Abstract

The radiance transmittance (Tr) is the ratio of the water-leaving radiance (Lw(0+)) to the sub-surface upwelling radiance (Lu(0-)), which is an important optical parameter for ocean optics and ocean color remote sensing. Historically, a constant value (~0.54) based on theoretical presumptions has been adopted for Tr and is widely used. This optical parameter, however, has never been measured in the aquatic environments. With a robust setup to measure both Lu(0-) and Lw(0+) simultaneously in the field, this study presents Tr in the zenith direction between 350 and 700 nm measured in a wide range of oceanic waters. It is found that the measured Tr values are generally consistent with the long-standing theoretical value of 0.54, with mean relative difference less than 10%. In particular, the agreement within the spectral domain of 400-600 nm is found to be the best (with the averaged difference less than 5%). The largest difference is observed for wavelengths longer than 600 nm with the average difference less than 15%, which is related to the generally very small values in both Lu(0-) and Lw(0+) and rough environmental conditions. These results provide a validation of the setup for simultaneous measurements of upwelling radiance and water-leaving radiance and confidence in the theoretical Tr value used in ocean optics studies at least for oceanic waters.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
New theoretical formulation for the determination of radiance transmittance at the water-air interface

Pravin Jeba Dev and Palanisamy Shanmugam
Opt. Express 25(22) 27086-27103 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. R. Gordon and A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, 1983).
  2. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic Press, 1994).
  3. R. W. Austin, “Inherent spectral radiance signatures of the ocean surface,” in Ocean Color Analysis, S. Q. Duntley, R. W. Austin, W. H. Wilson, C. F. Edgerton, and S. E. Moran, eds. (Scripps Institution of Oceanography, 1974), pp. 2–1 - 2–20.
  4. F. E. Nicodemus, “Radiance,” Am. J. Phys. 31(5), 368–377 (1963).
    [Crossref]
  5. R. W. Preisendorfer, Hydrologic Optics (U.S. Government Printing Office, 1976).
  6. R. W. Austin, “The remote sensing of spectral radiance from below the ocean surface,” in Optical Aspects of Oceanography, N. G. Jerlov and E. Steemann Nielsen, eds. (Academic Press, 1974), pp. 317–344.
  7. R. W. Austin, “Gulf of Mexico, ocean-color surface-truth measurements,” Bound. Lay. Meteorol. 18(3), 269–285 (1980).
    [Crossref]
  8. A. Morel, “In-water and remote measurements of ocean color,” Bound. Lay. Meteorol. 18(2), 177–201 (1980).
    [Crossref]
  9. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
    [Crossref]
  10. Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. I. A semianalytical model,” Appl. Opt. 37(27), 6329–6338 (1998).
    [Crossref] [PubMed]
  11. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. II Bidirectional aspects,” Appl. Opt. 32(33), 6864–6879 (1993).
    [Crossref] [PubMed]
  12. G. Zibordi, K. Ruddick, I. Ansko, G. Moore, S. Kratzer, J. Icely, and A. Reinart, “In situ determination of the remote sensing reflectance: an inter-comparison,” Ocean Sci. 8(4), 567–586 (2012).
    [Crossref]
  13. Z. Lee, N. Pahlevan, Y.-H. Ahn, S. Greb, and D. O’Donnell, “Robust approach to directly measuring water-leaving radiance in the field,” Appl. Opt. 52(8), 1693–1701 (2013).
    [Crossref] [PubMed]
  14. K. J. Voss, S. McLean, M. R. Lewis, C. Johnson, S. Flora, M. Feinholz, M. Yarbrough, C. C. Trees, M. S. Twardowski, and D. K. Clark, “An example crossover experiment for testing new vicarious calibration techniques for satellite ocean color radiometry,” J. Atmos. Ocean. Technol. 27(10), 1747–1759 (2010).
    [Crossref]
  15. R. Leathers, T. Downes, and C. Mobley, “Self-shading correction for oceanographic upwelling radiometers,” Opt. Express 12(20), 4709–4718 (2004).
    [Crossref] [PubMed]
  16. Z. P. Lee, C. Hu, S. Shang, K. Du, M. Lewis, R. Arnone, and R. Brewin, “Penetration of UV-visible solar radiation in the global oceans: insights from ocean color remote sensing,” J. Geophys. Res. 118, 1–15 (2013).
  17. Z. P. Lee, “Update of the quasi-analytical algorithm (QAA_v6)” (2014), retrieved http://www.ioccg.org/groups/Software_OCA/QAA_v6_2014209.pdf .
  18. H. R. Gordon and K. Ding, “Self-shading of in-water optical instruments,” Limnol. Oceanogr. 37(3), 491–500 (1992).
    [Crossref]
  19. G. Zibordi and G. M. Ferrari, “Instrument self-shading in underwater optical measurements: experimental data,” Appl. Opt. 34(15), 2750–2754 (1995).
    [Crossref] [PubMed]
  20. J. L. Mueller, G. S. Fargion, and C. R. McClain, eds., Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4 (NASA, Goddard Space Flight Center, Greenbelt, MD, 2003), Vol. III, pp. 78.
  21. W. W. Gregg and K. L. Carder, “A simple spectral solar irradiance model for cloudless maritime atmospheres,” Limnol. Oceanogr. 35(8), 1657–1675 (1990).
    [Crossref]
  22. H. R. Gordon, “Contribution of Raman scattering to water-leaving radiance: a reexamination,” Appl. Opt. 38(15), 3166–3174 (1999).
    [Crossref] [PubMed]
  23. J. Wei, M. R. Lewis, R. Van Dommelen, C. J. Zappa, and M. S. Twardowski, “Wave-induced light field fluctuations in measured irradiance depth profiles: A wavelet analysis,” J. Geophys. Res. 119(2), 1344–1364 (2014).
    [Crossref]

2014 (1)

J. Wei, M. R. Lewis, R. Van Dommelen, C. J. Zappa, and M. S. Twardowski, “Wave-induced light field fluctuations in measured irradiance depth profiles: A wavelet analysis,” J. Geophys. Res. 119(2), 1344–1364 (2014).
[Crossref]

2013 (2)

Z. Lee, N. Pahlevan, Y.-H. Ahn, S. Greb, and D. O’Donnell, “Robust approach to directly measuring water-leaving radiance in the field,” Appl. Opt. 52(8), 1693–1701 (2013).
[Crossref] [PubMed]

Z. P. Lee, C. Hu, S. Shang, K. Du, M. Lewis, R. Arnone, and R. Brewin, “Penetration of UV-visible solar radiation in the global oceans: insights from ocean color remote sensing,” J. Geophys. Res. 118, 1–15 (2013).

2012 (1)

G. Zibordi, K. Ruddick, I. Ansko, G. Moore, S. Kratzer, J. Icely, and A. Reinart, “In situ determination of the remote sensing reflectance: an inter-comparison,” Ocean Sci. 8(4), 567–586 (2012).
[Crossref]

2010 (1)

K. J. Voss, S. McLean, M. R. Lewis, C. Johnson, S. Flora, M. Feinholz, M. Yarbrough, C. C. Trees, M. S. Twardowski, and D. K. Clark, “An example crossover experiment for testing new vicarious calibration techniques for satellite ocean color radiometry,” J. Atmos. Ocean. Technol. 27(10), 1747–1759 (2010).
[Crossref]

2004 (1)

1999 (1)

1998 (1)

1995 (1)

1993 (1)

1992 (1)

H. R. Gordon and K. Ding, “Self-shading of in-water optical instruments,” Limnol. Oceanogr. 37(3), 491–500 (1992).
[Crossref]

1990 (1)

W. W. Gregg and K. L. Carder, “A simple spectral solar irradiance model for cloudless maritime atmospheres,” Limnol. Oceanogr. 35(8), 1657–1675 (1990).
[Crossref]

1988 (1)

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

1980 (2)

R. W. Austin, “Gulf of Mexico, ocean-color surface-truth measurements,” Bound. Lay. Meteorol. 18(3), 269–285 (1980).
[Crossref]

A. Morel, “In-water and remote measurements of ocean color,” Bound. Lay. Meteorol. 18(2), 177–201 (1980).
[Crossref]

1963 (1)

F. E. Nicodemus, “Radiance,” Am. J. Phys. 31(5), 368–377 (1963).
[Crossref]

Ahn, Y.-H.

Ansko, I.

G. Zibordi, K. Ruddick, I. Ansko, G. Moore, S. Kratzer, J. Icely, and A. Reinart, “In situ determination of the remote sensing reflectance: an inter-comparison,” Ocean Sci. 8(4), 567–586 (2012).
[Crossref]

Arnone, R.

Z. P. Lee, C. Hu, S. Shang, K. Du, M. Lewis, R. Arnone, and R. Brewin, “Penetration of UV-visible solar radiation in the global oceans: insights from ocean color remote sensing,” J. Geophys. Res. 118, 1–15 (2013).

Austin, R. W.

R. W. Austin, “Gulf of Mexico, ocean-color surface-truth measurements,” Bound. Lay. Meteorol. 18(3), 269–285 (1980).
[Crossref]

Baker, K. S.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Brewin, R.

Z. P. Lee, C. Hu, S. Shang, K. Du, M. Lewis, R. Arnone, and R. Brewin, “Penetration of UV-visible solar radiation in the global oceans: insights from ocean color remote sensing,” J. Geophys. Res. 118, 1–15 (2013).

Brown, J. W.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Brown, O. B.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Carder, K. L.

Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. I. A semianalytical model,” Appl. Opt. 37(27), 6329–6338 (1998).
[Crossref] [PubMed]

W. W. Gregg and K. L. Carder, “A simple spectral solar irradiance model for cloudless maritime atmospheres,” Limnol. Oceanogr. 35(8), 1657–1675 (1990).
[Crossref]

Clark, D. K.

K. J. Voss, S. McLean, M. R. Lewis, C. Johnson, S. Flora, M. Feinholz, M. Yarbrough, C. C. Trees, M. S. Twardowski, and D. K. Clark, “An example crossover experiment for testing new vicarious calibration techniques for satellite ocean color radiometry,” J. Atmos. Ocean. Technol. 27(10), 1747–1759 (2010).
[Crossref]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Ding, K.

H. R. Gordon and K. Ding, “Self-shading of in-water optical instruments,” Limnol. Oceanogr. 37(3), 491–500 (1992).
[Crossref]

Downes, T.

Du, K.

Z. P. Lee, C. Hu, S. Shang, K. Du, M. Lewis, R. Arnone, and R. Brewin, “Penetration of UV-visible solar radiation in the global oceans: insights from ocean color remote sensing,” J. Geophys. Res. 118, 1–15 (2013).

Evans, R. H.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Feinholz, M.

K. J. Voss, S. McLean, M. R. Lewis, C. Johnson, S. Flora, M. Feinholz, M. Yarbrough, C. C. Trees, M. S. Twardowski, and D. K. Clark, “An example crossover experiment for testing new vicarious calibration techniques for satellite ocean color radiometry,” J. Atmos. Ocean. Technol. 27(10), 1747–1759 (2010).
[Crossref]

Ferrari, G. M.

Flora, S.

K. J. Voss, S. McLean, M. R. Lewis, C. Johnson, S. Flora, M. Feinholz, M. Yarbrough, C. C. Trees, M. S. Twardowski, and D. K. Clark, “An example crossover experiment for testing new vicarious calibration techniques for satellite ocean color radiometry,” J. Atmos. Ocean. Technol. 27(10), 1747–1759 (2010).
[Crossref]

Gentili, B.

Gordon, H. R.

H. R. Gordon, “Contribution of Raman scattering to water-leaving radiance: a reexamination,” Appl. Opt. 38(15), 3166–3174 (1999).
[Crossref] [PubMed]

H. R. Gordon and K. Ding, “Self-shading of in-water optical instruments,” Limnol. Oceanogr. 37(3), 491–500 (1992).
[Crossref]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Greb, S.

Gregg, W. W.

W. W. Gregg and K. L. Carder, “A simple spectral solar irradiance model for cloudless maritime atmospheres,” Limnol. Oceanogr. 35(8), 1657–1675 (1990).
[Crossref]

Hu, C.

Z. P. Lee, C. Hu, S. Shang, K. Du, M. Lewis, R. Arnone, and R. Brewin, “Penetration of UV-visible solar radiation in the global oceans: insights from ocean color remote sensing,” J. Geophys. Res. 118, 1–15 (2013).

Icely, J.

G. Zibordi, K. Ruddick, I. Ansko, G. Moore, S. Kratzer, J. Icely, and A. Reinart, “In situ determination of the remote sensing reflectance: an inter-comparison,” Ocean Sci. 8(4), 567–586 (2012).
[Crossref]

Johnson, C.

K. J. Voss, S. McLean, M. R. Lewis, C. Johnson, S. Flora, M. Feinholz, M. Yarbrough, C. C. Trees, M. S. Twardowski, and D. K. Clark, “An example crossover experiment for testing new vicarious calibration techniques for satellite ocean color radiometry,” J. Atmos. Ocean. Technol. 27(10), 1747–1759 (2010).
[Crossref]

Kratzer, S.

G. Zibordi, K. Ruddick, I. Ansko, G. Moore, S. Kratzer, J. Icely, and A. Reinart, “In situ determination of the remote sensing reflectance: an inter-comparison,” Ocean Sci. 8(4), 567–586 (2012).
[Crossref]

Leathers, R.

Lee, Z.

Lee, Z. P.

Z. P. Lee, C. Hu, S. Shang, K. Du, M. Lewis, R. Arnone, and R. Brewin, “Penetration of UV-visible solar radiation in the global oceans: insights from ocean color remote sensing,” J. Geophys. Res. 118, 1–15 (2013).

Lewis, M.

Z. P. Lee, C. Hu, S. Shang, K. Du, M. Lewis, R. Arnone, and R. Brewin, “Penetration of UV-visible solar radiation in the global oceans: insights from ocean color remote sensing,” J. Geophys. Res. 118, 1–15 (2013).

Lewis, M. R.

J. Wei, M. R. Lewis, R. Van Dommelen, C. J. Zappa, and M. S. Twardowski, “Wave-induced light field fluctuations in measured irradiance depth profiles: A wavelet analysis,” J. Geophys. Res. 119(2), 1344–1364 (2014).
[Crossref]

K. J. Voss, S. McLean, M. R. Lewis, C. Johnson, S. Flora, M. Feinholz, M. Yarbrough, C. C. Trees, M. S. Twardowski, and D. K. Clark, “An example crossover experiment for testing new vicarious calibration techniques for satellite ocean color radiometry,” J. Atmos. Ocean. Technol. 27(10), 1747–1759 (2010).
[Crossref]

McLean, S.

K. J. Voss, S. McLean, M. R. Lewis, C. Johnson, S. Flora, M. Feinholz, M. Yarbrough, C. C. Trees, M. S. Twardowski, and D. K. Clark, “An example crossover experiment for testing new vicarious calibration techniques for satellite ocean color radiometry,” J. Atmos. Ocean. Technol. 27(10), 1747–1759 (2010).
[Crossref]

Mobley, C.

Mobley, C. D.

Moore, G.

G. Zibordi, K. Ruddick, I. Ansko, G. Moore, S. Kratzer, J. Icely, and A. Reinart, “In situ determination of the remote sensing reflectance: an inter-comparison,” Ocean Sci. 8(4), 567–586 (2012).
[Crossref]

Morel, A.

A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. II Bidirectional aspects,” Appl. Opt. 32(33), 6864–6879 (1993).
[Crossref] [PubMed]

A. Morel, “In-water and remote measurements of ocean color,” Bound. Lay. Meteorol. 18(2), 177–201 (1980).
[Crossref]

Nicodemus, F. E.

F. E. Nicodemus, “Radiance,” Am. J. Phys. 31(5), 368–377 (1963).
[Crossref]

O’Donnell, D.

Pahlevan, N.

Patch, J. S.

Reinart, A.

G. Zibordi, K. Ruddick, I. Ansko, G. Moore, S. Kratzer, J. Icely, and A. Reinart, “In situ determination of the remote sensing reflectance: an inter-comparison,” Ocean Sci. 8(4), 567–586 (2012).
[Crossref]

Ruddick, K.

G. Zibordi, K. Ruddick, I. Ansko, G. Moore, S. Kratzer, J. Icely, and A. Reinart, “In situ determination of the remote sensing reflectance: an inter-comparison,” Ocean Sci. 8(4), 567–586 (2012).
[Crossref]

Shang, S.

Z. P. Lee, C. Hu, S. Shang, K. Du, M. Lewis, R. Arnone, and R. Brewin, “Penetration of UV-visible solar radiation in the global oceans: insights from ocean color remote sensing,” J. Geophys. Res. 118, 1–15 (2013).

Smith, R. C.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Steward, R. G.

Trees, C. C.

K. J. Voss, S. McLean, M. R. Lewis, C. Johnson, S. Flora, M. Feinholz, M. Yarbrough, C. C. Trees, M. S. Twardowski, and D. K. Clark, “An example crossover experiment for testing new vicarious calibration techniques for satellite ocean color radiometry,” J. Atmos. Ocean. Technol. 27(10), 1747–1759 (2010).
[Crossref]

Twardowski, M. S.

J. Wei, M. R. Lewis, R. Van Dommelen, C. J. Zappa, and M. S. Twardowski, “Wave-induced light field fluctuations in measured irradiance depth profiles: A wavelet analysis,” J. Geophys. Res. 119(2), 1344–1364 (2014).
[Crossref]

K. J. Voss, S. McLean, M. R. Lewis, C. Johnson, S. Flora, M. Feinholz, M. Yarbrough, C. C. Trees, M. S. Twardowski, and D. K. Clark, “An example crossover experiment for testing new vicarious calibration techniques for satellite ocean color radiometry,” J. Atmos. Ocean. Technol. 27(10), 1747–1759 (2010).
[Crossref]

Van Dommelen, R.

J. Wei, M. R. Lewis, R. Van Dommelen, C. J. Zappa, and M. S. Twardowski, “Wave-induced light field fluctuations in measured irradiance depth profiles: A wavelet analysis,” J. Geophys. Res. 119(2), 1344–1364 (2014).
[Crossref]

Voss, K. J.

K. J. Voss, S. McLean, M. R. Lewis, C. Johnson, S. Flora, M. Feinholz, M. Yarbrough, C. C. Trees, M. S. Twardowski, and D. K. Clark, “An example crossover experiment for testing new vicarious calibration techniques for satellite ocean color radiometry,” J. Atmos. Ocean. Technol. 27(10), 1747–1759 (2010).
[Crossref]

Wei, J.

J. Wei, M. R. Lewis, R. Van Dommelen, C. J. Zappa, and M. S. Twardowski, “Wave-induced light field fluctuations in measured irradiance depth profiles: A wavelet analysis,” J. Geophys. Res. 119(2), 1344–1364 (2014).
[Crossref]

Yarbrough, M.

K. J. Voss, S. McLean, M. R. Lewis, C. Johnson, S. Flora, M. Feinholz, M. Yarbrough, C. C. Trees, M. S. Twardowski, and D. K. Clark, “An example crossover experiment for testing new vicarious calibration techniques for satellite ocean color radiometry,” J. Atmos. Ocean. Technol. 27(10), 1747–1759 (2010).
[Crossref]

Zappa, C. J.

J. Wei, M. R. Lewis, R. Van Dommelen, C. J. Zappa, and M. S. Twardowski, “Wave-induced light field fluctuations in measured irradiance depth profiles: A wavelet analysis,” J. Geophys. Res. 119(2), 1344–1364 (2014).
[Crossref]

Zibordi, G.

G. Zibordi, K. Ruddick, I. Ansko, G. Moore, S. Kratzer, J. Icely, and A. Reinart, “In situ determination of the remote sensing reflectance: an inter-comparison,” Ocean Sci. 8(4), 567–586 (2012).
[Crossref]

G. Zibordi and G. M. Ferrari, “Instrument self-shading in underwater optical measurements: experimental data,” Appl. Opt. 34(15), 2750–2754 (1995).
[Crossref] [PubMed]

Am. J. Phys. (1)

F. E. Nicodemus, “Radiance,” Am. J. Phys. 31(5), 368–377 (1963).
[Crossref]

Appl. Opt. (5)

Bound. Lay. Meteorol. (2)

R. W. Austin, “Gulf of Mexico, ocean-color surface-truth measurements,” Bound. Lay. Meteorol. 18(3), 269–285 (1980).
[Crossref]

A. Morel, “In-water and remote measurements of ocean color,” Bound. Lay. Meteorol. 18(2), 177–201 (1980).
[Crossref]

J. Atmos. Ocean. Technol. (1)

K. J. Voss, S. McLean, M. R. Lewis, C. Johnson, S. Flora, M. Feinholz, M. Yarbrough, C. C. Trees, M. S. Twardowski, and D. K. Clark, “An example crossover experiment for testing new vicarious calibration techniques for satellite ocean color radiometry,” J. Atmos. Ocean. Technol. 27(10), 1747–1759 (2010).
[Crossref]

J. Geophys. Res. (3)

Z. P. Lee, C. Hu, S. Shang, K. Du, M. Lewis, R. Arnone, and R. Brewin, “Penetration of UV-visible solar radiation in the global oceans: insights from ocean color remote sensing,” J. Geophys. Res. 118, 1–15 (2013).

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

J. Wei, M. R. Lewis, R. Van Dommelen, C. J. Zappa, and M. S. Twardowski, “Wave-induced light field fluctuations in measured irradiance depth profiles: A wavelet analysis,” J. Geophys. Res. 119(2), 1344–1364 (2014).
[Crossref]

Limnol. Oceanogr. (2)

W. W. Gregg and K. L. Carder, “A simple spectral solar irradiance model for cloudless maritime atmospheres,” Limnol. Oceanogr. 35(8), 1657–1675 (1990).
[Crossref]

H. R. Gordon and K. Ding, “Self-shading of in-water optical instruments,” Limnol. Oceanogr. 37(3), 491–500 (1992).
[Crossref]

Ocean Sci. (1)

G. Zibordi, K. Ruddick, I. Ansko, G. Moore, S. Kratzer, J. Icely, and A. Reinart, “In situ determination of the remote sensing reflectance: an inter-comparison,” Ocean Sci. 8(4), 567–586 (2012).
[Crossref]

Opt. Express (1)

Other (7)

J. L. Mueller, G. S. Fargion, and C. R. McClain, eds., Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4 (NASA, Goddard Space Flight Center, Greenbelt, MD, 2003), Vol. III, pp. 78.

Z. P. Lee, “Update of the quasi-analytical algorithm (QAA_v6)” (2014), retrieved http://www.ioccg.org/groups/Software_OCA/QAA_v6_2014209.pdf .

R. W. Preisendorfer, Hydrologic Optics (U.S. Government Printing Office, 1976).

R. W. Austin, “The remote sensing of spectral radiance from below the ocean surface,” in Optical Aspects of Oceanography, N. G. Jerlov and E. Steemann Nielsen, eds. (Academic Press, 1974), pp. 317–344.

H. R. Gordon and A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, 1983).

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic Press, 1994).

R. W. Austin, “Inherent spectral radiance signatures of the ocean surface,” in Ocean Color Analysis, S. Q. Duntley, R. W. Austin, W. H. Wilson, C. F. Edgerton, and S. E. Moran, eds. (Scripps Institution of Oceanography, 1974), pp. 2–1 - 2–20.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Field experiment stations overlaid on a yearly chlorophyll a distribution map (SeaWiFS level-3 yearly chlorophyll a concentration map for 2010).

Fig. 2
Fig. 2

Collocated observation of the water-leaving radiance using the skylight-blocked approach (SBA) and the upwelling radiance. The background image (A) was taken on November 16, 2013, in Massachusetts Bay. The inserted image (B) was taken in the Caribbean Sea, south of Puerto Rico on December 13, 2014. Image (C) was captured in the Adriatic Sea, off the Venice Lagoon, Italy, on June 24, 2014. As shown in (C), the Lw sensor (on the left wing) is suspended in the air while the skylight is blocked off by the cone, and the Lu sensor (attached on the right wing) is completely immersed into water.

Fig. 3
Fig. 3

(a) Measured remote sensing reflectance and (b) estimated diffuse attenuation coefficient. The Arabic numbers after the abbreviations refer to the station numbers.

Fig. 4
Fig. 4

Spectral radiance transmittance obtained in various ocean waters. The shaded area represents the domain of ± 10% deviation from the theoretical transmittance Tr = 0.54.

Fig. 5
Fig. 5

Coefficient of variation for the measured radiance transmittance

Tables (3)

Tables Icon

Table 1 Environmental conditions during the field transmittance measurements.

Tables Icon

Table 2 Coefficient of variation ( × 100%) for water-leaving radiance Lw(0+) and Lu(0-) (within the parentheses).

Tables Icon

Table 3 Mean absolute percentage difference ( × 100%) between measured Tr and the theoretical value. The numbers in bold face denote the discrepancy exceeding 0.10.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

L w ( 0 + )=Tr L u ( 0 )
Tr= 1ρ n w 2
R rs (λ,t)= L w ( 0 + ,λ,t) E s (λ,t)
Tr (λ) i = L w ( 0 + ,λ) i L u ( 0 ,λ) i

Metrics