Abstract

A field-widened Michelson interferometer (FWMI) is developed to act as the spectral discriminator in high-spectral-resolution lidar (HSRL). This realization is motivated by the wide-angle Michelson interferometer (WAMI) which has been used broadly in the atmospheric wind and temperature detection. This paper describes an independent theoretical framework about the application of the FWMI in HSRL for the first time. In the framework, the operation principles and application requirements of the FWMI are discussed in comparison with that of the WAMI. Theoretical foundations for designing this type of interferometer are introduced based on these comparisons. Moreover, a general performance estimation model for the FWMI is established, which can provide common guidelines for the performance budget and evaluation of the FWMI in the both design and operation stages. Examples incorporating many practical imperfections or conditions that may degrade the performance of the FWMI are given to illustrate the implementation of the modeling. This theoretical framework presents a complete and powerful tool for solving most of theoretical or engineering problems encountered in the FWMI application, including the designing, parameter calibration, prior performance budget, posterior performance estimation, and so on. It will be a valuable contribution to the lidar community to develop a new generation of HSRLs based on the FWMI spectroscopic filter.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Field-widened Michelson interferometer for spectral discrimination in high-spectral-resolution lidar: practical development

Zhongtao Cheng, Dong Liu, Yupeng Zhang, Yongying Yang, Yudi Zhou, Jing Luo, Jian Bai, Yibing Shen, Kaiwei Wang, Chong Liu, Lin Su, and Liming Yang
Opt. Express 24(7) 7232-7245 (2016)

System analysis of a tilted field-widened Michelson interferometer for high spectral resolution lidar

Dong Liu, Chris Hostetler, Ian Miller, Anthony Cook, and Johnathan Hair
Opt. Express 20(2) 1406-1420 (2012)

Generalized high-spectral-resolution lidar technique with a multimode laser for aerosol remote sensing

Zhongtao Cheng, Dong Liu, Yupeng Zhang, Chong Liu, Jian Bai, Dan Wang, Nanchao Wang, Yudi Zhou, Jing Luo, Yongying Yang, Yibing Shen, Lin Su, and Liming Yang
Opt. Express 25(2) 979-993 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Z. Liu, N. Sugimoto, and T. Murayama, “Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar,” Appl. Opt. 41(15), 2760–2767 (2002).
    [Crossref] [PubMed]
  2. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation,” Appl. Opt. 22(23), 3716–3724 (1983).
    [Crossref] [PubMed]
  3. P. Piironen and E. W. Eloranta, “Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter,” Opt. Lett. 19(3), 234–236 (1994).
    [Crossref] [PubMed]
  4. D. Bruneau and J. Pelon, “Simultaneous measurements of particle backscattering and extinction coefficients and wind velocity by lidar with a Mach-Zehnder interferometer: principle of operation and performance assessment,” Appl. Opt. 42(6), 1101–1114 (2003).
    [PubMed]
  5. M. Esselborn, M. Wirth, A. Fix, M. Tesche, and G. Ehret, “Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients,” Appl. Opt. 47(3), 346–358 (2008).
    [Crossref] [PubMed]
  6. J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Isquierdo, and F. E. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47(36), 6734–6752 (2008).
    [Crossref] [PubMed]
  7. D. S. Hoffman, K. S. Repasky, J. A. Reagan, and J. L. Carlsten, “Development of a high spectral resolution lidar based on confocal Fabry-Perot spectral filters,” Appl. Opt. 51(25), 6233–6244 (2012).
    [Crossref] [PubMed]
  8. J. W. Hair, L. M. Caldwell, D. A. Krueger, and C. Y. She, “High-Spectral-Resolution Lidar with Iodine-Vapor Filters: Measurement of Atmospheric-State and Aerosol Profiles,” Appl. Opt. 40(30), 5280–5294 (2001).
    [Crossref] [PubMed]
  9. D. Liu, C. Hostetler, I. Miller, A. Cook, and J. Hair, “System analysis of a tilted field-widened Michelson interferometer for high spectral resolution lidar,” Opt. Express 20(2), 1406–1420 (2012).
    [Crossref] [PubMed]
  10. G. G. Shepherd, “Application of Doppler Michelson imaging to upper atmospheric wind measurement: WINDII and beyond,” Appl. Opt. 35(16), 2764–2773 (1996).
    [Crossref] [PubMed]
  11. G. G. Shepherd, W. A. Gault, D. W. Miller, Z. Pasturczyk, S. F. Johnston, P. R. Kosteniuk, J. W. Haslett, D. J. W. Kendall, and J. R. Wimperis, “WAMDII: wide-angle Michelson Doppler imaging interferometer for Spacelab,” Appl. Opt. 24(11), 1571–1584 (1985).
    [Crossref] [PubMed]
  12. Z. Cheng, D. Liu, J. Luo, Y. Yang, L. Su, L. Yang, H. Huang, and Y. Shen, “Effects of spectral discrimination in high-spectral-resolution lidar on the retrieval errors for atmospheric aerosol optical properties,” Appl. Opt. 53(20), 4386–4397 (2014).
    [Crossref] [PubMed]
  13. D. Liu, Y. Yang, Z. Cheng, H. Huang, B. Zhang, T. Ling, and Y. Shen, “Retrieval and analysis of a polarized high-spectral-resolution lidar for profiling aerosol optical properties,” Opt. Express 21(11), 13084–13093 (2013).
    [Crossref] [PubMed]
  14. Z. Cheng, D. Liu, Y. Yang, L. Yang, and H. Huang, “Interferometric filters for spectral discrimination in high-spectral-resolution lidar: performance comparisons between Fabry-Perot interferometer and field-widened Michelson interferometer,” Appl. Opt. 52(32), 7838–7850 (2013).
    [Crossref] [PubMed]
  15. G. G. Shepherd, G. Thuillier, Y. M. Cho, M. L. Duboin, W. F. J. Evans, W. A. Gault, C. Hersom, D. J. W. Kendall, C. Lathuillère, R. P. Lowe, I. C. McDade, Y. J. Rochon, M. G. Shepherd, B. H. Solheim, D. Y. Wang, and W. E. Ward, “The wind imaging interferometer (WINDII) on the upper atmosphere research satellite: a 20 year perspective,” Rev. Geophys. 50(2), RG2007 (2012).
    [Crossref]
  16. H. Gao, Y. Tang, D. Hua, H. Liu, X. Cao, X. Duan, Q. Jia, O. Qu, and Y. Wu, “Ground-based airglow imaging interferometer. Part 1: instrument and observation,” Appl. Opt. 52(36), 8650–8660 (2013).
    [PubMed]
  17. A. M. Title and H. E. Ramsey, “Improvements in birefringent filters. 6: Analog birefringent elements,” Appl. Opt. 19(12), 2046–2058 (1980).
    [Crossref] [PubMed]
  18. M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University Press, Cambridge, 1999).
  19. ZEMAX® Optical Design Program user's Manual (ZEMAX Development Corporation, 2010).
  20. A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34(15), 2765–2773 (1995).
    [Crossref] [PubMed]

2014 (1)

2013 (3)

2012 (3)

D. Liu, C. Hostetler, I. Miller, A. Cook, and J. Hair, “System analysis of a tilted field-widened Michelson interferometer for high spectral resolution lidar,” Opt. Express 20(2), 1406–1420 (2012).
[Crossref] [PubMed]

G. G. Shepherd, G. Thuillier, Y. M. Cho, M. L. Duboin, W. F. J. Evans, W. A. Gault, C. Hersom, D. J. W. Kendall, C. Lathuillère, R. P. Lowe, I. C. McDade, Y. J. Rochon, M. G. Shepherd, B. H. Solheim, D. Y. Wang, and W. E. Ward, “The wind imaging interferometer (WINDII) on the upper atmosphere research satellite: a 20 year perspective,” Rev. Geophys. 50(2), RG2007 (2012).
[Crossref]

D. S. Hoffman, K. S. Repasky, J. A. Reagan, and J. L. Carlsten, “Development of a high spectral resolution lidar based on confocal Fabry-Perot spectral filters,” Appl. Opt. 51(25), 6233–6244 (2012).
[Crossref] [PubMed]

2008 (2)

2003 (1)

2002 (1)

2001 (1)

1996 (1)

1995 (1)

1994 (1)

1985 (1)

1983 (1)

1980 (1)

Bruneau, D.

Bucholtz, A.

Caldwell, L. M.

Cao, X.

Carlsten, J. L.

Cheng, Z.

Cho, Y. M.

G. G. Shepherd, G. Thuillier, Y. M. Cho, M. L. Duboin, W. F. J. Evans, W. A. Gault, C. Hersom, D. J. W. Kendall, C. Lathuillère, R. P. Lowe, I. C. McDade, Y. J. Rochon, M. G. Shepherd, B. H. Solheim, D. Y. Wang, and W. E. Ward, “The wind imaging interferometer (WINDII) on the upper atmosphere research satellite: a 20 year perspective,” Rev. Geophys. 50(2), RG2007 (2012).
[Crossref]

Cook, A.

Cook, A. L.

Duan, X.

Duboin, M. L.

G. G. Shepherd, G. Thuillier, Y. M. Cho, M. L. Duboin, W. F. J. Evans, W. A. Gault, C. Hersom, D. J. W. Kendall, C. Lathuillère, R. P. Lowe, I. C. McDade, Y. J. Rochon, M. G. Shepherd, B. H. Solheim, D. Y. Wang, and W. E. Ward, “The wind imaging interferometer (WINDII) on the upper atmosphere research satellite: a 20 year perspective,” Rev. Geophys. 50(2), RG2007 (2012).
[Crossref]

Ehret, G.

Eloranta, E. W.

Esselborn, M.

Evans, W. F. J.

G. G. Shepherd, G. Thuillier, Y. M. Cho, M. L. Duboin, W. F. J. Evans, W. A. Gault, C. Hersom, D. J. W. Kendall, C. Lathuillère, R. P. Lowe, I. C. McDade, Y. J. Rochon, M. G. Shepherd, B. H. Solheim, D. Y. Wang, and W. E. Ward, “The wind imaging interferometer (WINDII) on the upper atmosphere research satellite: a 20 year perspective,” Rev. Geophys. 50(2), RG2007 (2012).
[Crossref]

Ferrare, R. A.

Fix, A.

Gao, H.

Gault, W. A.

G. G. Shepherd, G. Thuillier, Y. M. Cho, M. L. Duboin, W. F. J. Evans, W. A. Gault, C. Hersom, D. J. W. Kendall, C. Lathuillère, R. P. Lowe, I. C. McDade, Y. J. Rochon, M. G. Shepherd, B. H. Solheim, D. Y. Wang, and W. E. Ward, “The wind imaging interferometer (WINDII) on the upper atmosphere research satellite: a 20 year perspective,” Rev. Geophys. 50(2), RG2007 (2012).
[Crossref]

G. G. Shepherd, W. A. Gault, D. W. Miller, Z. Pasturczyk, S. F. Johnston, P. R. Kosteniuk, J. W. Haslett, D. J. W. Kendall, and J. R. Wimperis, “WAMDII: wide-angle Michelson Doppler imaging interferometer for Spacelab,” Appl. Opt. 24(11), 1571–1584 (1985).
[Crossref] [PubMed]

Hair, J.

Hair, J. W.

Harper, D. B.

Haslett, J. W.

Hersom, C.

G. G. Shepherd, G. Thuillier, Y. M. Cho, M. L. Duboin, W. F. J. Evans, W. A. Gault, C. Hersom, D. J. W. Kendall, C. Lathuillère, R. P. Lowe, I. C. McDade, Y. J. Rochon, M. G. Shepherd, B. H. Solheim, D. Y. Wang, and W. E. Ward, “The wind imaging interferometer (WINDII) on the upper atmosphere research satellite: a 20 year perspective,” Rev. Geophys. 50(2), RG2007 (2012).
[Crossref]

Hoffman, D. S.

Hostetler, C.

Hostetler, C. A.

Hovis, F. E.

Hua, D.

Huang, H.

Isquierdo, L. R.

Jia, Q.

Johnston, S. F.

Kendall, D. J. W.

G. G. Shepherd, G. Thuillier, Y. M. Cho, M. L. Duboin, W. F. J. Evans, W. A. Gault, C. Hersom, D. J. W. Kendall, C. Lathuillère, R. P. Lowe, I. C. McDade, Y. J. Rochon, M. G. Shepherd, B. H. Solheim, D. Y. Wang, and W. E. Ward, “The wind imaging interferometer (WINDII) on the upper atmosphere research satellite: a 20 year perspective,” Rev. Geophys. 50(2), RG2007 (2012).
[Crossref]

G. G. Shepherd, W. A. Gault, D. W. Miller, Z. Pasturczyk, S. F. Johnston, P. R. Kosteniuk, J. W. Haslett, D. J. W. Kendall, and J. R. Wimperis, “WAMDII: wide-angle Michelson Doppler imaging interferometer for Spacelab,” Appl. Opt. 24(11), 1571–1584 (1985).
[Crossref] [PubMed]

Kosteniuk, P. R.

Krueger, D. A.

Lathuillère, C.

G. G. Shepherd, G. Thuillier, Y. M. Cho, M. L. Duboin, W. F. J. Evans, W. A. Gault, C. Hersom, D. J. W. Kendall, C. Lathuillère, R. P. Lowe, I. C. McDade, Y. J. Rochon, M. G. Shepherd, B. H. Solheim, D. Y. Wang, and W. E. Ward, “The wind imaging interferometer (WINDII) on the upper atmosphere research satellite: a 20 year perspective,” Rev. Geophys. 50(2), RG2007 (2012).
[Crossref]

Ling, T.

Liu, D.

Liu, H.

Liu, Z.

Lowe, R. P.

G. G. Shepherd, G. Thuillier, Y. M. Cho, M. L. Duboin, W. F. J. Evans, W. A. Gault, C. Hersom, D. J. W. Kendall, C. Lathuillère, R. P. Lowe, I. C. McDade, Y. J. Rochon, M. G. Shepherd, B. H. Solheim, D. Y. Wang, and W. E. Ward, “The wind imaging interferometer (WINDII) on the upper atmosphere research satellite: a 20 year perspective,” Rev. Geophys. 50(2), RG2007 (2012).
[Crossref]

Luo, J.

Mack, T. L.

McDade, I. C.

G. G. Shepherd, G. Thuillier, Y. M. Cho, M. L. Duboin, W. F. J. Evans, W. A. Gault, C. Hersom, D. J. W. Kendall, C. Lathuillère, R. P. Lowe, I. C. McDade, Y. J. Rochon, M. G. Shepherd, B. H. Solheim, D. Y. Wang, and W. E. Ward, “The wind imaging interferometer (WINDII) on the upper atmosphere research satellite: a 20 year perspective,” Rev. Geophys. 50(2), RG2007 (2012).
[Crossref]

Miller, D. W.

Miller, I.

Murayama, T.

Pasturczyk, Z.

Pelon, J.

Piironen, P.

Qu, O.

Ramsey, H. E.

Reagan, J. A.

Repasky, K. S.

Rochon, Y. J.

G. G. Shepherd, G. Thuillier, Y. M. Cho, M. L. Duboin, W. F. J. Evans, W. A. Gault, C. Hersom, D. J. W. Kendall, C. Lathuillère, R. P. Lowe, I. C. McDade, Y. J. Rochon, M. G. Shepherd, B. H. Solheim, D. Y. Wang, and W. E. Ward, “The wind imaging interferometer (WINDII) on the upper atmosphere research satellite: a 20 year perspective,” Rev. Geophys. 50(2), RG2007 (2012).
[Crossref]

Roesler, F. L.

She, C. Y.

Shen, Y.

Shepherd, G. G.

G. G. Shepherd, G. Thuillier, Y. M. Cho, M. L. Duboin, W. F. J. Evans, W. A. Gault, C. Hersom, D. J. W. Kendall, C. Lathuillère, R. P. Lowe, I. C. McDade, Y. J. Rochon, M. G. Shepherd, B. H. Solheim, D. Y. Wang, and W. E. Ward, “The wind imaging interferometer (WINDII) on the upper atmosphere research satellite: a 20 year perspective,” Rev. Geophys. 50(2), RG2007 (2012).
[Crossref]

G. G. Shepherd, “Application of Doppler Michelson imaging to upper atmospheric wind measurement: WINDII and beyond,” Appl. Opt. 35(16), 2764–2773 (1996).
[Crossref] [PubMed]

G. G. Shepherd, W. A. Gault, D. W. Miller, Z. Pasturczyk, S. F. Johnston, P. R. Kosteniuk, J. W. Haslett, D. J. W. Kendall, and J. R. Wimperis, “WAMDII: wide-angle Michelson Doppler imaging interferometer for Spacelab,” Appl. Opt. 24(11), 1571–1584 (1985).
[Crossref] [PubMed]

Shepherd, M. G.

G. G. Shepherd, G. Thuillier, Y. M. Cho, M. L. Duboin, W. F. J. Evans, W. A. Gault, C. Hersom, D. J. W. Kendall, C. Lathuillère, R. P. Lowe, I. C. McDade, Y. J. Rochon, M. G. Shepherd, B. H. Solheim, D. Y. Wang, and W. E. Ward, “The wind imaging interferometer (WINDII) on the upper atmosphere research satellite: a 20 year perspective,” Rev. Geophys. 50(2), RG2007 (2012).
[Crossref]

Shipley, S. T.

Solheim, B. H.

G. G. Shepherd, G. Thuillier, Y. M. Cho, M. L. Duboin, W. F. J. Evans, W. A. Gault, C. Hersom, D. J. W. Kendall, C. Lathuillère, R. P. Lowe, I. C. McDade, Y. J. Rochon, M. G. Shepherd, B. H. Solheim, D. Y. Wang, and W. E. Ward, “The wind imaging interferometer (WINDII) on the upper atmosphere research satellite: a 20 year perspective,” Rev. Geophys. 50(2), RG2007 (2012).
[Crossref]

Sroga, J. T.

Su, L.

Sugimoto, N.

Tang, Y.

Tesche, M.

Thuillier, G.

G. G. Shepherd, G. Thuillier, Y. M. Cho, M. L. Duboin, W. F. J. Evans, W. A. Gault, C. Hersom, D. J. W. Kendall, C. Lathuillère, R. P. Lowe, I. C. McDade, Y. J. Rochon, M. G. Shepherd, B. H. Solheim, D. Y. Wang, and W. E. Ward, “The wind imaging interferometer (WINDII) on the upper atmosphere research satellite: a 20 year perspective,” Rev. Geophys. 50(2), RG2007 (2012).
[Crossref]

Title, A. M.

Tracy, D. H.

Trauger, J. T.

Wang, D. Y.

G. G. Shepherd, G. Thuillier, Y. M. Cho, M. L. Duboin, W. F. J. Evans, W. A. Gault, C. Hersom, D. J. W. Kendall, C. Lathuillère, R. P. Lowe, I. C. McDade, Y. J. Rochon, M. G. Shepherd, B. H. Solheim, D. Y. Wang, and W. E. Ward, “The wind imaging interferometer (WINDII) on the upper atmosphere research satellite: a 20 year perspective,” Rev. Geophys. 50(2), RG2007 (2012).
[Crossref]

Ward, W. E.

G. G. Shepherd, G. Thuillier, Y. M. Cho, M. L. Duboin, W. F. J. Evans, W. A. Gault, C. Hersom, D. J. W. Kendall, C. Lathuillère, R. P. Lowe, I. C. McDade, Y. J. Rochon, M. G. Shepherd, B. H. Solheim, D. Y. Wang, and W. E. Ward, “The wind imaging interferometer (WINDII) on the upper atmosphere research satellite: a 20 year perspective,” Rev. Geophys. 50(2), RG2007 (2012).
[Crossref]

Weinman, J. A.

Welch, W.

Wimperis, J. R.

Wirth, M.

Wu, Y.

Yang, L.

Yang, Y.

Zhang, B.

Appl. Opt. (14)

A. M. Title and H. E. Ramsey, “Improvements in birefringent filters. 6: Analog birefringent elements,” Appl. Opt. 19(12), 2046–2058 (1980).
[Crossref] [PubMed]

S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation,” Appl. Opt. 22(23), 3716–3724 (1983).
[Crossref] [PubMed]

A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34(15), 2765–2773 (1995).
[Crossref] [PubMed]

G. G. Shepherd, “Application of Doppler Michelson imaging to upper atmospheric wind measurement: WINDII and beyond,” Appl. Opt. 35(16), 2764–2773 (1996).
[Crossref] [PubMed]

J. W. Hair, L. M. Caldwell, D. A. Krueger, and C. Y. She, “High-Spectral-Resolution Lidar with Iodine-Vapor Filters: Measurement of Atmospheric-State and Aerosol Profiles,” Appl. Opt. 40(30), 5280–5294 (2001).
[Crossref] [PubMed]

Z. Liu, N. Sugimoto, and T. Murayama, “Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar,” Appl. Opt. 41(15), 2760–2767 (2002).
[Crossref] [PubMed]

D. Bruneau and J. Pelon, “Simultaneous measurements of particle backscattering and extinction coefficients and wind velocity by lidar with a Mach-Zehnder interferometer: principle of operation and performance assessment,” Appl. Opt. 42(6), 1101–1114 (2003).
[PubMed]

G. G. Shepherd, W. A. Gault, D. W. Miller, Z. Pasturczyk, S. F. Johnston, P. R. Kosteniuk, J. W. Haslett, D. J. W. Kendall, and J. R. Wimperis, “WAMDII: wide-angle Michelson Doppler imaging interferometer for Spacelab,” Appl. Opt. 24(11), 1571–1584 (1985).
[Crossref] [PubMed]

M. Esselborn, M. Wirth, A. Fix, M. Tesche, and G. Ehret, “Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients,” Appl. Opt. 47(3), 346–358 (2008).
[Crossref] [PubMed]

J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Isquierdo, and F. E. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47(36), 6734–6752 (2008).
[Crossref] [PubMed]

D. S. Hoffman, K. S. Repasky, J. A. Reagan, and J. L. Carlsten, “Development of a high spectral resolution lidar based on confocal Fabry-Perot spectral filters,” Appl. Opt. 51(25), 6233–6244 (2012).
[Crossref] [PubMed]

Z. Cheng, D. Liu, Y. Yang, L. Yang, and H. Huang, “Interferometric filters for spectral discrimination in high-spectral-resolution lidar: performance comparisons between Fabry-Perot interferometer and field-widened Michelson interferometer,” Appl. Opt. 52(32), 7838–7850 (2013).
[Crossref] [PubMed]

H. Gao, Y. Tang, D. Hua, H. Liu, X. Cao, X. Duan, Q. Jia, O. Qu, and Y. Wu, “Ground-based airglow imaging interferometer. Part 1: instrument and observation,” Appl. Opt. 52(36), 8650–8660 (2013).
[PubMed]

Z. Cheng, D. Liu, J. Luo, Y. Yang, L. Su, L. Yang, H. Huang, and Y. Shen, “Effects of spectral discrimination in high-spectral-resolution lidar on the retrieval errors for atmospheric aerosol optical properties,” Appl. Opt. 53(20), 4386–4397 (2014).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Rev. Geophys. (1)

G. G. Shepherd, G. Thuillier, Y. M. Cho, M. L. Duboin, W. F. J. Evans, W. A. Gault, C. Hersom, D. J. W. Kendall, C. Lathuillère, R. P. Lowe, I. C. McDade, Y. J. Rochon, M. G. Shepherd, B. H. Solheim, D. Y. Wang, and W. E. Ward, “The wind imaging interferometer (WINDII) on the upper atmosphere research satellite: a 20 year perspective,” Rev. Geophys. 50(2), RG2007 (2012).
[Crossref]

Other (2)

M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University Press, Cambridge, 1999).

ZEMAX® Optical Design Program user's Manual (ZEMAX Development Corporation, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic diagram of the optical configuration for the FWMI in the high-spectral-resolution receiver channel of our HSRL and (b) its interior optical path.
Fig. 2
Fig. 2 Variations of SDR and molecular transmittance with respect to FOPD under the best operation condition with no imperfections.
Fig. 3
Fig. 3 OPD variations with respect to the incident angle and temperature drift for the FWMI configurations in Table 1. (a) and (b) are the results for the hybrid-structure FWMIs, and (c) and (d) are that for the pure-structure FWMIs.
Fig. 4
Fig. 4 Tolerance estimations for the glass dimension, the cumulative wavefront error RMS and the reflectivity of the AR coating. (a) and (b) show the SDR variation with respect to dimension deviation for the H1 scheme and P2 scheme respectively, (c) is the SDR variation with respect to three different cumulative wavefront errors for both the H1 and P2 schemes, and (d) is that with respect to the reflectivity of the AR coating.
Fig. 5
Fig. 5 Influence analysis of some practical imperfections and conditions on the SDR of the FWMI based on the proposed framework. (a)-(d) are the corresponding results for the divergent angle of the incident beam, the temperature drift, the frequency locking error and the angular error of tilted placement respectively.
Fig. 6
Fig. 6 Comprehensive estimations of the SDR considering the cumulative wavefront error, the frequency locking error and the AR coating imperfection simultaneously.

Tables (1)

Tables Icon

Table 1 Three typical design results for hybrid-structure FWMI with glass materials from SGL are numbered with H*. The H1 scheme has the shortest arm lengths, the H2 one is featured with the largest field-widened angle, and the H3 holds the best thermal stability among all the possible hybrid-structure FWMIs from SGL. Typical design results for pure-structure FWMI are denoted with P*. The P1 scheme has the shortest arm lengths and the largest field-widened angle simultaneously, and the P2 one is featured with the best thermal stability among all the possible pure-structure FWMIs from SGL.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

OPD( θ )=2( n 1 d 1 cos θ 1 n 2 d 2 cos θ 2 n 3 d 3 cos θ 3 ),
OPD( θ )=2[ n 1 d 1 ( 1 sin 2 θ n 1 2 ) 1/2 n 2 d 2 ( 1 sin 2 θ n 2 2 ) 1/2 n 3 d 3 ( 1 sin 2 θ n 3 2 ) 1/2 ].
OPD( θ )=OPD( θ t )+ω( θ t )( sin 2 θ sin 2 θ t ) +ψ( θ t ) ( sin 2 θ sin 2 θ t ) 2 +Ο[ ( sin 2 θ sin 2 θ t ) 2 ],
ω( θ t )=( d 1 n 1 2 sin 2 θ t d 2 n 2 2 sin 2 θ t d 3 n 3 2 sin 2 θ t ),
ψ( θ t )= 1 4 [ d 1 ( n 1 2 sin 2 θ t ) 3/2 d 2 ( n 2 2 sin 2 θ t ) 3/2 d 3 ( n 3 2 sin 2 θ t ) 3/2 ].
ω( θ t )=0.
OPD( θ t ) / T =2{ [ α 1 d 1 ( n 1 2 sin 2 θ t ) 1/2 + β 1 n 1 d 1 ( n 1 2 sin 2 θ t ) 1/2 ] [ α 2 d 2 ( n 2 2 sin 2 θ t ) 1/2 + β 2 n 2 d 2 ( n 2 2 sin 2 θ t ) 1/2 ] [ α 3 d 3 ( n 3 2 sin 2 θ t ) 1/2 + β 3 n 3 d 3 ( n 3 2 sin 2 θ t ) 1/2 ] }=0,
F(υ,θ)= I 1 + I 2 +2 I 1 I 2 cos[ 2πυ·OPD( θ ) /c ],
OPD( θ t )= ( m+1/2 )c / υ 0 ,
F(υ υ 0 ,θ)= I 1 + I 2 +2 I 1 I 2 cos[ 2π( υ υ 0 )·OPD( θ ) /c + 2π υ 0 ·OPD( θ ) /c ].
F(υ υ 0 ,θ)= I 1 + I 2 2 I 1 I 2 cos[ 2π( υ υ 0 ) / FSR( θ t ) +Δϕ ],
S i ( υ υ 0 )= exp[ (υ υ 0 ) 2 / γ i 2 ] / γ i π ,
i ( θ )= S i (υ υ 0 )F(υ υ 0 ,θ)dυ / S i (υ υ 0 )dυ .
i ( θ )= I 1 + I 2 2 I 1 I 2 exp[ ( π r i FSR( θ t ) ) 2 ]cos[ Δϕ( θ ) ].
T i = π π dφ 0 f θ d ma p i ( ρ,φ ) ρdρ / π f 2 θ d 2 ,
ma p i ( ρ,φ )= i [ arccos( 2f cos 2 θ t ρsin( 2 θ t )cosφ 2 f 2 + ρ 2 cos θ t ) ].
SDR= T m / T a .
L= L 0 (1+α·ΔT),
Δ n g = n g 2 1 2 n g [ D 0 ΔT+ D 1 Δ T 2 + D 2 Δ T 3 + E 0 ΔT+2 E 1 Δ T 2 λ 2 λ tk 2 ],
n air =1+ (6432.8+ 2949810 λ 2 146 λ 2 1 + 25540 λ 2 41 λ 2 1 )1.0× 10 8 P 1+(T15)·(3.4785× 10 3 ) ,
i ( θ )= p i ( θ,x,y ) ,
p i ( θ,x,y )= I 1 + I 2 2 I 1 I 2 exp[ ( π r i FSR( θ t ) ) 2 ]cos[ Δϕ( θ )+ΔW( x,y ) ],
i ( θ )= I 1 + I 2 2 I 1 I 2 exp[ ( π r i FSR( θ t ) ) 2 ]× [ cosΔϕ( θ ) cosΔW( x,y ) sinΔϕ( θ ) sinΔW( x,y ) ].
T i = 1 2 1 2 exp[ π 2 γ i 2 ( c/ FOPD ) 2 ].

Metrics