Abstract

We present an approach to completely stop terahertz radiation in an optical system with a gyroelectric semiconductor. This system is composed of guiding and stopping parts formed by the semiconductor with different cladding structures. Because the dispersion properties of surface magnetoplasmons (SMPs) in the semiconductor closely depend on its cladding structure, robust one-way SMPs sustained by the guiding part are prohibited in the stopping part, thereby stopping terahertz radiation without any backscattering. For incident continuous waves, trapped spots with strongly enhanced fields occur on a subwavelength scale. For incident pulses, the wave packets can be completely trapped and simultaneously compressed to subwavelength sizes.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Backscattering-immune one-way surface magnetoplasmons at terahertz frequencies

Linfang Shen, Yun You, Zhuoyuan Wang, and Xiaohua Deng
Opt. Express 23(2) 950-962 (2015)

Complete trapping of electromagnetic radiation using surface magnetoplasmons

Linfang Shen, Zhuoyuan Wang, Xiaohua Deng, Jin-Jei Wu, and Tzong-Jer Yang
Opt. Lett. 40(8) 1853-1856 (2015)

Nanoconcentration of terahertz radiation in plasmonic waveguides

Anastasia Rusina, Maxim Durach, Keith A. Nelson, and Mark I. Stockman
Opt. Express 16(23) 18576-18589 (2008)

References

  • View by:
  • |
  • |
  • |

  1. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
    [Crossref] [PubMed]
  2. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “Trapped rainbow storage of light in metamaterials,” Nature 450, 397–401 (2007).
    [Crossref] [PubMed]
  3. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structure,” Phys. Rev. Lett. 100(25), 256803 (2008).
    [Crossref] [PubMed]
  4. Q. Gan, Y. J. Ding, and F. J. Bartoli, “Rainbow trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
    [Crossref] [PubMed]
  5. S. He, Y. He, and Y. Jin, “Revealing the truth about trapped rainbow storage of light in metamaterials,” Sci. Rep. 2, 583 (2012).
    [Crossref]
  6. M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92(8), 083901 (2004).
    [Crossref] [PubMed]
  7. M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
    [Crossref] [PubMed]
  8. A. Trabattoni, L. Maini, and G. Benedek, “Stopping light in two dimensional quasicrystalline waveguides,” Opt. Express 20(27), 28267–28272 (2012).
    [Crossref] [PubMed]
  9. F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008).
    [Crossref] [PubMed]
  10. S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78(3), 033834 (2008).
    [Crossref]
  11. The Quantum Hall Effect, R. E. Prange and S. M. Girvin, eds. (Springer, 1987).
  12. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2. (Princeton University, 2008).
  13. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
    [Crossref] [PubMed]
  14. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
    [Crossref] [PubMed]
  15. X. Ao, Z. Lin, and C. T. Chan, “One-way edge mode in a magneto-optical honeycomb photonic crystal,” Phys. Rev. B 80(3), 033105 (2009).
    [Crossref]
  16. Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 23902 (2008).
    [Crossref]
  17. B. Hu, Q. J. Wang, and Y. Zhang, “Broadly tunable one-way terahertz plasmonic waveguide based on nonreciprocal surface magneto plasmons,” Opt. Lett. 37(11), 1895–1897 (2012).
    [Crossref] [PubMed]
  18. L. F. Shen, Y. You, Z. Y. Wang, and X. H. Deng, “Backscattering-immune one-way surface magnetoplasmons at terahertz frequencies,” Opt. Express 23(2), 950–962 (2015).
    [Crossref] [PubMed]
  19. X. G. Zhang, W. Li, and X. Y. Jiang, “Confined one-way mode at magnetic domain wall for broadband high-efficiency one-way waveguide, splitter and bender,” Appl. Phys. Lett. 100(4), 041108 (2012).
    [Crossref]
  20. T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93(24), 241115 (2008).
    [Crossref]
  21. D. R. Lide, CRC Handbook of Chemistry and Physics (CRC, 2004).
  22. Y. S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).

2015 (1)

2012 (4)

X. G. Zhang, W. Li, and X. Y. Jiang, “Confined one-way mode at magnetic domain wall for broadband high-efficiency one-way waveguide, splitter and bender,” Appl. Phys. Lett. 100(4), 041108 (2012).
[Crossref]

B. Hu, Q. J. Wang, and Y. Zhang, “Broadly tunable one-way terahertz plasmonic waveguide based on nonreciprocal surface magneto plasmons,” Opt. Lett. 37(11), 1895–1897 (2012).
[Crossref] [PubMed]

S. He, Y. He, and Y. Jin, “Revealing the truth about trapped rainbow storage of light in metamaterials,” Sci. Rep. 2, 583 (2012).
[Crossref]

A. Trabattoni, L. Maini, and G. Benedek, “Stopping light in two dimensional quasicrystalline waveguides,” Opt. Express 20(27), 28267–28272 (2012).
[Crossref] [PubMed]

2009 (3)

Q. Gan, Y. J. Ding, and F. J. Bartoli, “Rainbow trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[Crossref] [PubMed]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
[Crossref] [PubMed]

X. Ao, Z. Lin, and C. T. Chan, “One-way edge mode in a magneto-optical honeycomb photonic crystal,” Phys. Rev. B 80(3), 033105 (2009).
[Crossref]

2008 (6)

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 23902 (2008).
[Crossref]

T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93(24), 241115 (2008).
[Crossref]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structure,” Phys. Rev. Lett. 100(25), 256803 (2008).
[Crossref] [PubMed]

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008).
[Crossref] [PubMed]

S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78(3), 033834 (2008).
[Crossref]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
[Crossref] [PubMed]

2007 (1)

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “Trapped rainbow storage of light in metamaterials,” Nature 450, 397–401 (2007).
[Crossref] [PubMed]

2004 (3)

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[Crossref] [PubMed]

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92(8), 083901 (2004).
[Crossref] [PubMed]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[Crossref] [PubMed]

Ao, X.

X. Ao, Z. Lin, and C. T. Chan, “One-way edge mode in a magneto-optical honeycomb photonic crystal,” Phys. Rev. B 80(3), 033105 (2009).
[Crossref]

Barnes, W. L.

T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93(24), 241115 (2008).
[Crossref]

Bartoli, F. J.

Q. Gan, Y. J. Ding, and F. J. Bartoli, “Rainbow trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[Crossref] [PubMed]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structure,” Phys. Rev. Lett. 100(25), 256803 (2008).
[Crossref] [PubMed]

Benedek, G.

Boardman, A. D.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “Trapped rainbow storage of light in metamaterials,” Nature 450, 397–401 (2007).
[Crossref] [PubMed]

Chan, C. T.

X. Ao, Z. Lin, and C. T. Chan, “One-way edge mode in a magneto-optical honeycomb photonic crystal,” Phys. Rev. B 80(3), 033105 (2009).
[Crossref]

Chong, Y. D.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
[Crossref] [PubMed]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
[Crossref] [PubMed]

Deng, X. H.

Ding, Y. J.

Q. Gan, Y. J. Ding, and F. J. Bartoli, “Rainbow trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[Crossref] [PubMed]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structure,” Phys. Rev. Lett. 100(25), 256803 (2008).
[Crossref] [PubMed]

Fan, S.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 23902 (2008).
[Crossref]

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92(8), 083901 (2004).
[Crossref] [PubMed]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[Crossref] [PubMed]

Fu, Z.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structure,” Phys. Rev. Lett. 100(25), 256803 (2008).
[Crossref] [PubMed]

Gan, Q.

Q. Gan, Y. J. Ding, and F. J. Bartoli, “Rainbow trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[Crossref] [PubMed]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structure,” Phys. Rev. Lett. 100(25), 256803 (2008).
[Crossref] [PubMed]

Haldane, F. D. M.

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008).
[Crossref] [PubMed]

S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78(3), 033834 (2008).
[Crossref]

He, S.

S. He, Y. He, and Y. Jin, “Revealing the truth about trapped rainbow storage of light in metamaterials,” Sci. Rep. 2, 583 (2012).
[Crossref]

He, Y.

S. He, Y. He, and Y. Jin, “Revealing the truth about trapped rainbow storage of light in metamaterials,” Sci. Rep. 2, 583 (2012).
[Crossref]

Hendry, E.

T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93(24), 241115 (2008).
[Crossref]

Hess, O.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “Trapped rainbow storage of light in metamaterials,” Nature 450, 397–401 (2007).
[Crossref] [PubMed]

Hu, B.

Isaac, T. H.

T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93(24), 241115 (2008).
[Crossref]

Jiang, X. Y.

X. G. Zhang, W. Li, and X. Y. Jiang, “Confined one-way mode at magnetic domain wall for broadband high-efficiency one-way waveguide, splitter and bender,” Appl. Phys. Lett. 100(4), 041108 (2012).
[Crossref]

Jin, Y.

S. He, Y. He, and Y. Jin, “Revealing the truth about trapped rainbow storage of light in metamaterials,” Sci. Rep. 2, 583 (2012).
[Crossref]

Joannopoulos, J. D.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
[Crossref] [PubMed]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
[Crossref] [PubMed]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2. (Princeton University, 2008).

Lee, Y. S.

Y. S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).

Li, W.

X. G. Zhang, W. Li, and X. Y. Jiang, “Confined one-way mode at magnetic domain wall for broadband high-efficiency one-way waveguide, splitter and bender,” Appl. Phys. Lett. 100(4), 041108 (2012).
[Crossref]

Lide, D. R.

D. R. Lide, CRC Handbook of Chemistry and Physics (CRC, 2004).

Lin, Z.

X. Ao, Z. Lin, and C. T. Chan, “One-way edge mode in a magneto-optical honeycomb photonic crystal,” Phys. Rev. B 80(3), 033105 (2009).
[Crossref]

Maini, L.

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2. (Princeton University, 2008).

Raghu, S.

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008).
[Crossref] [PubMed]

S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78(3), 033834 (2008).
[Crossref]

Shen, L. F.

Soljacic, M.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
[Crossref] [PubMed]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
[Crossref] [PubMed]

Stockman, M. I.

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[Crossref] [PubMed]

Suh, W.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[Crossref] [PubMed]

Trabattoni, A.

Tsakmakidis, K. L.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “Trapped rainbow storage of light in metamaterials,” Nature 450, 397–401 (2007).
[Crossref] [PubMed]

Veronis, G.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 23902 (2008).
[Crossref]

Wang, Q. J.

Wang, Z.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
[Crossref] [PubMed]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
[Crossref] [PubMed]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 23902 (2008).
[Crossref]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[Crossref] [PubMed]

Wang, Z. Y.

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2. (Princeton University, 2008).

Yanik, M. F.

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92(8), 083901 (2004).
[Crossref] [PubMed]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[Crossref] [PubMed]

You, Y.

Yu, Z.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 23902 (2008).
[Crossref]

Zhang, X. G.

X. G. Zhang, W. Li, and X. Y. Jiang, “Confined one-way mode at magnetic domain wall for broadband high-efficiency one-way waveguide, splitter and bender,” Appl. Phys. Lett. 100(4), 041108 (2012).
[Crossref]

Zhang, Y.

Appl. Phys. Lett. (2)

X. G. Zhang, W. Li, and X. Y. Jiang, “Confined one-way mode at magnetic domain wall for broadband high-efficiency one-way waveguide, splitter and bender,” Appl. Phys. Lett. 100(4), 041108 (2012).
[Crossref]

T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93(24), 241115 (2008).
[Crossref]

Nature (2)

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “Trapped rainbow storage of light in metamaterials,” Nature 450, 397–401 (2007).
[Crossref] [PubMed]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (1)

S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78(3), 033834 (2008).
[Crossref]

Phys. Rev. B (1)

X. Ao, Z. Lin, and C. T. Chan, “One-way edge mode in a magneto-optical honeycomb photonic crystal,” Phys. Rev. B 80(3), 033105 (2009).
[Crossref]

Phys. Rev. Lett. (8)

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 23902 (2008).
[Crossref]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[Crossref] [PubMed]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
[Crossref] [PubMed]

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008).
[Crossref] [PubMed]

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92(8), 083901 (2004).
[Crossref] [PubMed]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[Crossref] [PubMed]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structure,” Phys. Rev. Lett. 100(25), 256803 (2008).
[Crossref] [PubMed]

Q. Gan, Y. J. Ding, and F. J. Bartoli, “Rainbow trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[Crossref] [PubMed]

Sci. Rep. (1)

S. He, Y. He, and Y. Jin, “Revealing the truth about trapped rainbow storage of light in metamaterials,” Sci. Rep. 2, 583 (2012).
[Crossref]

Other (4)

The Quantum Hall Effect, R. E. Prange and S. M. Girvin, eds. (Springer, 1987).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2. (Princeton University, 2008).

D. R. Lide, CRC Handbook of Chemistry and Physics (CRC, 2004).

Y. S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a), (b) Schematics of the SDM and SM structures under an applied static magnetic field. (c) Dispersion relations for SMPs in the SDM and SM structures. The upper two shaded areas represent the zones of bulk modes in the semiconductor, and the lowest one represents the COWP region for the SDM structure. The parameters are ε = 15.6 and ωc = 0.25ωp for both structures and εr = 11.68 and d = 0.08λp for the SDM structure.
Fig. 2
Fig. 2 (a) Simulated E amplitudes in the system consisting of the SDM and SM structures. The magnetic current line source to excite SMPs is located at x = 6 μm and z = −200 μm. (b), (c) Distributions of the normalized E amplitude along the lines x = 0 and z = 0 in (a). The frequency is f = 1.5 THz, and the other parameters are the same as in Fig. 1(c).
Fig. 3
Fig. 3 E amplitudes of trapped spots for ν = 0.001ωp (a) and 0.01ωp (b). The other parameters are the same as in Fig. 2.
Fig. 4
Fig. 4 Influence of the semiconductor or metal losses on the distribution of normalized E amplitude along the semiconductor surface. The other parameters are the same as in Fig. 2.
Fig. 5
Fig. 5 Dispersion relation for backward propagating and evanescent modes of SMPs in the SDM structure. (a) Real part, (b), imaginary part. Solid lines correspond to the lossless case, and dashed lines with circles correspond to the lossy case where ν = 0.01ωp and the metal is Ag. The other parameters are the same as in Fig. 1(c).
Fig. 6
Fig. 6 (a)–(f) FDTD simulated E amplitudes at different evolution times: (a) 10Tp (Im = 1), (b) 20Tp (when the excitation finishes), (c) 26Tp, (d) 32Tp, (e) 48Tp, and (f) 66Tp. (g), (h) Distributions of E amplitude along the semiconductor surface for the various evolution times. The parameters of the Gaussian pulse are t0 = 10Tp, τ = 4Tp, and f0 = 1.5 THz. The lengths of the guiding and stopping sections are respectively 600 and 100 μm, and the magnetic current line source is placed at x = 6 μm and z = 100 μm. The other parameters are the same as in Fig. 2.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ε s = ε 0 ε [ κ 1 0 i κ 2 0 κ 3 0 i κ 2 0 κ 1 ] ,
κ 1 = 1 ( ω + i ν ) ω p 2 ω [ ( ω + i ν ) 2 ω c 2 ] , κ 2 = ω c ω p 2 ω [ ( ω + i ν ) 2 ω c 2 ] , κ 3 = 1 ω p 2 ω ( ω + i ν ) ,
H y ( x , z ) = [ A 1 exp ( α d x ) + A 2 exp ( α d x ) ] exp [ i ( k z ω t ) ]
H y ( x , z ) = B exp ( α s x ) exp [ i ( k z ω t ) ]
H y ( x , z ) = C exp ( α m x ) exp [ i ( k z ω t ) ]
( α + κ 2 κ 1 k ) [ 1 + ε r α m ε m α r tanh ( α r d ) ] + ε v ε r α r [ ε r α m ε m α r + tanh ( α r d ) ] = 0 ,
α + κ 2 κ 1 k + ε v ε r α r tanh ( α r d ) = 0.
ω s p ± = 1 2 ( ω c 2 + 4 ω p 2 ε ε + ε r ± ω c ) ,
α s + κ 2 κ 1 k + ε v ε m α m = 0.
ω c ω p ε 2 ( ε + ε r ) .
E y x E x y = μ 0 H z t , H z y = ε 0 ε E x t + ( J x + J x + ) + i ( J y J y + ) , H z x = ε 0 ε E y t i ( J x J x + ) + i ( J y + J y + ) , J x , y ± t + ( ν i ω c ) J x , y ± = 1 2 ε 0 ω p 2 E x , y .

Metrics