Abstract

Nonlinear optical applications depend on pulse duration and coherence of the laser pulses. Characterization of high-repetition rate pulsed laser sources can be complicated by their pulse-to-pulse instabilities. Here, we introduce and demonstrate experimentally a quantitative measurement that can be used to determine the pulse-to-pulse fidelity of ultrafast laser sources. Numerical simulations and experiments illustrate the effect of spectral phase and amplitude noise on second and third harmonic generation.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectral amplitude and phase noise characterization of titanium-sapphire lasers

Gennady Rasskazov, Vadim V. Lozovoy, and Marcos Dantus
Opt. Express 23(18) 23597-23602 (2015)

1% rms amplitude noise from a 30 fs continuum based source tunable from 800 to 1250 nm

Bojan Resan, Sarah Kurmulis, Vesna Markovic, and Kurt J. Weingarten
Opt. Express 24(13) 14960-14965 (2016)

Energetic ultrafast fiber laser sources tunable in 1030–1215 nm for deep tissue multi-photon microscopy

Wei Liu, Shih-Hsuan Chia, Hsiang-Yu Chung, Rüdiger Greinert, Franz X. Kärtner, and Guoqing Chang
Opt. Express 25(6) 6822-6831 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref] [PubMed]
  2. P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Daunts, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun. 281(7), 1841–1849 (2008).
    [Crossref]
  3. R. C. Greenhow and A. J. Schmidt, Picosecond Light Pulses, vol.2 (Advances in Quantum Electronics, 1974).
  4. R. Trebino, Frequency-Resolved Optical Gating: The Meassurement of Ultrashort Laser Pulses (Kluwer Academic Publishers, 2002).
  5. C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23(10), 792–794 (1998).
    [Crossref] [PubMed]
  6. J. Ratner, G. Steinmeyer, T. C. Wong, R. Bartels, and R. Trebino, “Coherent artifact in modern pulse measurements,” Opt. Lett. 37(14), 2874–2876 (2012).
    [Crossref] [PubMed]
  7. M. Rhodes, G. Steinmeyer, J. Ratner, and R. Trebino, “Pulse-shape instabilities and their measurement,” Laser Photonics Rev. 7(4), 557–565 (2013).
    [Crossref]
  8. Y. Li, L. F. Lester, D. Chang, C. Langrock, M. M. Fejer, and D. J. Kane, “Characteristics and instabilities of mode-locked quantum-dot diode lasers,” Opt. Express 21(7), 8007–8017 (2013).
    [Crossref] [PubMed]
  9. J. N. Ames, S. Ghosh, R. S. Windeler, A. L. Gaeta, and S. T. Cundiff, “Excess noise generation during spectral broadening in a microstructured fiber,” Appl. Phys. B 77(2-3), 279–284 (2003).
    [Crossref]
  10. M. Horowitz, Y. Barad, and Y. Silberberg, “Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser,” Opt. Lett. 22(11), 799–801 (1997).
    [Crossref] [PubMed]
  11. B. Nie, G. Parker, V. V. Lozovoy, and M. Daunts, “Energy scaling of Yb fiber oscillator producing clusters of femtosecond pulses,” Opt. Eng. 53(5), 051505 (2014).
    [Crossref]
  12. D. E. McCumber, “Intensity fluctuations in the output of cw laser oscillators. I,” Phys. Rev. 141(1), 306–322 (1966).
    [Crossref]
  13. M. C. Cox, N. J. Copner, and B. Williams, “High sensitivity precision relative intensity noise calibration standard using low noise reference laser source,” IEE P. - Sci. Meas.Tech. 145(4), 163–165 (1998).
    [Crossref]
  14. S. A. Diddams, M. Kirchner, T. Fortier, D. Braje, A. M. Weiner, and L. Hollberg, “Improved signal-to-noise ratio of 10 GHz microwave signals generated with a mode-filtered femtosecond laser frequency comb,” Opt. Express 17(5), 3331–3340 (2009).
    [Crossref] [PubMed]
  15. A. F. J. Runge, C. Aguergaray, N. G. R. Broderick, and M. Erkintalo, “Coherence and shot-to-shot spectral fluctuations in noise-like ultrafast fiber lasers,” Opt. Lett. 38(21), 4327–4330 (2013).
    [PubMed]
  16. T. Pfeifer, Y. Jiang, S. Düsterer, R. Moshammer, and J. Ullrich, “Partial-coherence method to model experimental free-electron laser pulse statistics,” Opt. Lett. 35(20), 3441–3443 (2010).
    [Crossref] [PubMed]
  17. V. V. Lozovoy, B. Xu, Y. Coello, and M. Dantus, “Direct measurement of spectral phase for ultrashort laser pulses,” Opt. Express 16(2), 592–597 (2008).
    [Crossref] [PubMed]
  18. Y. Coello, V. V. Lozovoy, T. C. Gunaratne, B. Xu, I. Borukhovich, C.-H. Tseng, T. Weinacht, and M. Dantus, “Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses,” J. Opt. Soc. Am. B 25(6), A140–A150 (2008).
    [Crossref]
  19. M. Miranda, C. L. Arnold, T. Fordell, F. Silva, B. Alonso, R. Weigand, A. L’Huillier, and H. Crespo, “Characterization of broadband few-cycle laser pulses with the d-scan technique,” Opt. Express 20(17), 18732–18743 (2012).
    [Crossref] [PubMed]
  20. V. Loriot, G. Gitzinger, and N. Forget, “Self-referenced characterization of femtosecond laser pulses by chirp scan,” Opt. Express 21(21), 24879–24893 (2013).
    [Crossref] [PubMed]

2014 (1)

B. Nie, G. Parker, V. V. Lozovoy, and M. Daunts, “Energy scaling of Yb fiber oscillator producing clusters of femtosecond pulses,” Opt. Eng. 53(5), 051505 (2014).
[Crossref]

2013 (4)

2012 (2)

2010 (1)

2009 (1)

2008 (3)

2003 (1)

J. N. Ames, S. Ghosh, R. S. Windeler, A. L. Gaeta, and S. T. Cundiff, “Excess noise generation during spectral broadening in a microstructured fiber,” Appl. Phys. B 77(2-3), 279–284 (2003).
[Crossref]

1998 (2)

M. C. Cox, N. J. Copner, and B. Williams, “High sensitivity precision relative intensity noise calibration standard using low noise reference laser source,” IEE P. - Sci. Meas.Tech. 145(4), 163–165 (1998).
[Crossref]

C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23(10), 792–794 (1998).
[Crossref] [PubMed]

1997 (1)

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

1966 (1)

D. E. McCumber, “Intensity fluctuations in the output of cw laser oscillators. I,” Phys. Rev. 141(1), 306–322 (1966).
[Crossref]

Aguergaray, C.

Alonso, B.

Ames, J. N.

J. N. Ames, S. Ghosh, R. S. Windeler, A. L. Gaeta, and S. T. Cundiff, “Excess noise generation during spectral broadening in a microstructured fiber,” Appl. Phys. B 77(2-3), 279–284 (2003).
[Crossref]

Andegeko, Y.

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Daunts, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun. 281(7), 1841–1849 (2008).
[Crossref]

Arnold, C. L.

Barad, Y.

Bartels, R.

Borukhovich, I.

Braje, D.

Broderick, N. G. R.

Chang, D.

Coello, Y.

Copner, N. J.

M. C. Cox, N. J. Copner, and B. Williams, “High sensitivity precision relative intensity noise calibration standard using low noise reference laser source,” IEE P. - Sci. Meas.Tech. 145(4), 163–165 (1998).
[Crossref]

Cox, M. C.

M. C. Cox, N. J. Copner, and B. Williams, “High sensitivity precision relative intensity noise calibration standard using low noise reference laser source,” IEE P. - Sci. Meas.Tech. 145(4), 163–165 (1998).
[Crossref]

Crespo, H.

Cundiff, S. T.

J. N. Ames, S. Ghosh, R. S. Windeler, A. L. Gaeta, and S. T. Cundiff, “Excess noise generation during spectral broadening in a microstructured fiber,” Appl. Phys. B 77(2-3), 279–284 (2003).
[Crossref]

Dantus, M.

Daunts, M.

B. Nie, G. Parker, V. V. Lozovoy, and M. Daunts, “Energy scaling of Yb fiber oscillator producing clusters of femtosecond pulses,” Opt. Eng. 53(5), 051505 (2014).
[Crossref]

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Daunts, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun. 281(7), 1841–1849 (2008).
[Crossref]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Diddams, S. A.

Düsterer, S.

Erkintalo, M.

Fejer, M. M.

Fordell, T.

Forget, N.

Fortier, T.

Gaeta, A. L.

J. N. Ames, S. Ghosh, R. S. Windeler, A. L. Gaeta, and S. T. Cundiff, “Excess noise generation during spectral broadening in a microstructured fiber,” Appl. Phys. B 77(2-3), 279–284 (2003).
[Crossref]

Ghosh, S.

J. N. Ames, S. Ghosh, R. S. Windeler, A. L. Gaeta, and S. T. Cundiff, “Excess noise generation during spectral broadening in a microstructured fiber,” Appl. Phys. B 77(2-3), 279–284 (2003).
[Crossref]

Gitzinger, G.

Gunaratne, T. C.

Hollberg, L.

Horowitz, M.

Iaconis, C.

Jiang, Y.

Kane, D. J.

Kirchner, M.

L’Huillier, A.

Langrock, C.

Lester, L. F.

Li, Y.

Loriot, V.

Lozovoy, V. V.

B. Nie, G. Parker, V. V. Lozovoy, and M. Daunts, “Energy scaling of Yb fiber oscillator producing clusters of femtosecond pulses,” Opt. Eng. 53(5), 051505 (2014).
[Crossref]

Y. Coello, V. V. Lozovoy, T. C. Gunaratne, B. Xu, I. Borukhovich, C.-H. Tseng, T. Weinacht, and M. Dantus, “Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses,” J. Opt. Soc. Am. B 25(6), A140–A150 (2008).
[Crossref]

V. V. Lozovoy, B. Xu, Y. Coello, and M. Dantus, “Direct measurement of spectral phase for ultrashort laser pulses,” Opt. Express 16(2), 592–597 (2008).
[Crossref] [PubMed]

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Daunts, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun. 281(7), 1841–1849 (2008).
[Crossref]

McCumber, D. E.

D. E. McCumber, “Intensity fluctuations in the output of cw laser oscillators. I,” Phys. Rev. 141(1), 306–322 (1966).
[Crossref]

Miranda, M.

Moshammer, R.

Nie, B.

B. Nie, G. Parker, V. V. Lozovoy, and M. Daunts, “Energy scaling of Yb fiber oscillator producing clusters of femtosecond pulses,” Opt. Eng. 53(5), 051505 (2014).
[Crossref]

Parker, G.

B. Nie, G. Parker, V. V. Lozovoy, and M. Daunts, “Energy scaling of Yb fiber oscillator producing clusters of femtosecond pulses,” Opt. Eng. 53(5), 051505 (2014).
[Crossref]

Pfeifer, T.

Ratner, J.

M. Rhodes, G. Steinmeyer, J. Ratner, and R. Trebino, “Pulse-shape instabilities and their measurement,” Laser Photonics Rev. 7(4), 557–565 (2013).
[Crossref]

J. Ratner, G. Steinmeyer, T. C. Wong, R. Bartels, and R. Trebino, “Coherent artifact in modern pulse measurements,” Opt. Lett. 37(14), 2874–2876 (2012).
[Crossref] [PubMed]

Rhodes, M.

M. Rhodes, G. Steinmeyer, J. Ratner, and R. Trebino, “Pulse-shape instabilities and their measurement,” Laser Photonics Rev. 7(4), 557–565 (2013).
[Crossref]

Runge, A. F. J.

Silberberg, Y.

Silva, F.

Steinmeyer, G.

M. Rhodes, G. Steinmeyer, J. Ratner, and R. Trebino, “Pulse-shape instabilities and their measurement,” Laser Photonics Rev. 7(4), 557–565 (2013).
[Crossref]

J. Ratner, G. Steinmeyer, T. C. Wong, R. Bartels, and R. Trebino, “Coherent artifact in modern pulse measurements,” Opt. Lett. 37(14), 2874–2876 (2012).
[Crossref] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Trebino, R.

M. Rhodes, G. Steinmeyer, J. Ratner, and R. Trebino, “Pulse-shape instabilities and their measurement,” Laser Photonics Rev. 7(4), 557–565 (2013).
[Crossref]

J. Ratner, G. Steinmeyer, T. C. Wong, R. Bartels, and R. Trebino, “Coherent artifact in modern pulse measurements,” Opt. Lett. 37(14), 2874–2876 (2012).
[Crossref] [PubMed]

Tseng, C.-H.

Ullrich, J.

Walmsley, I. A.

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Weigand, R.

Weinacht, T.

Weiner, A. M.

Weisel, L. R.

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Daunts, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun. 281(7), 1841–1849 (2008).
[Crossref]

Williams, B.

M. C. Cox, N. J. Copner, and B. Williams, “High sensitivity precision relative intensity noise calibration standard using low noise reference laser source,” IEE P. - Sci. Meas.Tech. 145(4), 163–165 (1998).
[Crossref]

Windeler, R. S.

J. N. Ames, S. Ghosh, R. S. Windeler, A. L. Gaeta, and S. T. Cundiff, “Excess noise generation during spectral broadening in a microstructured fiber,” Appl. Phys. B 77(2-3), 279–284 (2003).
[Crossref]

Wong, T. C.

Xi, P.

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Daunts, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun. 281(7), 1841–1849 (2008).
[Crossref]

Xu, B.

Appl. Phys. B (1)

J. N. Ames, S. Ghosh, R. S. Windeler, A. L. Gaeta, and S. T. Cundiff, “Excess noise generation during spectral broadening in a microstructured fiber,” Appl. Phys. B 77(2-3), 279–284 (2003).
[Crossref]

IEE P. - Sci. Meas.Tech. (1)

M. C. Cox, N. J. Copner, and B. Williams, “High sensitivity precision relative intensity noise calibration standard using low noise reference laser source,” IEE P. - Sci. Meas.Tech. 145(4), 163–165 (1998).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

M. Rhodes, G. Steinmeyer, J. Ratner, and R. Trebino, “Pulse-shape instabilities and their measurement,” Laser Photonics Rev. 7(4), 557–565 (2013).
[Crossref]

Opt. Commun. (1)

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Daunts, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun. 281(7), 1841–1849 (2008).
[Crossref]

Opt. Eng. (1)

B. Nie, G. Parker, V. V. Lozovoy, and M. Daunts, “Energy scaling of Yb fiber oscillator producing clusters of femtosecond pulses,” Opt. Eng. 53(5), 051505 (2014).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Phys. Rev. (1)

D. E. McCumber, “Intensity fluctuations in the output of cw laser oscillators. I,” Phys. Rev. 141(1), 306–322 (1966).
[Crossref]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Other (2)

R. C. Greenhow and A. J. Schmidt, Picosecond Light Pulses, vol.2 (Advances in Quantum Electronics, 1974).

R. Trebino, Frequency-Resolved Optical Gating: The Meassurement of Ultrashort Laser Pulses (Kluwer Academic Publishers, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Numerical simulations of a MIIPS scan, where the SHG spectrum is plotted as a function of chirp, obtained for an ideal ensemble of coherent 36 fs transform-limited pulses with unit fidelity (a) and for an ensemble of noisy pulses with random amounts of positive and negative chirp (b). The SHG spectrum in both cases is the average of the entire ensemble of pulses.

Fig. 2
Fig. 2

Numerical simulations corresponding to Fourier-limited (dashed line) and noisy pulses (solid line) having a distribution of positive and negative chirps; see text. The dashed line in Fig. 1(c) indicates the asymptotic fidelity.

Fig. 3
Fig. 3

Numerical simulations corresponding to Fourier-limited (dashed line) and noisy pulses (solid line) having (top) spectral jitter, (middle) random phase modulations, and (bottom) a mixture of phase and amplitude modulations. The dashed line in the third column indicates the asymptotic fidelity.

Fig. 4
Fig. 4

Numerical simulations showing the power dependence of expected SHG and THG intensity on fidelity: A. for amplitude noise, PA for phase and amplitude noise, and P for phase noise.

Fig. 5
Fig. 5

2D MIIPS traces for an ensemble of random pulse with average phase distortion 900fs2 and 2.7x104 fs3 starting with 30 fs TL pulses. Chirp is scanned ± 20000fs2 (vertical axis), and the spectral range (horizontal axis) is 375 nm to 425 nm. First row illustrates coherent pulses with unit fidelity. Second row is for random pulses with average pulse duration 300fs. First column for no dispersion, second column with dispersion, and third column obtained by numerically shifting spectral line to zero chirp. The dashed white lines correspond to ± 9000fs2. Each simulation corresponds to 1000 random pulses, each measured as a function of 500 different chirp values.

Fig. 6
Fig. 6

Experimental 2D MIIPS trace for a titanium sapphire oscillator producing 27.5fs pulses (left), and the corresponding calculated MIIPS trace assuming perfect coherence (middle). (Right) Experimental 2D MIIPS trace for the same laser with destabilized temperature control. Bottom, fidelity curves based on integrated SHG intensity corresponding to each case above.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F( ϕ ) = I ϕ SHG / I TL SHG I ϕ SHG / I ϕ =0 SHG ,
I ϕ =0 SHG = I TL SHG F( ϕ ) n

Metrics