de) multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light,” Opt. Lett. 38(9), 1422–1424 (2013).
    [Crossref] [PubMed]
  13. H. Qiu, H. Yu, T. Hu, G. Jiang, H. Shao, P. Yu, J. Yang, and X. Jiang, “Silicon mode multi/demultiplexer based on multimode grating-assisted couplers,” Opt. Express 21(15), 17904–17911 (2013).
    [Crossref] [PubMed]
  14. J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photonics Rev. 8(2), L18–L22 (2014).
    [Crossref]
  15. D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects,” Prog. Electromagn. Res. 143, 773–819 (2013).
  16. L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
    [Crossref] [PubMed]
  17. D. Dai, “Multimode optical waveguide enabling microbends with low inter-mode crosstalk for mode-multiplexed optical interconnects,” Opt. Express 22(22), 27524–27534 (2014).
    [Crossref] [PubMed]
  18. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, 1997).
  19. L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express 19(13), 12646–12651 (2011).
    [Crossref] [PubMed]
  20. FIMMWAVE/FIMMPROP, Photon Design Ltd, http://www.photond.com .
  21. S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
    [Crossref]
  22. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
    [Crossref]
  23. G. Fan, R. Orbtchouk, B. Han, X. Liu, and Z. Zhen, “Improved coupling technique of ultracompact ring resonators in silicon-on-insulator technology,” Appl. Opt. 51(21), 5212–5215 (2012).
    [Crossref] [PubMed]
  24. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, (John Wiley & Sons, 1991).

2014 (5)

D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects,” Nanophotonics 3(4-5), 283–311 (2014).
[Crossref]

J. B. Driscoll, C. P. Chen, R. R. Grote, B. Souhan, J. I. Dadap, A. Stein, M. Lu, K. Bergman, and R. M. Osgood., “A 60 Gb/s MDM-WDM Si photonic link with < 0.7 dB power penalty per channel,” Opt. Express 22(15), 18543–18555 (2014).
[Crossref] [PubMed]

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photonics Rev. 8(2), L18–L22 (2014).
[Crossref]

D. Dai, “Multimode optical waveguide enabling microbends with low inter-mode crosstalk for mode-multiplexed optical interconnects,” Opt. Express 22(22), 27524–27534 (2014).
[Crossref] [PubMed]

2013 (8)

D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects,” Prog. Electromagn. Res. 143, 773–819 (2013).

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21(8), 10376–10382 (2013).
[Crossref] [PubMed]

J. Sakaguchi, B. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber,” J. Lightwave Technol. 31(4), 554–562 (2013).
[Crossref]

J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, and R. M. Osgood, “Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing,” Opt. Lett. 38(11), 1854–1856 (2013).
[Crossref] [PubMed]

J. Xing, Z. Li, X. Xiao, J. Yu, and Y. Yu, “Two-mode multiplexer and demultiplexer based on adiabatic couplers,” Opt. Lett. 38(17), 3468–3470 (2013).
[Crossref] [PubMed]

D. Dai, J. Wang, and Y. Shi, “Silicon mode (de) multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light,” Opt. Lett. 38(9), 1422–1424 (2013).
[Crossref] [PubMed]

H. Qiu, H. Yu, T. Hu, G. Jiang, H. Shao, P. Yu, J. Yang, and X. Jiang, “Silicon mode multi/demultiplexer based on multimode grating-assisted couplers,” Opt. Express 21(15), 17904–17911 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (2)

2010 (1)

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

2005 (1)

2002 (1)

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38(25), 1701–1702 (2002).
[Crossref]

Awaji, Y.

Baets, R.

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
[Crossref]

Beckx, S.

Bergman, K.

Bergmen, K.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Bienstman, P.

Bogaerts, W.

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
[Crossref]

Bolle, C. A.

Bowers, J. E.

D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects,” Nanophotonics 3(4-5), 283–311 (2014).
[Crossref]

Chen, C. P.

J. B. Driscoll, C. P. Chen, R. R. Grote, B. Souhan, J. I. Dadap, A. Stein, M. Lu, K. Bergman, and R. M. Osgood., “A 60 Gb/s MDM-WDM Si photonic link with < 0.7 dB power penalty per channel,” Opt. Express 22(15), 18543–18555 (2014).
[Crossref] [PubMed]

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Da Ros, F.

Dadap, J. I.

Dai, D.

D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects,” Nanophotonics 3(4-5), 283–311 (2014).
[Crossref]

D. Dai, “Multimode optical waveguide enabling microbends with low inter-mode crosstalk for mode-multiplexed optical interconnects,” Opt. Express 22(22), 27524–27534 (2014).
[Crossref] [PubMed]

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photonics Rev. 8(2), L18–L22 (2014).
[Crossref]

D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects,” Prog. Electromagn. Res. 143, 773–819 (2013).

D. Dai, J. Wang, and Y. Shi, “Silicon mode (de) multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light,” Opt. Lett. 38(9), 1422–1424 (2013).
[Crossref] [PubMed]

Ding, Y.

Driscoll, J. B.

Dumon, P.

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
[Crossref]

Essiambre, R. J.

Fan, G.

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Gabrielli, L. H.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[Crossref] [PubMed]

Gnauck, A. H.

Grote, R. R.

Han, B.

He, S.

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photonics Rev. 8(2), L18–L22 (2014).
[Crossref]

D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects,” Prog. Electromagn. Res. 143, 773–819 (2013).

Hu, T.

Huang, B.

Hvam, J. M.

Imamura, K.

Inaba, H.

Ishizaka, Y.

Jiang, G.

Jiang, X.

Johnson, S. G.

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[Crossref] [PubMed]

Kanno, A.

Kawaguchi, Y.

Kawanishi, T.

Klaus, W.

Kobayashi, T.

Koshiba, M.

Li, Z.

Lingle, R.

Lipson, M.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[Crossref] [PubMed]

Liu, D.

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[Crossref] [PubMed]

Liu, L.

Liu, X.

Lu, M.

Luo, L.-W.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Luyssaert, B.

McCurdy, A.

Mukasa, K.

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Ophir, N.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Orbtchouk, R.

Osgood, R. M.

Ou, H.

Peckham, D. W.

Peucheret, C.

Poitras, C. B.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Puttnam, B.

Qiu, H.

Randel, S.

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Ryf, R.

Saitoh, K.

Sakaguchi, J.

Selvaraja, S. K.

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

Shao, H.

Shi, Y.

Sierra, A.

Souhan, B.

Stein, A.

Sugizaki, R.

Taillaert, D.

Tsutsumi, K.

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38(25), 1701–1702 (2002).
[Crossref]

Uematsu, T.

Van Campenhout, J.

Van Thourhout, D.

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
[Crossref]

Wada, N.

Wang, J.

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photonics Rev. 8(2), L18–L22 (2014).
[Crossref]

D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects,” Prog. Electromagn. Res. 143, 773–819 (2013).

D. Dai, J. Wang, and Y. Shi, “Silicon mode (de) multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light,” Opt. Lett. 38(9), 1422–1424 (2013).
[Crossref] [PubMed]

Watanabe, M.

Wiaux, V.

Winzer, P. J.

Xiao, X.

Xing, J.

Xu, J.

Yang, J.

Yu, H.

Yu, J.

Yu, P.

Yu, Y.

Yvind, K.

Zhen, Z.

Appl. Opt. (1)

Electron. Lett. (1)

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38(25), 1701–1702 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

J. Lightwave Technol. (3)

Laser Photonics Rev. (1)

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photonics Rev. 8(2), L18–L22 (2014).
[Crossref]

Nanophotonics (1)

D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects,” Nanophotonics 3(4-5), 283–311 (2014).
[Crossref]

Nat. Commun. (2)

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Prog. Electromagn. Res. (1)

D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects,” Prog. Electromagn. Res. 143, 773–819 (2013).

Other (3)

FIMMWAVE/FIMMPROP, Photon Design Ltd, http://www.photond.com .

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, 1997).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, (John Wiley & Sons, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic structures and mode field distributions of (a) the conventional SDM when the three waveguides are far from each other, (b) the conventional SDM when the three waveguides are close to each other, and (c) the proposed DPWA where the three waveguides are of different widths. The gray rectangles indicate waveguides. The red curves indicate the corresponding mode fields.
Fig. 2
Fig. 2 Effective refractive indices neff for TE modes in an SOI wire waveguide (sketched in the inset) at different widths w. Here, h = 220nm. All data is for wavelength at 1.55μm.
Fig. 3
Fig. 3 (a) Cross-sectional sketch of the DPWA with three waveguides. (b-d) Normalized amplitude distributions of the Ex fields of the three lowest-order TE modes. All data is for wavelength at 1.55μm.
Fig. 4
Fig. 4 (a) Sketch of the direct butt-coupling multiplexing structure of the DPWA. (b) Insertion losses and (c) cross-talks of the structure with different gaps g. All data is for wavelength at 1.55μm. Insets show the reduced structures for simulation where the access waveguides for other modes are removed.
Fig. 5
Fig. 5 (a) Sketch of the direct butt-coupling multiplexing structure of the DPWA with a linear-taper section. (b) Insertion losses and (c) cross-talks of the structure with different taper lengths L. Here, g = 100nm, gout = 400nm. All data is for wavelength at 1.55μm. Insets show the reduced structures for simulation where the access waveguides for other modes are removed.
Fig. 6
Fig. 6 Intensity profiles of the light propagation in the multiplexing and the demultiplexing directions of the proposed DPWA. For all pictures, light is input from the left.
Fig. 7
Fig. 7 Wavelength responses of the multiplexing structure for (a) insertion losses and (b) cross-talks in a 100nm band centered at 1.55μm. Here, g = 100nm, gout = 400nm, L = 15μm.
Fig. 8
Fig. 8 (a) Simulation model for the fabrication tolerance analysis. (b) Insertion losses and (c) cross-talks when the widths of the waveguides deviate from the designed values. Here, g = 100nm, gout = 400nm, L = 15μm.
Fig. 9
Fig. 9 (a) One solution to 90° bending of DPWA. (b) Insertion losses and (c) cross-talks of the DPWA under direct 90° bending at different bending radii R. Only three curves of cross-talks are shown, since the other three are also included due to reciprocity. Insets show the bending configurations for positive and negative R. The bending radii are relative to the center of the mid waveguide. Here, g = 100nm. All data is for wavelength at 1.55μm.

Metrics