Abstract

We present a study of the optical properties of gold crescent-shaped antennas by means of electron energy loss spectroscopy. These structures exhibit particularly large field enhancement near their sharp features, support two non-degenerate dipolar (i.e., optically active) localised surface plasmon resonances, and are widely tunable by a choice of their shape and dimensions. Depending on the volume and shape, we resolved up to four plasmon resonances in metallic structures under study in the energy range of 0.8 – 2.4 eV: two dipolar and quadrupolar mode and a multimodal assembly. The boundary-element-method calculations reproduced the observed spectra and helped to identify the character of the resonances. The two lowest modes are of particular importance owing to their dipolar nature. Remarkably, they are both concentrated near the tips of the crescent, spectrally well resolved and their energies can be tuned between 0.8 – 1.5 eV and 1.2 – 2.0 eV, respectively. As the lower spectral range covers the telecommunication wavelengths 1.30 and 1.55 μm, we envisage the possible use of such nanostructures in infrared communication technology.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spatio-spectral characterization of photonic meta-atoms with electron energy-loss spectroscopy [Invited]

Felix von Cube, Stephan Irsen, Jens Niegemann, Christian Matyssek, Wolfram Hergert, Kurt Busch, and Stefan Linden
Opt. Mater. Express 1(5) 1009-1018 (2011)

Cathodoluminescence spectroscopy of plasmonic patch antennas: towards lower order and higher energies

Mathieu Jeannin, Névine Rochat, Kuntheak Kheng, and Gilles Nogues
Opt. Express 25(5) 5488-5500 (2017)

Vortex electron energy loss spectroscopy for near-field mapping of magnetic plasmons

Zeinab Mohammadi, Cole P. Van Vlack, Stephen Hughes, Jens Bornemann, and Reuven Gordon
Opt. Express 20(14) 15024-15034 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W. Hänsch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476–479 (1992).
    [Crossref] [PubMed]
  2. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20, 4813–4815 (2004).
    [Crossref]
  3. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
    [Crossref] [PubMed]
  4. M. S. Anderson, “Locally enhanced raman spectroscopy with an atomic force microscope,” Appl. Phys. Lett. 76, 3130–3132 (2000).
    [Crossref]
  5. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
    [Crossref] [PubMed]
  6. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205 (2010).
    [Crossref] [PubMed]
  7. J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
    [Crossref] [PubMed]
  8. M. Pfeiffer, K. Lindfors, C. Wolpert, P. Atkinson, M. Benyoucef, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna,” Nano Lett. 10, 4555–4558 (2010).
    [Crossref] [PubMed]
  9. N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
    [Crossref] [PubMed]
  10. J. F. Hainfeld, “Site-specific cluster labels,” Ultramicroscopy 46, 135–144 (1992).
    [Crossref]
  11. K. Li, L. Clime, B. Cui, and T. Veres, “Surface enhanced raman scattering on long-range ordered noble-metal nanocrescent arrays,” Nanotechnology 19, 145305 (2008).
    [Crossref] [PubMed]
  12. R. Bukasov, T. A. Ali, P. Nordlander, and J. S. Shumaker-Parry, “Probing the plasmonic near-field of gold nanocrescent antennas,” ACS Nano 4, 6639–6650 (2010).
    [Crossref] [PubMed]
  13. M. Retsch, M. Tamm, N. Bocchio, N. Horn, R. Förch, U. Jonas, and M. Kreiter, “Parallel preparation of densely packed arrays of 150-nm gold-nanocrescent resonators in three dimensions,” Small 5, 2105–2110 (2009).
    [Crossref] [PubMed]
  14. A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband plasmonic device concentrating the energy at the nanoscale: The crescent-shaped cylinder,” Phys. Rev. B 82, 125430 (2010).
    [Crossref]
  15. A. I. Fernández-Domínguez, Y. Luo, A. Wiener, J. B. Pendry, and S. A. Maier, “Theory of three-dimensional nanocrescent light harvesters,” Nano Lett. 12, 5946–5953 (2012).
    [Crossref] [PubMed]
  16. D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
    [Crossref] [PubMed]
  17. K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93, 037401 (2004).
    [Crossref] [PubMed]
  18. C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).
    [Crossref]
  19. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
    [Crossref] [PubMed]
  20. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755–6759 (2002).
    [Crossref]
  21. M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18, 1949–1960 (2008).
    [Crossref] [PubMed]
  22. M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, B. Lamprecht, H. Ditlbacher, and F. R. Aussenegg, “Lifetime and dephasing of plasmons in ag nanoparticles,” Proc. SPIE 4456, 14–21 (2001).
    [Crossref]
  23. A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nat. Biotechnol. 21, 1377–1386 (2003).
    [Crossref]
  24. P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, and T. Šikola, “Control and near-field detection of surface plasmon interference patterns,” Nano Lett. 13, 2558–2563 (2013).
    [Crossref]
  25. F. J. García de Abajo and M. Kociak, “Probing the photonic local density of states with electron energy loss spectroscopy,” Phys. Rev. Lett. 100, 106804 (2008).
    [Crossref] [PubMed]
  26. U. Hohenester, H. Ditlbacher, and J. R. Krenn, “Electron-energy-loss spectra of plasmonic nanoparticles,” Phys. Rev. Lett. 103, 106801 (2009).
    [Crossref] [PubMed]
  27. N. Zabala and A. Rivacoba, “Electron energy loss near supported particles,” Phys. Rev. B 48, 14534–14542 (1993).
    [Crossref]
  28. P. E. Batson, “Surface plasmon coupling in clusters of small spheres,” Phys. Rev. Lett. 49, 936–940 (1982).
    [Crossref]
  29. M. Bosman, V. J. Keast, M. Watanabe, A. I. Maaroof, and M. B. Cortie, “Mapping surface plasmons at the nanometre scale with an electron beam,” Nanotechnology 18, 165505 (2007).
    [Crossref]
  30. A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11, 1323–1330 (2011).
    [Crossref] [PubMed]
  31. G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. García de Abajo, M. Wegener, and M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105, 255501 (2010).
    [Crossref]
  32. B. Goris, G. Guzzinati, C. Fernández-López, J. Pérez-Juste, L. M. Liz-Marzán, A. Trügler, U. Hohenester, J. Verbeeck, S. Bals, and G. Van Tendeloo, “Plasmon mapping in au@ag nanocube assemblies,” J. Phys. Chem. C 118, 15356–15362 (2014).
    [Crossref]
  33. A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (eels) of surface plasmons in single silver nanoparticles and dimers: Influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
    [Crossref] [PubMed]
  34. S. Mazzucco, N. Geuquet, J. Ye, O. Stéphan, W. Van Roy, P. Van Dorpe, L. Henrard, and M. Kociak, “Ultralocal modification of surface plasmons properties in silver nanocubes,” Nano Lett. 12, 1288–1294 (2012).
    [Crossref] [PubMed]
  35. F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Universal dispersion of surface plasmons in flat nanostructures,” Nat. Commun. 5, 3604 (2014).
    [Crossref] [PubMed]
  36. G. Boudarham and M. Kociak, “Modal decompositions of the local electromagnetic density of states and spatially resolved electron energy loss probability in terms of geometric modes,” Phys. Rev. B 85, 245447 (2012).
    [Crossref]
  37. S. M. Collins and P. A. Midgley, “Surface plasmon excitations in metal spheres: Direct comparison of light scattering and electron energy-loss spectroscopy by modal decomposition,” Phys. Rev. B 87, 235432 (2013).
    [Crossref]
  38. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallosungen,” Ann. Phys. 330, 377–445 (1908).
    [Crossref]
  39. R. Kalousek, P. Dub, L. Břínek, and T. Šikola, “Response of plasmonic resonant nanorods: an analytical approach to optical antennas,” Opt. Express 20, 17916–17927 (2012).
    [Crossref] [PubMed]
  40. F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics,” Phys. Rev. Lett. 80, 5180–5183 (1998).
    [Crossref]
  41. F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
    [Crossref]
  42. U. Hohenester and A. Trügler, “MNPBEM - A Matlab toolbox for the simulation of plasmonic nanoparticles,” Comput. Phys. Commun. 183, 370–381 (2012).
    [Crossref]
  43. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Burlington, 2002).
  44. H. R. Philipp, “Optical properties of silicon nitride,” J. Electrochem. Soc. 120, 295–300 (1973).
    [Crossref]
  45. R. Olmon, B. Slovick, T. Johnson, D. Shelton, S.-H. Oh, G. Boreman, and M. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
    [Crossref]
  46. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
    [Crossref]
  47. A. C. Atre, A. García-Etxarri, H. Alaeian, and J. A. Dionne, “Toward high-efficiency solar upconversion with plasmonic nanostructures,” J. Opt. 14, 024008 (2012).
    [Crossref]
  48. F. P. Schmidt, H. Ditlbacher, F. Hofer, J. R. Krenn, and U. Hohenester, “Morphing a plasmonic nanodisk into a nanotriangle,” Nano Lett. 14, 4810–4815 (2014).
    [Crossref] [PubMed]

2014 (3)

B. Goris, G. Guzzinati, C. Fernández-López, J. Pérez-Juste, L. M. Liz-Marzán, A. Trügler, U. Hohenester, J. Verbeeck, S. Bals, and G. Van Tendeloo, “Plasmon mapping in au@ag nanocube assemblies,” J. Phys. Chem. C 118, 15356–15362 (2014).
[Crossref]

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Universal dispersion of surface plasmons in flat nanostructures,” Nat. Commun. 5, 3604 (2014).
[Crossref] [PubMed]

F. P. Schmidt, H. Ditlbacher, F. Hofer, J. R. Krenn, and U. Hohenester, “Morphing a plasmonic nanodisk into a nanotriangle,” Nano Lett. 14, 4810–4815 (2014).
[Crossref] [PubMed]

2013 (2)

S. M. Collins and P. A. Midgley, “Surface plasmon excitations in metal spheres: Direct comparison of light scattering and electron energy-loss spectroscopy by modal decomposition,” Phys. Rev. B 87, 235432 (2013).
[Crossref]

P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, and T. Šikola, “Control and near-field detection of surface plasmon interference patterns,” Nano Lett. 13, 2558–2563 (2013).
[Crossref]

2012 (7)

A. I. Fernández-Domínguez, Y. Luo, A. Wiener, J. B. Pendry, and S. A. Maier, “Theory of three-dimensional nanocrescent light harvesters,” Nano Lett. 12, 5946–5953 (2012).
[Crossref] [PubMed]

G. Boudarham and M. Kociak, “Modal decompositions of the local electromagnetic density of states and spatially resolved electron energy loss probability in terms of geometric modes,” Phys. Rev. B 85, 245447 (2012).
[Crossref]

S. Mazzucco, N. Geuquet, J. Ye, O. Stéphan, W. Van Roy, P. Van Dorpe, L. Henrard, and M. Kociak, “Ultralocal modification of surface plasmons properties in silver nanocubes,” Nano Lett. 12, 1288–1294 (2012).
[Crossref] [PubMed]

U. Hohenester and A. Trügler, “MNPBEM - A Matlab toolbox for the simulation of plasmonic nanoparticles,” Comput. Phys. Commun. 183, 370–381 (2012).
[Crossref]

R. Kalousek, P. Dub, L. Břínek, and T. Šikola, “Response of plasmonic resonant nanorods: an analytical approach to optical antennas,” Opt. Express 20, 17916–17927 (2012).
[Crossref] [PubMed]

R. Olmon, B. Slovick, T. Johnson, D. Shelton, S.-H. Oh, G. Boreman, and M. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

A. C. Atre, A. García-Etxarri, H. Alaeian, and J. A. Dionne, “Toward high-efficiency solar upconversion with plasmonic nanostructures,” J. Opt. 14, 024008 (2012).
[Crossref]

2011 (2)

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[Crossref] [PubMed]

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11, 1323–1330 (2011).
[Crossref] [PubMed]

2010 (5)

G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. García de Abajo, M. Wegener, and M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105, 255501 (2010).
[Crossref]

R. Bukasov, T. A. Ali, P. Nordlander, and J. S. Shumaker-Parry, “Probing the plasmonic near-field of gold nanocrescent antennas,” ACS Nano 4, 6639–6650 (2010).
[Crossref] [PubMed]

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband plasmonic device concentrating the energy at the nanoscale: The crescent-shaped cylinder,” Phys. Rev. B 82, 125430 (2010).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205 (2010).
[Crossref] [PubMed]

M. Pfeiffer, K. Lindfors, C. Wolpert, P. Atkinson, M. Benyoucef, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna,” Nano Lett. 10, 4555–4558 (2010).
[Crossref] [PubMed]

2009 (5)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref] [PubMed]

M. Retsch, M. Tamm, N. Bocchio, N. Horn, R. Förch, U. Jonas, and M. Kreiter, “Parallel preparation of densely packed arrays of 150-nm gold-nanocrescent resonators in three dimensions,” Small 5, 2105–2110 (2009).
[Crossref] [PubMed]

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (eels) of surface plasmons in single silver nanoparticles and dimers: Influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[Crossref] [PubMed]

U. Hohenester, H. Ditlbacher, and J. R. Krenn, “Electron-energy-loss spectra of plasmonic nanoparticles,” Phys. Rev. Lett. 103, 106801 (2009).
[Crossref] [PubMed]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

2008 (3)

F. J. García de Abajo and M. Kociak, “Probing the photonic local density of states with electron energy loss spectroscopy,” Phys. Rev. Lett. 100, 106804 (2008).
[Crossref] [PubMed]

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18, 1949–1960 (2008).
[Crossref] [PubMed]

K. Li, L. Clime, B. Cui, and T. Veres, “Surface enhanced raman scattering on long-range ordered noble-metal nanocrescent arrays,” Nanotechnology 19, 145305 (2008).
[Crossref] [PubMed]

2007 (1)

M. Bosman, V. J. Keast, M. Watanabe, A. I. Maaroof, and M. B. Cortie, “Mapping surface plasmons at the nanometre scale with an electron beam,” Nanotechnology 18, 165505 (2007).
[Crossref]

2006 (1)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[Crossref] [PubMed]

2005 (1)

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[Crossref] [PubMed]

2004 (2)

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20, 4813–4815 (2004).
[Crossref]

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93, 037401 (2004).
[Crossref] [PubMed]

2003 (1)

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nat. Biotechnol. 21, 1377–1386 (2003).
[Crossref]

2002 (4)

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[Crossref] [PubMed]

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755–6759 (2002).
[Crossref]

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[Crossref] [PubMed]

F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
[Crossref]

2001 (1)

M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, B. Lamprecht, H. Ditlbacher, and F. R. Aussenegg, “Lifetime and dephasing of plasmons in ag nanoparticles,” Proc. SPIE 4456, 14–21 (2001).
[Crossref]

2000 (2)

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).
[Crossref]

M. S. Anderson, “Locally enhanced raman spectroscopy with an atomic force microscope,” Appl. Phys. Lett. 76, 3130–3132 (2000).
[Crossref]

1998 (1)

F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics,” Phys. Rev. Lett. 80, 5180–5183 (1998).
[Crossref]

1993 (1)

N. Zabala and A. Rivacoba, “Electron energy loss near supported particles,” Phys. Rev. B 48, 14534–14542 (1993).
[Crossref]

1992 (2)

M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W. Hänsch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476–479 (1992).
[Crossref] [PubMed]

J. F. Hainfeld, “Site-specific cluster labels,” Ultramicroscopy 46, 135–144 (1992).
[Crossref]

1982 (1)

P. E. Batson, “Surface plasmon coupling in clusters of small spheres,” Phys. Rev. Lett. 49, 936–940 (1982).
[Crossref]

1973 (1)

H. R. Philipp, “Optical properties of silicon nitride,” J. Electrochem. Soc. 120, 295–300 (1973).
[Crossref]

1908 (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallosungen,” Ann. Phys. 330, 377–445 (1908).
[Crossref]

Aeschlimann, M.

M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, B. Lamprecht, H. Ditlbacher, and F. R. Aussenegg, “Lifetime and dephasing of plasmons in ag nanoparticles,” Proc. SPIE 4456, 14–21 (2001).
[Crossref]

Alaeian, H.

A. C. Atre, A. García-Etxarri, H. Alaeian, and J. A. Dionne, “Toward high-efficiency solar upconversion with plasmonic nanostructures,” J. Opt. 14, 024008 (2012).
[Crossref]

Ali, T. A.

R. Bukasov, T. A. Ali, P. Nordlander, and J. S. Shumaker-Parry, “Probing the plasmonic near-field of gold nanocrescent antennas,” ACS Nano 4, 6639–6650 (2010).
[Crossref] [PubMed]

Alivisatos, A. P.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[Crossref] [PubMed]

Ammann, E.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nat. Biotechnol. 21, 1377–1386 (2003).
[Crossref]

Anderson, M. S.

M. S. Anderson, “Locally enhanced raman spectroscopy with an atomic force microscope,” Appl. Phys. Lett. 76, 3130–3132 (2000).
[Crossref]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[Crossref] [PubMed]

Atkinson, P.

M. Pfeiffer, K. Lindfors, C. Wolpert, P. Atkinson, M. Benyoucef, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna,” Nano Lett. 10, 4555–4558 (2010).
[Crossref] [PubMed]

Atre, A. C.

A. C. Atre, A. García-Etxarri, H. Alaeian, and J. A. Dionne, “Toward high-efficiency solar upconversion with plasmonic nanostructures,” J. Opt. 14, 024008 (2012).
[Crossref]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205 (2010).
[Crossref] [PubMed]

Aubry, A.

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband plasmonic device concentrating the energy at the nanoscale: The crescent-shaped cylinder,” Phys. Rev. B 82, 125430 (2010).
[Crossref]

Aussenegg, F. R.

M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, B. Lamprecht, H. Ditlbacher, and F. R. Aussenegg, “Lifetime and dephasing of plasmons in ag nanoparticles,” Proc. SPIE 4456, 14–21 (2001).
[Crossref]

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).
[Crossref]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref] [PubMed]

Bals, S.

B. Goris, G. Guzzinati, C. Fernández-López, J. Pérez-Juste, L. M. Liz-Marzán, A. Trügler, U. Hohenester, J. Verbeeck, S. Bals, and G. Van Tendeloo, “Plasmon mapping in au@ag nanocube assemblies,” J. Phys. Chem. C 118, 15356–15362 (2014).
[Crossref]

Bao, K.

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (eels) of surface plasmons in single silver nanoparticles and dimers: Influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[Crossref] [PubMed]

Barbic, M.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755–6759 (2002).
[Crossref]

Batson, P. E.

P. E. Batson, “Surface plasmon coupling in clusters of small spheres,” Phys. Rev. Lett. 49, 936–940 (1982).
[Crossref]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref] [PubMed]

Benyoucef, M.

M. Pfeiffer, K. Lindfors, C. Wolpert, P. Atkinson, M. Benyoucef, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna,” Nano Lett. 10, 4555–4558 (2010).
[Crossref] [PubMed]

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[Crossref] [PubMed]

Bocchio, N.

M. Retsch, M. Tamm, N. Bocchio, N. Horn, R. Förch, U. Jonas, and M. Kreiter, “Parallel preparation of densely packed arrays of 150-nm gold-nanocrescent resonators in three dimensions,” Small 5, 2105–2110 (2009).
[Crossref] [PubMed]

Boreman, G.

R. Olmon, B. Slovick, T. Johnson, D. Shelton, S.-H. Oh, G. Boreman, and M. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Bosman, M.

M. Bosman, V. J. Keast, M. Watanabe, A. I. Maaroof, and M. B. Cortie, “Mapping surface plasmons at the nanometre scale with an electron beam,” Nanotechnology 18, 165505 (2007).
[Crossref]

Boudarham, G.

G. Boudarham and M. Kociak, “Modal decompositions of the local electromagnetic density of states and spatially resolved electron energy loss probability in terms of geometric modes,” Phys. Rev. B 85, 245447 (2012).
[Crossref]

G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. García de Abajo, M. Wegener, and M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105, 255501 (2010).
[Crossref]

Boyer, D.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[Crossref] [PubMed]

Brínek, L.

P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, and T. Šikola, “Control and near-field detection of surface plasmon interference patterns,” Nano Lett. 13, 2558–2563 (2013).
[Crossref]

R. Kalousek, P. Dub, L. Břínek, and T. Šikola, “Response of plasmonic resonant nanorods: an analytical approach to optical antennas,” Opt. Express 20, 17916–17927 (2012).
[Crossref] [PubMed]

Brolo, A. G.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20, 4813–4815 (2004).
[Crossref]

Bukasov, R.

R. Bukasov, T. A. Ali, P. Nordlander, and J. S. Shumaker-Parry, “Probing the plasmonic near-field of gold nanocrescent antennas,” ACS Nano 4, 6639–6650 (2010).
[Crossref] [PubMed]

Chan, V. Z.-H.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).
[Crossref]

Clime, L.

K. Li, L. Clime, B. Cui, and T. Veres, “Surface enhanced raman scattering on long-range ordered noble-metal nanocrescent arrays,” Nanotechnology 19, 145305 (2008).
[Crossref] [PubMed]

Collins, S. M.

S. M. Collins and P. A. Midgley, “Surface plasmon excitations in metal spheres: Direct comparison of light scattering and electron energy-loss spectroscopy by modal decomposition,” Phys. Rev. B 87, 235432 (2013).
[Crossref]

Cortie, M. B.

M. Bosman, V. J. Keast, M. Watanabe, A. I. Maaroof, and M. B. Cortie, “Mapping surface plasmons at the nanometre scale with an electron beam,” Nanotechnology 18, 165505 (2007).
[Crossref]

Cui, B.

K. Li, L. Clime, B. Cui, and T. Veres, “Surface enhanced raman scattering on long-range ordered noble-metal nanocrescent arrays,” Nanotechnology 19, 145305 (2008).
[Crossref] [PubMed]

Dekhter, R.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nat. Biotechnol. 21, 1377–1386 (2003).
[Crossref]

Dionne, J. A.

A. C. Atre, A. García-Etxarri, H. Alaeian, and J. A. Dionne, “Toward high-efficiency solar upconversion with plasmonic nanostructures,” J. Opt. 14, 024008 (2012).
[Crossref]

Ditlbacher, H.

F. P. Schmidt, H. Ditlbacher, F. Hofer, J. R. Krenn, and U. Hohenester, “Morphing a plasmonic nanodisk into a nanotriangle,” Nano Lett. 14, 4810–4815 (2014).
[Crossref] [PubMed]

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Universal dispersion of surface plasmons in flat nanostructures,” Nat. Commun. 5, 3604 (2014).
[Crossref] [PubMed]

U. Hohenester, H. Ditlbacher, and J. R. Krenn, “Electron-energy-loss spectra of plasmonic nanoparticles,” Phys. Rev. Lett. 103, 106801 (2009).
[Crossref] [PubMed]

M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, B. Lamprecht, H. Ditlbacher, and F. R. Aussenegg, “Lifetime and dephasing of plasmons in ag nanoparticles,” Proc. SPIE 4456, 14–21 (2001).
[Crossref]

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).
[Crossref]

Dub, P.

P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, and T. Šikola, “Control and near-field detection of surface plasmon interference patterns,” Nano Lett. 13, 2558–2563 (2013).
[Crossref]

R. Kalousek, P. Dub, L. Břínek, and T. Šikola, “Response of plasmonic resonant nanorods: an analytical approach to optical antennas,” Opt. Express 20, 17916–17927 (2012).
[Crossref] [PubMed]

Dvorák, P.

P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, and T. Šikola, “Control and near-field detection of surface plasmon interference patterns,” Nano Lett. 13, 2558–2563 (2013).
[Crossref]

Eisler, H.-J.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[Crossref] [PubMed]

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Farahani, J. N.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[Crossref] [PubMed]

Feldmann, J.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[Crossref] [PubMed]

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).
[Crossref]

Fernández-Domínguez, A. I.

A. I. Fernández-Domínguez, Y. Luo, A. Wiener, J. B. Pendry, and S. A. Maier, “Theory of three-dimensional nanocrescent light harvesters,” Nano Lett. 12, 5946–5953 (2012).
[Crossref] [PubMed]

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11, 1323–1330 (2011).
[Crossref] [PubMed]

Fernández-López, C.

B. Goris, G. Guzzinati, C. Fernández-López, J. Pérez-Juste, L. M. Liz-Marzán, A. Trügler, U. Hohenester, J. Verbeeck, S. Bals, and G. Van Tendeloo, “Plasmon mapping in au@ag nanocube assemblies,” J. Phys. Chem. C 118, 15356–15362 (2014).
[Crossref]

Feth, N.

G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. García de Abajo, M. Wegener, and M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105, 255501 (2010).
[Crossref]

Förch, R.

M. Retsch, M. Tamm, N. Bocchio, N. Horn, R. Förch, U. Jonas, and M. Kreiter, “Parallel preparation of densely packed arrays of 150-nm gold-nanocrescent resonators in three dimensions,” Small 5, 2105–2110 (2009).
[Crossref] [PubMed]

Franzl, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[Crossref] [PubMed]

Funston, A.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18, 1949–1960 (2008).
[Crossref] [PubMed]

García de Abajo, F. J.

F. J. García de Abajo and M. Kociak, “Probing the photonic local density of states with electron energy loss spectroscopy,” Phys. Rev. Lett. 100, 106804 (2008).
[Crossref] [PubMed]

F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
[Crossref]

F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics,” Phys. Rev. Lett. 80, 5180–5183 (1998).
[Crossref]

García de Abajo, J.

G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. García de Abajo, M. Wegener, and M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105, 255501 (2010).
[Crossref]

García-Etxarri, A.

A. C. Atre, A. García-Etxarri, H. Alaeian, and J. A. Dionne, “Toward high-efficiency solar upconversion with plasmonic nanostructures,” J. Opt. 14, 024008 (2012).
[Crossref]

Geier, S.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).
[Crossref]

Geuquet, N.

S. Mazzucco, N. Geuquet, J. Ye, O. Stéphan, W. Van Roy, P. Van Dorpe, L. Henrard, and M. Kociak, “Ultralocal modification of surface plasmons properties in silver nanocubes,” Nano Lett. 12, 1288–1294 (2012).
[Crossref] [PubMed]

Giessen, H.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[Crossref] [PubMed]

M. Pfeiffer, K. Lindfors, C. Wolpert, P. Atkinson, M. Benyoucef, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna,” Nano Lett. 10, 4555–4558 (2010).
[Crossref] [PubMed]

Gordon, R.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20, 4813–4815 (2004).
[Crossref]

Goris, B.

B. Goris, G. Guzzinati, C. Fernández-López, J. Pérez-Juste, L. M. Liz-Marzán, A. Trügler, U. Hohenester, J. Verbeeck, S. Bals, and G. Van Tendeloo, “Plasmon mapping in au@ag nanocube assemblies,” J. Phys. Chem. C 118, 15356–15362 (2014).
[Crossref]

Guzzinati, G.

B. Goris, G. Guzzinati, C. Fernández-López, J. Pérez-Juste, L. M. Liz-Marzán, A. Trügler, U. Hohenester, J. Verbeeck, S. Bals, and G. Van Tendeloo, “Plasmon mapping in au@ag nanocube assemblies,” J. Phys. Chem. C 118, 15356–15362 (2014).
[Crossref]

Hainfeld, J. F.

J. F. Hainfeld, “Site-specific cluster labels,” Ultramicroscopy 46, 135–144 (1992).
[Crossref]

Hänsch, T. W.

M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W. Hänsch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476–479 (1992).
[Crossref] [PubMed]

Hartland, G. V.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18, 1949–1960 (2008).
[Crossref] [PubMed]

Hecht, B.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[Crossref] [PubMed]

Hecker, N. E.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).
[Crossref]

Heckl, W. M.

M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W. Hänsch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476–479 (1992).
[Crossref] [PubMed]

Henrard, L.

S. Mazzucco, N. Geuquet, J. Ye, O. Stéphan, W. Van Roy, P. Van Dorpe, L. Henrard, and M. Kociak, “Ultralocal modification of surface plasmons properties in silver nanocubes,” Nano Lett. 12, 1288–1294 (2012).
[Crossref] [PubMed]

Hentschel, M.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[Crossref] [PubMed]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref] [PubMed]

Hofer, F.

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Universal dispersion of surface plasmons in flat nanostructures,” Nat. Commun. 5, 3604 (2014).
[Crossref] [PubMed]

F. P. Schmidt, H. Ditlbacher, F. Hofer, J. R. Krenn, and U. Hohenester, “Morphing a plasmonic nanodisk into a nanotriangle,” Nano Lett. 14, 4810–4815 (2014).
[Crossref] [PubMed]

Hohenau, A.

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Universal dispersion of surface plasmons in flat nanostructures,” Nat. Commun. 5, 3604 (2014).
[Crossref] [PubMed]

Hohenester, U.

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Universal dispersion of surface plasmons in flat nanostructures,” Nat. Commun. 5, 3604 (2014).
[Crossref] [PubMed]

B. Goris, G. Guzzinati, C. Fernández-López, J. Pérez-Juste, L. M. Liz-Marzán, A. Trügler, U. Hohenester, J. Verbeeck, S. Bals, and G. Van Tendeloo, “Plasmon mapping in au@ag nanocube assemblies,” J. Phys. Chem. C 118, 15356–15362 (2014).
[Crossref]

F. P. Schmidt, H. Ditlbacher, F. Hofer, J. R. Krenn, and U. Hohenester, “Morphing a plasmonic nanodisk into a nanotriangle,” Nano Lett. 14, 4810–4815 (2014).
[Crossref] [PubMed]

U. Hohenester and A. Trügler, “MNPBEM - A Matlab toolbox for the simulation of plasmonic nanoparticles,” Comput. Phys. Commun. 183, 370–381 (2012).
[Crossref]

U. Hohenester, H. Ditlbacher, and J. R. Krenn, “Electron-energy-loss spectra of plasmonic nanoparticles,” Phys. Rev. Lett. 103, 106801 (2009).
[Crossref] [PubMed]

Horn, N.

M. Retsch, M. Tamm, N. Bocchio, N. Horn, R. Förch, U. Jonas, and M. Kreiter, “Parallel preparation of densely packed arrays of 150-nm gold-nanocrescent resonators in three dimensions,” Small 5, 2105–2110 (2009).
[Crossref] [PubMed]

Howie, A.

F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
[Crossref]

F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics,” Phys. Rev. Lett. 80, 5180–5183 (1998).
[Crossref]

Hu, M.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18, 1949–1960 (2008).
[Crossref] [PubMed]

Johnson, T.

R. Olmon, B. Slovick, T. Johnson, D. Shelton, S.-H. Oh, G. Boreman, and M. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Jonas, U.

M. Retsch, M. Tamm, N. Bocchio, N. Horn, R. Förch, U. Jonas, and M. Kreiter, “Parallel preparation of densely packed arrays of 150-nm gold-nanocrescent resonators in three dimensions,” Small 5, 2105–2110 (2009).
[Crossref] [PubMed]

Kalkbrenner, T.

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93, 037401 (2004).
[Crossref] [PubMed]

Kalousek, R.

P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, and T. Šikola, “Control and near-field detection of surface plasmon interference patterns,” Nano Lett. 13, 2558–2563 (2013).
[Crossref]

R. Kalousek, P. Dub, L. Břínek, and T. Šikola, “Response of plasmonic resonant nanorods: an analytical approach to optical antennas,” Opt. Express 20, 17916–17927 (2012).
[Crossref] [PubMed]

Kavanagh, K. L.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20, 4813–4815 (2004).
[Crossref]

Keast, V. J.

M. Bosman, V. J. Keast, M. Watanabe, A. I. Maaroof, and M. B. Cortie, “Mapping surface plasmons at the nanometre scale with an electron beam,” Nanotechnology 18, 165505 (2007).
[Crossref]

Khan, I.

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (eels) of surface plasmons in single silver nanoparticles and dimers: Influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[Crossref] [PubMed]

Khatchatouriants, A.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nat. Biotechnol. 21, 1377–1386 (2003).
[Crossref]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Kociak, M.

G. Boudarham and M. Kociak, “Modal decompositions of the local electromagnetic density of states and spatially resolved electron energy loss probability in terms of geometric modes,” Phys. Rev. B 85, 245447 (2012).
[Crossref]

S. Mazzucco, N. Geuquet, J. Ye, O. Stéphan, W. Van Roy, P. Van Dorpe, L. Henrard, and M. Kociak, “Ultralocal modification of surface plasmons properties in silver nanocubes,” Nano Lett. 12, 1288–1294 (2012).
[Crossref] [PubMed]

G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. García de Abajo, M. Wegener, and M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105, 255501 (2010).
[Crossref]

F. J. García de Abajo and M. Kociak, “Probing the photonic local density of states with electron energy loss spectroscopy,” Phys. Rev. Lett. 100, 106804 (2008).
[Crossref] [PubMed]

Koh, A. L.

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11, 1323–1330 (2011).
[Crossref] [PubMed]

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (eels) of surface plasmons in single silver nanoparticles and dimers: Influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[Crossref] [PubMed]

Kothleitner, G.

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (eels) of surface plasmons in single silver nanoparticles and dimers: Influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[Crossref] [PubMed]

Kreiter, M.

M. Retsch, M. Tamm, N. Bocchio, N. Horn, R. Förch, U. Jonas, and M. Kreiter, “Parallel preparation of densely packed arrays of 150-nm gold-nanocrescent resonators in three dimensions,” Small 5, 2105–2110 (2009).
[Crossref] [PubMed]

Krenn, J. R.

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Universal dispersion of surface plasmons in flat nanostructures,” Nat. Commun. 5, 3604 (2014).
[Crossref] [PubMed]

F. P. Schmidt, H. Ditlbacher, F. Hofer, J. R. Krenn, and U. Hohenester, “Morphing a plasmonic nanodisk into a nanotriangle,” Nano Lett. 14, 4810–4815 (2014).
[Crossref] [PubMed]

U. Hohenester, H. Ditlbacher, and J. R. Krenn, “Electron-energy-loss spectra of plasmonic nanoparticles,” Phys. Rev. Lett. 103, 106801 (2009).
[Crossref] [PubMed]

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).
[Crossref]

Lamprecht, B.

M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, B. Lamprecht, H. Ditlbacher, and F. R. Aussenegg, “Lifetime and dephasing of plasmons in ag nanoparticles,” Proc. SPIE 4456, 14–21 (2001).
[Crossref]

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).
[Crossref]

Leathem, B.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20, 4813–4815 (2004).
[Crossref]

Lei, D. Y.

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband plasmonic device concentrating the energy at the nanoscale: The crescent-shaped cylinder,” Phys. Rev. B 82, 125430 (2010).
[Crossref]

Lewis, A.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nat. Biotechnol. 21, 1377–1386 (2003).
[Crossref]

Li, K.

K. Li, L. Clime, B. Cui, and T. Veres, “Surface enhanced raman scattering on long-range ordered noble-metal nanocrescent arrays,” Nanotechnology 19, 145305 (2008).
[Crossref] [PubMed]

Linden, S.

G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. García de Abajo, M. Wegener, and M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105, 255501 (2010).
[Crossref]

Lindfors, K.

M. Pfeiffer, K. Lindfors, C. Wolpert, P. Atkinson, M. Benyoucef, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna,” Nano Lett. 10, 4555–4558 (2010).
[Crossref] [PubMed]

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93, 037401 (2004).
[Crossref] [PubMed]

Lippitz, M.

M. Pfeiffer, K. Lindfors, C. Wolpert, P. Atkinson, M. Benyoucef, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna,” Nano Lett. 10, 4555–4558 (2010).
[Crossref] [PubMed]

Liu, N.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[Crossref] [PubMed]

Liz-Marzán, L. M.

B. Goris, G. Guzzinati, C. Fernández-López, J. Pérez-Juste, L. M. Liz-Marzán, A. Trügler, U. Hohenester, J. Verbeeck, S. Bals, and G. Van Tendeloo, “Plasmon mapping in au@ag nanocube assemblies,” J. Phys. Chem. C 118, 15356–15362 (2014).
[Crossref]

Lounis, B.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[Crossref] [PubMed]

Luo, Y.

A. I. Fernández-Domínguez, Y. Luo, A. Wiener, J. B. Pendry, and S. A. Maier, “Theory of three-dimensional nanocrescent light harvesters,” Nano Lett. 12, 5946–5953 (2012).
[Crossref] [PubMed]

Maali, A.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[Crossref] [PubMed]

Maaroof, A. I.

M. Bosman, V. J. Keast, M. Watanabe, A. I. Maaroof, and M. B. Cortie, “Mapping surface plasmons at the nanometre scale with an electron beam,” Nanotechnology 18, 165505 (2007).
[Crossref]

Maier, S. A.

A. I. Fernández-Domínguez, Y. Luo, A. Wiener, J. B. Pendry, and S. A. Maier, “Theory of three-dimensional nanocrescent light harvesters,” Nano Lett. 12, 5946–5953 (2012).
[Crossref] [PubMed]

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11, 1323–1330 (2011).
[Crossref] [PubMed]

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband plasmonic device concentrating the energy at the nanoscale: The crescent-shaped cylinder,” Phys. Rev. B 82, 125430 (2010).
[Crossref]

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (eels) of surface plasmons in single silver nanoparticles and dimers: Influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[Crossref] [PubMed]

Manevitch, A.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nat. Biotechnol. 21, 1377–1386 (2003).
[Crossref]

Mazzucco, S.

S. Mazzucco, N. Geuquet, J. Ye, O. Stéphan, W. Van Roy, P. Van Dorpe, L. Henrard, and M. Kociak, “Ultralocal modification of surface plasmons properties in silver nanocubes,” Nano Lett. 12, 1288–1294 (2012).
[Crossref] [PubMed]

McComb, D. W.

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11, 1323–1330 (2011).
[Crossref] [PubMed]

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (eels) of surface plasmons in single silver nanoparticles and dimers: Influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[Crossref] [PubMed]

Midgley, P. A.

S. M. Collins and P. A. Midgley, “Surface plasmon excitations in metal spheres: Direct comparison of light scattering and electron energy-loss spectroscopy by modal decomposition,” Phys. Rev. B 87, 235432 (2013).
[Crossref]

Mie, G.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallosungen,” Ann. Phys. 330, 377–445 (1908).
[Crossref]

Mock, J. J.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755–6759 (2002).
[Crossref]

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Möller, M.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).
[Crossref]

Mullen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Mulvaney, P.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18, 1949–1960 (2008).
[Crossref] [PubMed]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[Crossref] [PubMed]

Myroshnychenko, V.

G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. García de Abajo, M. Wegener, and M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105, 255501 (2010).
[Crossref]

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref] [PubMed]

Neuman, T.

P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, and T. Šikola, “Control and near-field detection of surface plasmon interference patterns,” Nano Lett. 13, 2558–2563 (2013).
[Crossref]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref] [PubMed]

Nordlander, P.

R. Bukasov, T. A. Ali, P. Nordlander, and J. S. Shumaker-Parry, “Probing the plasmonic near-field of gold nanocrescent antennas,” ACS Nano 4, 6639–6650 (2010).
[Crossref] [PubMed]

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (eels) of surface plasmons in single silver nanoparticles and dimers: Influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[Crossref] [PubMed]

Novo, C.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18, 1949–1960 (2008).
[Crossref] [PubMed]

Novotny, L.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[Crossref] [PubMed]

Oh, S.-H.

R. Olmon, B. Slovick, T. Johnson, D. Shelton, S.-H. Oh, G. Boreman, and M. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Ohms, T.

M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, B. Lamprecht, H. Ditlbacher, and F. R. Aussenegg, “Lifetime and dephasing of plasmons in ag nanoparticles,” Proc. SPIE 4456, 14–21 (2001).
[Crossref]

Olmon, R.

R. Olmon, B. Slovick, T. Johnson, D. Shelton, S.-H. Oh, G. Boreman, and M. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Orrit, M.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[Crossref] [PubMed]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Burlington, 2002).

Pedarnig, J. D.

M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W. Hänsch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476–479 (1992).
[Crossref] [PubMed]

Pendry, J. B.

A. I. Fernández-Domínguez, Y. Luo, A. Wiener, J. B. Pendry, and S. A. Maier, “Theory of three-dimensional nanocrescent light harvesters,” Nano Lett. 12, 5946–5953 (2012).
[Crossref] [PubMed]

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband plasmonic device concentrating the energy at the nanoscale: The crescent-shaped cylinder,” Phys. Rev. B 82, 125430 (2010).
[Crossref]

Pérez-Juste, J.

B. Goris, G. Guzzinati, C. Fernández-López, J. Pérez-Juste, L. M. Liz-Marzán, A. Trügler, U. Hohenester, J. Verbeeck, S. Bals, and G. Van Tendeloo, “Plasmon mapping in au@ag nanocube assemblies,” J. Phys. Chem. C 118, 15356–15362 (2014).
[Crossref]

Pfeiffer, M.

M. Pfeiffer, K. Lindfors, C. Wolpert, P. Atkinson, M. Benyoucef, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna,” Nano Lett. 10, 4555–4558 (2010).
[Crossref] [PubMed]

Philipp, H. R.

H. R. Philipp, “Optical properties of silicon nitride,” J. Electrochem. Soc. 120, 295–300 (1973).
[Crossref]

Pohl, D. W.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[Crossref] [PubMed]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205 (2010).
[Crossref] [PubMed]

Porath, R.

M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, B. Lamprecht, H. Ditlbacher, and F. R. Aussenegg, “Lifetime and dephasing of plasmons in ag nanoparticles,” Proc. SPIE 4456, 14–21 (2001).
[Crossref]

Raschke, M.

R. Olmon, B. Slovick, T. Johnson, D. Shelton, S.-H. Oh, G. Boreman, and M. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Rastelli, A.

M. Pfeiffer, K. Lindfors, C. Wolpert, P. Atkinson, M. Benyoucef, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna,” Nano Lett. 10, 4555–4558 (2010).
[Crossref] [PubMed]

Retsch, M.

M. Retsch, M. Tamm, N. Bocchio, N. Horn, R. Förch, U. Jonas, and M. Kreiter, “Parallel preparation of densely packed arrays of 150-nm gold-nanocrescent resonators in three dimensions,” Small 5, 2105–2110 (2009).
[Crossref] [PubMed]

Rivacoba, A.

N. Zabala and A. Rivacoba, “Electron energy loss near supported particles,” Phys. Rev. B 48, 14534–14542 (1993).
[Crossref]

Šamoril, T.

P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, and T. Šikola, “Control and near-field detection of surface plasmon interference patterns,” Nano Lett. 13, 2558–2563 (2013).
[Crossref]

Sandoghdar, V.

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93, 037401 (2004).
[Crossref] [PubMed]

Scharte, M.

M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, B. Lamprecht, H. Ditlbacher, and F. R. Aussenegg, “Lifetime and dephasing of plasmons in ag nanoparticles,” Proc. SPIE 4456, 14–21 (2001).
[Crossref]

Schmidt, F. P.

F. P. Schmidt, H. Ditlbacher, F. Hofer, J. R. Krenn, and U. Hohenester, “Morphing a plasmonic nanodisk into a nanotriangle,” Nano Lett. 14, 4810–4815 (2014).
[Crossref] [PubMed]

Schmidt, F.-P.

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Universal dispersion of surface plasmons in flat nanostructures,” Nat. Commun. 5, 3604 (2014).
[Crossref] [PubMed]

Schmidt, O. G.

M. Pfeiffer, K. Lindfors, C. Wolpert, P. Atkinson, M. Benyoucef, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna,” Nano Lett. 10, 4555–4558 (2010).
[Crossref] [PubMed]

Schultz, D. A.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755–6759 (2002).
[Crossref]

Schultz, S.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755–6759 (2002).
[Crossref]

Shalaev, V. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref] [PubMed]

Shelton, D.

R. Olmon, B. Slovick, T. Johnson, D. Shelton, S.-H. Oh, G. Boreman, and M. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Shumaker-Parry, J. S.

R. Bukasov, T. A. Ali, P. Nordlander, and J. S. Shumaker-Parry, “Probing the plasmonic near-field of gold nanocrescent antennas,” ACS Nano 4, 6639–6650 (2010).
[Crossref] [PubMed]

Šikola, T.

P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, and T. Šikola, “Control and near-field detection of surface plasmon interference patterns,” Nano Lett. 13, 2558–2563 (2013).
[Crossref]

R. Kalousek, P. Dub, L. Břínek, and T. Šikola, “Response of plasmonic resonant nanorods: an analytical approach to optical antennas,” Opt. Express 20, 17916–17927 (2012).
[Crossref] [PubMed]

Slovick, B.

R. Olmon, B. Slovick, T. Johnson, D. Shelton, S.-H. Oh, G. Boreman, and M. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Smith, D. R.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755–6759 (2002).
[Crossref]

Smith, W. E.

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (eels) of surface plasmons in single silver nanoparticles and dimers: Influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[Crossref] [PubMed]

Sönnichsen, C.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[Crossref] [PubMed]

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).
[Crossref]

Spatz, J. P.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).
[Crossref]

Specht, M.

M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W. Hänsch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476–479 (1992).
[Crossref] [PubMed]

Staleva, H.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18, 1949–1960 (2008).
[Crossref] [PubMed]

Stéphan, O.

S. Mazzucco, N. Geuquet, J. Ye, O. Stéphan, W. Van Roy, P. Van Dorpe, L. Henrard, and M. Kociak, “Ultralocal modification of surface plasmons properties in silver nanocubes,” Nano Lett. 12, 1288–1294 (2012).
[Crossref] [PubMed]

Stoller, P.

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93, 037401 (2004).
[Crossref] [PubMed]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref] [PubMed]

Strinkovski, A.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nat. Biotechnol. 21, 1377–1386 (2003).
[Crossref]

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref] [PubMed]

Taha, H.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nat. Biotechnol. 21, 1377–1386 (2003).
[Crossref]

Tamarat, P.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[Crossref] [PubMed]

Tamm, M.

M. Retsch, M. Tamm, N. Bocchio, N. Horn, R. Förch, U. Jonas, and M. Kreiter, “Parallel preparation of densely packed arrays of 150-nm gold-nanocrescent resonators in three dimensions,” Small 5, 2105–2110 (2009).
[Crossref] [PubMed]

Tang, M. L.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[Crossref] [PubMed]

Trügler, A.

B. Goris, G. Guzzinati, C. Fernández-López, J. Pérez-Juste, L. M. Liz-Marzán, A. Trügler, U. Hohenester, J. Verbeeck, S. Bals, and G. Van Tendeloo, “Plasmon mapping in au@ag nanocube assemblies,” J. Phys. Chem. C 118, 15356–15362 (2014).
[Crossref]

U. Hohenester and A. Trügler, “MNPBEM - A Matlab toolbox for the simulation of plasmonic nanoparticles,” Comput. Phys. Commun. 183, 370–381 (2012).
[Crossref]

Van Dorpe, P.

S. Mazzucco, N. Geuquet, J. Ye, O. Stéphan, W. Van Roy, P. Van Dorpe, L. Henrard, and M. Kociak, “Ultralocal modification of surface plasmons properties in silver nanocubes,” Nano Lett. 12, 1288–1294 (2012).
[Crossref] [PubMed]

Van Roy, W.

S. Mazzucco, N. Geuquet, J. Ye, O. Stéphan, W. Van Roy, P. Van Dorpe, L. Henrard, and M. Kociak, “Ultralocal modification of surface plasmons properties in silver nanocubes,” Nano Lett. 12, 1288–1294 (2012).
[Crossref] [PubMed]

Van Tendeloo, G.

B. Goris, G. Guzzinati, C. Fernández-López, J. Pérez-Juste, L. M. Liz-Marzán, A. Trügler, U. Hohenester, J. Verbeeck, S. Bals, and G. Van Tendeloo, “Plasmon mapping in au@ag nanocube assemblies,” J. Phys. Chem. C 118, 15356–15362 (2014).
[Crossref]

Varga, P.

P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, and T. Šikola, “Control and near-field detection of surface plasmon interference patterns,” Nano Lett. 13, 2558–2563 (2013).
[Crossref]

Verbeeck, J.

B. Goris, G. Guzzinati, C. Fernández-López, J. Pérez-Juste, L. M. Liz-Marzán, A. Trügler, U. Hohenester, J. Verbeeck, S. Bals, and G. Van Tendeloo, “Plasmon mapping in au@ag nanocube assemblies,” J. Phys. Chem. C 118, 15356–15362 (2014).
[Crossref]

Veres, T.

K. Li, L. Clime, B. Cui, and T. Veres, “Surface enhanced raman scattering on long-range ordered noble-metal nanocrescent arrays,” Nanotechnology 19, 145305 (2008).
[Crossref] [PubMed]

von Plessen, G.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[Crossref] [PubMed]

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).
[Crossref]

Wang, H.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18, 1949–1960 (2008).
[Crossref] [PubMed]

Watanabe, M.

M. Bosman, V. J. Keast, M. Watanabe, A. I. Maaroof, and M. B. Cortie, “Mapping surface plasmons at the nanometre scale with an electron beam,” Nanotechnology 18, 165505 (2007).
[Crossref]

Wegener, M.

G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. García de Abajo, M. Wegener, and M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105, 255501 (2010).
[Crossref]

Wiener, A.

A. I. Fernández-Domínguez, Y. Luo, A. Wiener, J. B. Pendry, and S. A. Maier, “Theory of three-dimensional nanocrescent light harvesters,” Nano Lett. 12, 5946–5953 (2012).
[Crossref] [PubMed]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref] [PubMed]

Wilk, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[Crossref] [PubMed]

Wilson, O.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[Crossref] [PubMed]

Wolpert, C.

M. Pfeiffer, K. Lindfors, C. Wolpert, P. Atkinson, M. Benyoucef, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna,” Nano Lett. 10, 4555–4558 (2010).
[Crossref] [PubMed]

Xia, Y.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18, 1949–1960 (2008).
[Crossref] [PubMed]

Yang, J. K. W.

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11, 1323–1330 (2011).
[Crossref] [PubMed]

Ye, J.

S. Mazzucco, N. Geuquet, J. Ye, O. Stéphan, W. Van Roy, P. Van Dorpe, L. Henrard, and M. Kociak, “Ultralocal modification of surface plasmons properties in silver nanocubes,” Nano Lett. 12, 1288–1294 (2012).
[Crossref] [PubMed]

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Zabala, N.

N. Zabala and A. Rivacoba, “Electron energy loss near supported particles,” Phys. Rev. B 48, 14534–14542 (1993).
[Crossref]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref] [PubMed]

Zou, S.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18, 1949–1960 (2008).
[Crossref] [PubMed]

ACS Nano (2)

R. Bukasov, T. A. Ali, P. Nordlander, and J. S. Shumaker-Parry, “Probing the plasmonic near-field of gold nanocrescent antennas,” ACS Nano 4, 6639–6650 (2010).
[Crossref] [PubMed]

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (eels) of surface plasmons in single silver nanoparticles and dimers: Influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[Crossref] [PubMed]

Ann. Phys. (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallosungen,” Ann. Phys. 330, 377–445 (1908).
[Crossref]

Appl. Phys. Lett. (2)

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).
[Crossref]

M. S. Anderson, “Locally enhanced raman spectroscopy with an atomic force microscope,” Appl. Phys. Lett. 76, 3130–3132 (2000).
[Crossref]

Comput. Phys. Commun. (1)

U. Hohenester and A. Trügler, “MNPBEM - A Matlab toolbox for the simulation of plasmonic nanoparticles,” Comput. Phys. Commun. 183, 370–381 (2012).
[Crossref]

J. Chem. Phys. (1)

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755–6759 (2002).
[Crossref]

J. Electrochem. Soc. (1)

H. R. Philipp, “Optical properties of silicon nitride,” J. Electrochem. Soc. 120, 295–300 (1973).
[Crossref]

J. Mater. Chem. (1)

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18, 1949–1960 (2008).
[Crossref] [PubMed]

J. Opt. (1)

A. C. Atre, A. García-Etxarri, H. Alaeian, and J. A. Dionne, “Toward high-efficiency solar upconversion with plasmonic nanostructures,” J. Opt. 14, 024008 (2012).
[Crossref]

J. Phys. Chem. C (1)

B. Goris, G. Guzzinati, C. Fernández-López, J. Pérez-Juste, L. M. Liz-Marzán, A. Trügler, U. Hohenester, J. Verbeeck, S. Bals, and G. Van Tendeloo, “Plasmon mapping in au@ag nanocube assemblies,” J. Phys. Chem. C 118, 15356–15362 (2014).
[Crossref]

Langmuir (1)

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20, 4813–4815 (2004).
[Crossref]

Nano Lett. (6)

M. Pfeiffer, K. Lindfors, C. Wolpert, P. Atkinson, M. Benyoucef, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna,” Nano Lett. 10, 4555–4558 (2010).
[Crossref] [PubMed]

A. I. Fernández-Domínguez, Y. Luo, A. Wiener, J. B. Pendry, and S. A. Maier, “Theory of three-dimensional nanocrescent light harvesters,” Nano Lett. 12, 5946–5953 (2012).
[Crossref] [PubMed]

P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, and T. Šikola, “Control and near-field detection of surface plasmon interference patterns,” Nano Lett. 13, 2558–2563 (2013).
[Crossref]

S. Mazzucco, N. Geuquet, J. Ye, O. Stéphan, W. Van Roy, P. Van Dorpe, L. Henrard, and M. Kociak, “Ultralocal modification of surface plasmons properties in silver nanocubes,” Nano Lett. 12, 1288–1294 (2012).
[Crossref] [PubMed]

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11, 1323–1330 (2011).
[Crossref] [PubMed]

F. P. Schmidt, H. Ditlbacher, F. Hofer, J. R. Krenn, and U. Hohenester, “Morphing a plasmonic nanodisk into a nanotriangle,” Nano Lett. 14, 4810–4815 (2014).
[Crossref] [PubMed]

Nanotechnology (2)

M. Bosman, V. J. Keast, M. Watanabe, A. I. Maaroof, and M. B. Cortie, “Mapping surface plasmons at the nanometre scale with an electron beam,” Nanotechnology 18, 165505 (2007).
[Crossref]

K. Li, L. Clime, B. Cui, and T. Veres, “Surface enhanced raman scattering on long-range ordered noble-metal nanocrescent arrays,” Nanotechnology 19, 145305 (2008).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nat. Biotechnol. 21, 1377–1386 (2003).
[Crossref]

Nat. Commun. (1)

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Universal dispersion of surface plasmons in flat nanostructures,” Nat. Commun. 5, 3604 (2014).
[Crossref] [PubMed]

Nat. Mater. (2)

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Nature (1)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. B (6)

F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
[Crossref]

R. Olmon, B. Slovick, T. Johnson, D. Shelton, S.-H. Oh, G. Boreman, and M. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband plasmonic device concentrating the energy at the nanoscale: The crescent-shaped cylinder,” Phys. Rev. B 82, 125430 (2010).
[Crossref]

G. Boudarham and M. Kociak, “Modal decompositions of the local electromagnetic density of states and spatially resolved electron energy loss probability in terms of geometric modes,” Phys. Rev. B 85, 245447 (2012).
[Crossref]

S. M. Collins and P. A. Midgley, “Surface plasmon excitations in metal spheres: Direct comparison of light scattering and electron energy-loss spectroscopy by modal decomposition,” Phys. Rev. B 87, 235432 (2013).
[Crossref]

N. Zabala and A. Rivacoba, “Electron energy loss near supported particles,” Phys. Rev. B 48, 14534–14542 (1993).
[Crossref]

Phys. Rev. Lett. (10)

P. E. Batson, “Surface plasmon coupling in clusters of small spheres,” Phys. Rev. Lett. 49, 936–940 (1982).
[Crossref]

F. J. García de Abajo and M. Kociak, “Probing the photonic local density of states with electron energy loss spectroscopy,” Phys. Rev. Lett. 100, 106804 (2008).
[Crossref] [PubMed]

U. Hohenester, H. Ditlbacher, and J. R. Krenn, “Electron-energy-loss spectra of plasmonic nanoparticles,” Phys. Rev. Lett. 103, 106801 (2009).
[Crossref] [PubMed]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[Crossref] [PubMed]

G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. García de Abajo, M. Wegener, and M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105, 255501 (2010).
[Crossref]

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93, 037401 (2004).
[Crossref] [PubMed]

M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W. Hänsch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476–479 (1992).
[Crossref] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[Crossref] [PubMed]

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[Crossref] [PubMed]

F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics,” Phys. Rev. Lett. 80, 5180–5183 (1998).
[Crossref]

Proc. SPIE (1)

M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, B. Lamprecht, H. Ditlbacher, and F. R. Aussenegg, “Lifetime and dephasing of plasmons in ag nanoparticles,” Proc. SPIE 4456, 14–21 (2001).
[Crossref]

Science (1)

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[Crossref] [PubMed]

Small (1)

M. Retsch, M. Tamm, N. Bocchio, N. Horn, R. Förch, U. Jonas, and M. Kreiter, “Parallel preparation of densely packed arrays of 150-nm gold-nanocrescent resonators in three dimensions,” Small 5, 2105–2110 (2009).
[Crossref] [PubMed]

Ultramicroscopy (1)

J. F. Hainfeld, “Site-specific cluster labels,” Ultramicroscopy 46, 135–144 (1992).
[Crossref]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Burlington, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Left: ADF-STEM images of six gold plasmonic antennas involved in this study. The inset in panel A3 displays characteristic spots of electron beam impingement (tips, inner edge, and outer edge of the antenna). The inset in panel A6 shows the lateral antenna dimensions used in the text (length L, width W, and thickness T). Right: The points represent the energies of two dipolar plasmon resonances – DL mode (horizontal axis) and DT mode (vertical axis). Experimental (full circles) and numerical (hatched diamonds) values are compared. Different colors correspond to particular structures (red: A1, green: A2, blue: A3, yellow: A4, brown: A5, gray: A6), the dashed lines connect the experimental and numerical results for a particular structure to guide the eye. The theoretical values of the mode energies already reflect the influence of the substrate.

Fig. 2
Fig. 2

(a) Left: Measured energy-dependent loss spectra for the structure A1 (L = 120nm, T = 60nm, W = 86nm) and the electron beam impinging close to the tips (spots T1 and T2, light blue and red line), outer edge (spot OE, dark blue line), and inner edge (spot IE, green line) of the antenna. The inset schematically shows the electron beam positions (the same colors as in the main graph). Right: Energy loss spectra calculated with MNPBEM (colors correspond to the same spots as in the left panel). Solid and dashed lines are related to the antenna on substrate and the free-standing antenna, respectively. (b) Left: Measured EEL spectra for the larger structure A4 (L = 248nm, T = 86nm, W = 187nm) and the electron beam impinging close to the tips (spots T1 and T2; red and light blue line), outer edge (spot OE; dark blue line) and inner edge (spot IE; green line) of the antenna. Right: Energy loss spectra calculated with MNPBEM for a free-standing antenna (dashed lines) and subsequently modified using convolution with a Gaussian function of 0.15 eV FWHM (solid lines). Colors correspond to the same spots as in the left panel.

Fig. 3
Fig. 3

Top: DL mode of the A1 antenna (a–d). Measured (a) and calculated (b) spatial distribution of the loss intensity. Electric (c) and magnetic (d) field induced in the antenna by the electron beam passing nearby the left tip [violet spot in (c)]. The violet arrow in (d) shows the direction of the induced current. Middle: DT mode of the A1 antenna (eh). Measured (e) and calculated (f) spatial distribution of the loss intensity. Electric (g) and magnetic (h) field induced in the antenna by the electron beam passing nearby the outer edge [violet spot in (g)]. The violet arrow in (h) show the direction of the induced current. Bottom: MA mode of the A1 antenna (i–l). Measured (i) and calculated (j) spatial distribution of the loss intensity. Magnetic field induced in the antenna by the electron beam passing nearby the outer edge (k, violet spot) and inner edge (l, violet spot). The white spot in left bottom corner of the experimental EEL maps (a,e,i) corresponds to a missing data due to a failed measurement. The color scale unit of panels (a,e,i) is count.

Fig. 4
Fig. 4

DL mode of the A4 antenna: Measured (a) and calculated (b) spatial distribution of the loss intensity. DT mode of the A4 antenna: Measured (c) and calculated (d) spatial distribution of the loss intensity. Q1 mode of the A4 antenna: Measured (e) and calculated (f) spatial distribution of the loss intensity. Q2 mode of the A4 antenna: Measured (g) and calculated (h) spatial distribution of the loss intensity. MA mode of the A4 antenna: Measured (g) and calculated (h) spatial distribution of the loss intensity. (k) A sum of calculated loss intensities of modes Q1, Q2, and MA with relative weights of 0.2, 1, and 0.5, respectively.

Fig. 5
Fig. 5

The simulated energy loss spectra for crescents of various thicknesses T (inner-edge to outer-edge transverse dimension). The bottom spectrum corresponds to a full disc with a radius rB = 55 nm (degenerate modes) and for each other spectrum the thickness is consecutively reduced by 10 nm down to 30 nm for the topmost spectrum. The peaks corresponding to the longitudinal and transverse dipolar modes are denoted DL and DT, respectively. Different line colors correspond to the electron beam spots T1,2 (red), OE (blue), and IE (green). The solid and dashed lines are alternated only to improve the clarity of the figure.

Fig. 6
Fig. 6

The map of the simulated energy loss intensity for (a) a disc-shaped antenna (c = 105 nm, T = 110 nm) for a peak energy of the dipolar mode (2.07 eV) and (b) a crescent antenna rather close to the disc shape (c = 75 nm, T = 80 nm), summed up for both DL and DT dipolar modes (1.94 eV and 2.14 eV, respectively). Antennas are indicated by light gray color. For both antennas, the values rB = 55 nm and rS = 50 nm were used.

Fig. 7
Fig. 7

Left: Simulated energies of the modes DL (black symbols), DT (red symbols), and MA (green symbols) as functions of “effective k”, defined as inversely proportional to the characteristic lateral dimension of an antenna. The thick solid lines and squares correspond to the reference crescent-shaped antenna (rB = 55 nm, rS = 50 nm, c = 45 nm, h = 30 nm). The dashed lines correspond to the antennas with a height of 15 nm (down-pointing triangle) and 40 nm (up-pointing triangle). The dotted lines correspond to the antennas with modified lateral aspect ratios (LAR, see text for details) of 0.67 (left-pointing triangle) and 1.50 (right-pointing triangle). Right: Energies of the two plasmonic dipolar modes (DL, DT) in gold crescent antennas of various dimensions plotted as the DTDL energy difference vs. the energy of the DL mode. The simulated data are displayed by squares. The lines serving as guides for the eye connect the points corresponding to LAR scaling (blue lines) and k scaling for the antenna heights 15 nm (black line), 20 nm (green line), 30 nm (yellow line), and 40 nm (brown line). For comparison, the experimental data are displayed by large red circles.

Tables (1)

Tables Icon

Table 1 Lateral dimensions of six antennas involved in the study determined using ADF-STEM images: length L (longitudinal tip – tip distance), thickness T (transverse outer-edge – inner-edge distance, and width W (transverse outer-edge – tip distance). The energies of their plasmon modes DL (longitudinal dipolar), DT (transverse dipolar), Q (quadrupolar), and MA (multimodal) as obtained from the EEL spectra.

Metrics