Abstract

We demonstrated for the first time above room temperature (RT) GaSb-based mid-infrared photonic crystal surface emitting lasers (PCSELs). The lasers, under optical pumping, emitted at λlasing~2.3μm, had a temperature insensitive line width of 0.3nm, and a threshold power density (Pth) ~0.3KW/cm2 at RT. Type-I InGaAsSb quantum wells were used as the active region, and the photonic crystal, a square lattice, was fabricated on the surface to provide optical feedback for laser operation and light coupling for surface emission. The PCSELs were operated at temperatures up to 350K with a small wavelength shift rate of 0.21 nm/K. The PCSELs with different air hole depth were studied. The effect of the etched depth on the laser performance was also investigated using numerical simulation based on the coupled-wave theory. Both the laser wavelength and the threshold power decrease as the depth of the PC becomes larger. The calculated results agree well with the experimental findings.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Promising low-damage fabrication method for the photonic crystals with hexagonal or triangular air holes: selective area metal organic vapor phase epitaxy

Lin Yang, Junichi Motohisa, Junichiro Takeda, and Takashi Fukui
Opt. Express 13(26) 10823-10832 (2005)

Small, low-loss heterogeneous photonic bandedge laser

Soon-Hong Kwon, Se-Heon Kim, Sun-Kyung Kim, Yong-Hee Lee, and Sung-Bock Kim
Opt. Express 12(22) 5356-5361 (2004)

Interband cascade laser on silicon

Alexander Spott, Eric J. Stanton, Alfredo Torres, Michael L. Davenport, Chadwick L. Canedy, Igor Vurgaftman, Mijin Kim, Chul Soo Kim, Charles D. Merritt, William W. Bewley, Jerry R. Meyer, and John E. Bowers
Optica 5(8) 996-1005 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Joullié and P. Christol, “GaSb-based mid-infrared 2–5 μm laser diodes,” C. R. Phys. 4(6), 621–637 (2003).
    [Crossref]
  2. S. Schilt, A. Vicet, R. Werner, M. Mattiello, L. Thévenaz, A. Salhi, Y. Rouillard, and J. Koeth, “Application of antimonide diode lasers in photoacoustic spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3431–3436 (2004).
    [Crossref] [PubMed]
  3. Z. Yin and X. Tang, “A review of energy bandgap engineering in III–V semiconductor alloys for mid-infrared laser applications,” Solid-State Electron. 51(1), 6–15 (2007).
    [Crossref]
  4. J. Seufert, M. Fischer, M. Legge, J. Koeth, R. Werner, M. Kamp, and A. Forchel, “DFB laser diodes in the wavelength range from 760 nm to 2.5 µm,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3243–3247 (2004).
    [Crossref] [PubMed]
  5. S. H. Macomber, J. S. Mott, R. J. Noll, G. M. Gallatin, E. J. Gratrix, S. L. O’Dwyer, and S. A. Lambert, “Surface‐emitting distributed feedback semiconductor laser,” Appl. Phys. Lett. 51(7), 472–474 (1987).
    [Crossref]
  6. R. J. Noll and S. H. Macomber, “Analysis of grating surface emitting lasers,” IEEE J. Quantum Electron. 26(3), 456–466 (1990).
    [Crossref]
  7. M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
    [Crossref]
  8. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal Laser by unit cell Structure Design,” Science 293(5532), 1123–1125 (2001).
    [Crossref] [PubMed]
  9. M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 195306 (2002).
    [Crossref]
  10. I. Vurgaftman and J. R. Meyer, “Design optimization for high-brightness surface-emitting photonic-crystal distributed-feedback lasers,” IEEE J. Quantum Electron. 39(6), 689–700 (2003).
    [Crossref]
  11. M. Lu, S. S. Choi, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser,” Appl. Phys. Lett. 92(26), 261502 (2008).
    [Crossref]
  12. T.-C. Lu, S.-W. Chen, T.-T. Kao, and T.-W. Liu, “Characteristics of GaN-based photonic crystal surface emitting lasers,” Appl. Phys. Lett. 93(11), 111111 (2008).
    [Crossref] [PubMed]
  13. C. Ge, M. Lu, W. Zhang, and B. T. Cunningham, “Distributed feedback laser biosensor incorporating a titanium dioxide nanorod surface,” Appl. Phys. Lett. 96(16), 163702 (2010).
    [Crossref]
  14. M. Kanskar, J. Cai, D. Kedlaya, D. Olson, Y. Xiao, T. Klos, M. Martin, C. Galstad, and S. H. Macomber, “High-brightness 975-nm surface-emitting distributed feedback laser and arrays,” Proc. SPIE 7686, 76860J(2010).
    [Crossref]
  15. Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave model for square-lattice photonic crystal lasers with transverse electric polarization: A general approach,” Phys. Rev. B 84(19), 195119 (2011).
    [Crossref]
  16. E. Mujagić, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, and G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett. 98(14), 141101 (2011).
    [Crossref]
  17. Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave analysis for square-lattice photonic crystal surface emitting lasers with transverse-electric polarization: finite-size effects,” Opt. Express 20(14), 15945–15961 (2012).
    [Crossref] [PubMed]
  18. K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
    [Crossref]
  19. J. S. Mott and S. H. Macomber, “Two-dimensional surface emitting distributed feedback laser arrays,” IEEE Photon. Technol. Lett. 1(8), 202–204 (1989).
    [Crossref]
  20. A. Bauer, K. Rößner, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Mid-infrared semiconductor heterostructure lasers for gas sensing applications,” Semicond. Sci. Technol. 26(1), 014032 (2011).
    [Crossref]
  21. M. Kim, C. S. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared,” Appl. Phys. Lett. 88(19), 191105 (2006).
    [Crossref]
  22. M. Jahjah, A. Vicet, and Y. Rouillard, “A QEPAS based methane sensor with a 2.35 μm antimonide laser,” Appl. Phys. B 106(2), 483–489 (2012).
    [Crossref]
  23. A. Salhi, D. Barat, D. Romanini, Y. Rouillard, A. Ouvrard, R. Werner, J. Seufert, J. Koeth, A. Vicet, and A. Garnache, “Single-frequency Sb-based distributed-feedback lasers emitting at 2.3 μm above room temperature for application in tunable diode laser absorption spectroscopy,” Appl. Opt. 45(20), 4957–4965 (2006).
    [Crossref] [PubMed]
  24. R. M. Briggs, C. Frez, M. Bagheri, C. E. Borgentun, J. A. Gupta, M. F. Witinski, J. G. Anderson, and S. Forouhar, “Single-mode 2.65 µm InGaAsSb/AlInGaAsSb laterally coupled distributed-feedback diode lasers for atmospheric gas detection,” Opt. Express 21(1), 1317–1323 (2013).
    [Crossref] [PubMed]
  25. C.-H. Lin and C.-P. Lee, “Enhanced optical property in quaternary GaInAsSb/AlGaAsSb quantum wells,” J. Appl. Phys. 116(15), 153504 (2014).
    [Crossref]
  26. K. Sakai, E. Miyai, and S. Noda, “Coupled-wave theory for square-lattice photonic crystal lasers with TE polarization,” IEEE J. Quantum Electron. 46(5), 788–795 (2010).
    [Crossref]

2014 (2)

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
[Crossref]

C.-H. Lin and C.-P. Lee, “Enhanced optical property in quaternary GaInAsSb/AlGaAsSb quantum wells,” J. Appl. Phys. 116(15), 153504 (2014).
[Crossref]

2013 (1)

2012 (2)

2011 (3)

A. Bauer, K. Rößner, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Mid-infrared semiconductor heterostructure lasers for gas sensing applications,” Semicond. Sci. Technol. 26(1), 014032 (2011).
[Crossref]

Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave model for square-lattice photonic crystal lasers with transverse electric polarization: A general approach,” Phys. Rev. B 84(19), 195119 (2011).
[Crossref]

E. Mujagić, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, and G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett. 98(14), 141101 (2011).
[Crossref]

2010 (3)

C. Ge, M. Lu, W. Zhang, and B. T. Cunningham, “Distributed feedback laser biosensor incorporating a titanium dioxide nanorod surface,” Appl. Phys. Lett. 96(16), 163702 (2010).
[Crossref]

M. Kanskar, J. Cai, D. Kedlaya, D. Olson, Y. Xiao, T. Klos, M. Martin, C. Galstad, and S. H. Macomber, “High-brightness 975-nm surface-emitting distributed feedback laser and arrays,” Proc. SPIE 7686, 76860J(2010).
[Crossref]

K. Sakai, E. Miyai, and S. Noda, “Coupled-wave theory for square-lattice photonic crystal lasers with TE polarization,” IEEE J. Quantum Electron. 46(5), 788–795 (2010).
[Crossref]

2008 (2)

M. Lu, S. S. Choi, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser,” Appl. Phys. Lett. 92(26), 261502 (2008).
[Crossref]

T.-C. Lu, S.-W. Chen, T.-T. Kao, and T.-W. Liu, “Characteristics of GaN-based photonic crystal surface emitting lasers,” Appl. Phys. Lett. 93(11), 111111 (2008).
[Crossref] [PubMed]

2007 (1)

Z. Yin and X. Tang, “A review of energy bandgap engineering in III–V semiconductor alloys for mid-infrared laser applications,” Solid-State Electron. 51(1), 6–15 (2007).
[Crossref]

2006 (2)

2004 (2)

J. Seufert, M. Fischer, M. Legge, J. Koeth, R. Werner, M. Kamp, and A. Forchel, “DFB laser diodes in the wavelength range from 760 nm to 2.5 µm,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3243–3247 (2004).
[Crossref] [PubMed]

S. Schilt, A. Vicet, R. Werner, M. Mattiello, L. Thévenaz, A. Salhi, Y. Rouillard, and J. Koeth, “Application of antimonide diode lasers in photoacoustic spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3431–3436 (2004).
[Crossref] [PubMed]

2003 (2)

A. Joullié and P. Christol, “GaSb-based mid-infrared 2–5 μm laser diodes,” C. R. Phys. 4(6), 621–637 (2003).
[Crossref]

I. Vurgaftman and J. R. Meyer, “Design optimization for high-brightness surface-emitting photonic-crystal distributed-feedback lasers,” IEEE J. Quantum Electron. 39(6), 689–700 (2003).
[Crossref]

2002 (1)

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 195306 (2002).
[Crossref]

2001 (1)

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal Laser by unit cell Structure Design,” Science 293(5532), 1123–1125 (2001).
[Crossref] [PubMed]

1999 (1)

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
[Crossref]

1990 (1)

R. J. Noll and S. H. Macomber, “Analysis of grating surface emitting lasers,” IEEE J. Quantum Electron. 26(3), 456–466 (1990).
[Crossref]

1989 (1)

J. S. Mott and S. H. Macomber, “Two-dimensional surface emitting distributed feedback laser arrays,” IEEE Photon. Technol. Lett. 1(8), 202–204 (1989).
[Crossref]

1987 (1)

S. H. Macomber, J. S. Mott, R. J. Noll, G. M. Gallatin, E. J. Gratrix, S. L. O’Dwyer, and S. A. Lambert, “Surface‐emitting distributed feedback semiconductor laser,” Appl. Phys. Lett. 51(7), 472–474 (1987).
[Crossref]

Anderson, J. G.

Bagheri, M.

Barat, D.

Bauer, A.

A. Bauer, K. Rößner, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Mid-infrared semiconductor heterostructure lasers for gas sensing applications,” Semicond. Sci. Technol. 26(1), 014032 (2011).
[Crossref]

Bewley, W. W.

M. Kim, C. S. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared,” Appl. Phys. Lett. 88(19), 191105 (2006).
[Crossref]

Borgentun, C. E.

Briggs, R. M.

Cai, J.

M. Kanskar, J. Cai, D. Kedlaya, D. Olson, Y. Xiao, T. Klos, M. Martin, C. Galstad, and S. H. Macomber, “High-brightness 975-nm surface-emitting distributed feedback laser and arrays,” Proc. SPIE 7686, 76860J(2010).
[Crossref]

Canedy, C. L.

M. Kim, C. S. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared,” Appl. Phys. Lett. 88(19), 191105 (2006).
[Crossref]

Chen, J.

E. Mujagić, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, and G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett. 98(14), 141101 (2011).
[Crossref]

Chen, S.-W.

T.-C. Lu, S.-W. Chen, T.-T. Kao, and T.-W. Liu, “Characteristics of GaN-based photonic crystal surface emitting lasers,” Appl. Phys. Lett. 93(11), 111111 (2008).
[Crossref] [PubMed]

Choi, S. S.

M. Lu, S. S. Choi, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser,” Appl. Phys. Lett. 92(26), 261502 (2008).
[Crossref]

Christol, P.

A. Joullié and P. Christol, “GaSb-based mid-infrared 2–5 μm laser diodes,” C. R. Phys. 4(6), 621–637 (2003).
[Crossref]

Chutinan, A.

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 195306 (2002).
[Crossref]

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal Laser by unit cell Structure Design,” Science 293(5532), 1123–1125 (2001).
[Crossref] [PubMed]

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
[Crossref]

Cunningham, B. T.

C. Ge, M. Lu, W. Zhang, and B. T. Cunningham, “Distributed feedback laser biosensor incorporating a titanium dioxide nanorod surface,” Appl. Phys. Lett. 96(16), 163702 (2010).
[Crossref]

M. Lu, S. S. Choi, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser,” Appl. Phys. Lett. 92(26), 261502 (2008).
[Crossref]

Eden, J. G.

M. Lu, S. S. Choi, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser,” Appl. Phys. Lett. 92(26), 261502 (2008).
[Crossref]

Fischer, M.

J. Seufert, M. Fischer, M. Legge, J. Koeth, R. Werner, M. Kamp, and A. Forchel, “DFB laser diodes in the wavelength range from 760 nm to 2.5 µm,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3243–3247 (2004).
[Crossref] [PubMed]

Forchel, A.

A. Bauer, K. Rößner, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Mid-infrared semiconductor heterostructure lasers for gas sensing applications,” Semicond. Sci. Technol. 26(1), 014032 (2011).
[Crossref]

J. Seufert, M. Fischer, M. Legge, J. Koeth, R. Werner, M. Kamp, and A. Forchel, “DFB laser diodes in the wavelength range from 760 nm to 2.5 µm,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3243–3247 (2004).
[Crossref] [PubMed]

Forouhar, S.

Frez, C.

Gallatin, G. M.

S. H. Macomber, J. S. Mott, R. J. Noll, G. M. Gallatin, E. J. Gratrix, S. L. O’Dwyer, and S. A. Lambert, “Surface‐emitting distributed feedback semiconductor laser,” Appl. Phys. Lett. 51(7), 472–474 (1987).
[Crossref]

Galstad, C.

M. Kanskar, J. Cai, D. Kedlaya, D. Olson, Y. Xiao, T. Klos, M. Martin, C. Galstad, and S. H. Macomber, “High-brightness 975-nm surface-emitting distributed feedback laser and arrays,” Proc. SPIE 7686, 76860J(2010).
[Crossref]

Garnache, A.

Ge, C.

C. Ge, M. Lu, W. Zhang, and B. T. Cunningham, “Distributed feedback laser biosensor incorporating a titanium dioxide nanorod surface,” Appl. Phys. Lett. 96(16), 163702 (2010).
[Crossref]

Gmachl, C.

E. Mujagić, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, and G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett. 98(14), 141101 (2011).
[Crossref]

Gratrix, E. J.

S. H. Macomber, J. S. Mott, R. J. Noll, G. M. Gallatin, E. J. Gratrix, S. L. O’Dwyer, and S. A. Lambert, “Surface‐emitting distributed feedback semiconductor laser,” Appl. Phys. Lett. 51(7), 472–474 (1987).
[Crossref]

Gupta, J. A.

Hirose, K.

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
[Crossref]

Höfling, S.

A. Bauer, K. Rößner, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Mid-infrared semiconductor heterostructure lasers for gas sensing applications,” Semicond. Sci. Technol. 26(1), 014032 (2011).
[Crossref]

Imada, M.

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 195306 (2002).
[Crossref]

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal Laser by unit cell Structure Design,” Science 293(5532), 1123–1125 (2001).
[Crossref] [PubMed]

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
[Crossref]

Iwahashi, S.

Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave analysis for square-lattice photonic crystal surface emitting lasers with transverse-electric polarization: finite-size effects,” Opt. Express 20(14), 15945–15961 (2012).
[Crossref] [PubMed]

Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave model for square-lattice photonic crystal lasers with transverse electric polarization: A general approach,” Phys. Rev. B 84(19), 195119 (2011).
[Crossref]

Jahjah, M.

M. Jahjah, A. Vicet, and Y. Rouillard, “A QEPAS based methane sensor with a 2.35 μm antimonide laser,” Appl. Phys. B 106(2), 483–489 (2012).
[Crossref]

Joullié, A.

A. Joullié and P. Christol, “GaSb-based mid-infrared 2–5 μm laser diodes,” C. R. Phys. 4(6), 621–637 (2003).
[Crossref]

Kamp, M.

A. Bauer, K. Rößner, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Mid-infrared semiconductor heterostructure lasers for gas sensing applications,” Semicond. Sci. Technol. 26(1), 014032 (2011).
[Crossref]

J. Seufert, M. Fischer, M. Legge, J. Koeth, R. Werner, M. Kamp, and A. Forchel, “DFB laser diodes in the wavelength range from 760 nm to 2.5 µm,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3243–3247 (2004).
[Crossref] [PubMed]

Kanskar, M.

M. Kanskar, J. Cai, D. Kedlaya, D. Olson, Y. Xiao, T. Klos, M. Martin, C. Galstad, and S. H. Macomber, “High-brightness 975-nm surface-emitting distributed feedback laser and arrays,” Proc. SPIE 7686, 76860J(2010).
[Crossref]

Kao, T.-T.

T.-C. Lu, S.-W. Chen, T.-T. Kao, and T.-W. Liu, “Characteristics of GaN-based photonic crystal surface emitting lasers,” Appl. Phys. Lett. 93(11), 111111 (2008).
[Crossref] [PubMed]

Kedlaya, D.

M. Kanskar, J. Cai, D. Kedlaya, D. Olson, Y. Xiao, T. Klos, M. Martin, C. Galstad, and S. H. Macomber, “High-brightness 975-nm surface-emitting distributed feedback laser and arrays,” Proc. SPIE 7686, 76860J(2010).
[Crossref]

Kim, C. S.

M. Kim, C. S. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared,” Appl. Phys. Lett. 88(19), 191105 (2006).
[Crossref]

Kim, M.

M. Kim, C. S. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared,” Appl. Phys. Lett. 88(19), 191105 (2006).
[Crossref]

Klos, T.

M. Kanskar, J. Cai, D. Kedlaya, D. Olson, Y. Xiao, T. Klos, M. Martin, C. Galstad, and S. H. Macomber, “High-brightness 975-nm surface-emitting distributed feedback laser and arrays,” Proc. SPIE 7686, 76860J(2010).
[Crossref]

Koeth, J.

A. Salhi, D. Barat, D. Romanini, Y. Rouillard, A. Ouvrard, R. Werner, J. Seufert, J. Koeth, A. Vicet, and A. Garnache, “Single-frequency Sb-based distributed-feedback lasers emitting at 2.3 μm above room temperature for application in tunable diode laser absorption spectroscopy,” Appl. Opt. 45(20), 4957–4965 (2006).
[Crossref] [PubMed]

J. Seufert, M. Fischer, M. Legge, J. Koeth, R. Werner, M. Kamp, and A. Forchel, “DFB laser diodes in the wavelength range from 760 nm to 2.5 µm,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3243–3247 (2004).
[Crossref] [PubMed]

S. Schilt, A. Vicet, R. Werner, M. Mattiello, L. Thévenaz, A. Salhi, Y. Rouillard, and J. Koeth, “Application of antimonide diode lasers in photoacoustic spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3431–3436 (2004).
[Crossref] [PubMed]

Kurosaka, Y.

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
[Crossref]

Lambert, S. A.

S. H. Macomber, J. S. Mott, R. J. Noll, G. M. Gallatin, E. J. Gratrix, S. L. O’Dwyer, and S. A. Lambert, “Surface‐emitting distributed feedback semiconductor laser,” Appl. Phys. Lett. 51(7), 472–474 (1987).
[Crossref]

Lee, C.-P.

C.-H. Lin and C.-P. Lee, “Enhanced optical property in quaternary GaInAsSb/AlGaAsSb quantum wells,” J. Appl. Phys. 116(15), 153504 (2014).
[Crossref]

Legge, M.

J. Seufert, M. Fischer, M. Legge, J. Koeth, R. Werner, M. Kamp, and A. Forchel, “DFB laser diodes in the wavelength range from 760 nm to 2.5 µm,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3243–3247 (2004).
[Crossref] [PubMed]

Lehnhardt, T.

A. Bauer, K. Rößner, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Mid-infrared semiconductor heterostructure lasers for gas sensing applications,” Semicond. Sci. Technol. 26(1), 014032 (2011).
[Crossref]

Liang, Y.

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
[Crossref]

Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave analysis for square-lattice photonic crystal surface emitting lasers with transverse-electric polarization: finite-size effects,” Opt. Express 20(14), 15945–15961 (2012).
[Crossref] [PubMed]

Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave model for square-lattice photonic crystal lasers with transverse electric polarization: A general approach,” Phys. Rev. B 84(19), 195119 (2011).
[Crossref]

Lin, C.-H.

C.-H. Lin and C.-P. Lee, “Enhanced optical property in quaternary GaInAsSb/AlGaAsSb quantum wells,” J. Appl. Phys. 116(15), 153504 (2014).
[Crossref]

Lindle, J. R.

M. Kim, C. S. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared,” Appl. Phys. Lett. 88(19), 191105 (2006).
[Crossref]

Liu, T.-W.

T.-C. Lu, S.-W. Chen, T.-T. Kao, and T.-W. Liu, “Characteristics of GaN-based photonic crystal surface emitting lasers,” Appl. Phys. Lett. 93(11), 111111 (2008).
[Crossref] [PubMed]

Lu, M.

C. Ge, M. Lu, W. Zhang, and B. T. Cunningham, “Distributed feedback laser biosensor incorporating a titanium dioxide nanorod surface,” Appl. Phys. Lett. 96(16), 163702 (2010).
[Crossref]

M. Lu, S. S. Choi, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser,” Appl. Phys. Lett. 92(26), 261502 (2008).
[Crossref]

Lu, T.-C.

T.-C. Lu, S.-W. Chen, T.-T. Kao, and T.-W. Liu, “Characteristics of GaN-based photonic crystal surface emitting lasers,” Appl. Phys. Lett. 93(11), 111111 (2008).
[Crossref] [PubMed]

Macomber, S. H.

M. Kanskar, J. Cai, D. Kedlaya, D. Olson, Y. Xiao, T. Klos, M. Martin, C. Galstad, and S. H. Macomber, “High-brightness 975-nm surface-emitting distributed feedback laser and arrays,” Proc. SPIE 7686, 76860J(2010).
[Crossref]

R. J. Noll and S. H. Macomber, “Analysis of grating surface emitting lasers,” IEEE J. Quantum Electron. 26(3), 456–466 (1990).
[Crossref]

J. S. Mott and S. H. Macomber, “Two-dimensional surface emitting distributed feedback laser arrays,” IEEE Photon. Technol. Lett. 1(8), 202–204 (1989).
[Crossref]

S. H. Macomber, J. S. Mott, R. J. Noll, G. M. Gallatin, E. J. Gratrix, S. L. O’Dwyer, and S. A. Lambert, “Surface‐emitting distributed feedback semiconductor laser,” Appl. Phys. Lett. 51(7), 472–474 (1987).
[Crossref]

Martin, M.

M. Kanskar, J. Cai, D. Kedlaya, D. Olson, Y. Xiao, T. Klos, M. Martin, C. Galstad, and S. H. Macomber, “High-brightness 975-nm surface-emitting distributed feedback laser and arrays,” Proc. SPIE 7686, 76860J(2010).
[Crossref]

Mattiello, M.

S. Schilt, A. Vicet, R. Werner, M. Mattiello, L. Thévenaz, A. Salhi, Y. Rouillard, and J. Koeth, “Application of antimonide diode lasers in photoacoustic spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3431–3436 (2004).
[Crossref] [PubMed]

Meyer, J. R.

M. Kim, C. S. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared,” Appl. Phys. Lett. 88(19), 191105 (2006).
[Crossref]

I. Vurgaftman and J. R. Meyer, “Design optimization for high-brightness surface-emitting photonic-crystal distributed-feedback lasers,” IEEE J. Quantum Electron. 39(6), 689–700 (2003).
[Crossref]

Miyai, E.

K. Sakai, E. Miyai, and S. Noda, “Coupled-wave theory for square-lattice photonic crystal lasers with TE polarization,” IEEE J. Quantum Electron. 46(5), 788–795 (2010).
[Crossref]

Mochizuki, M.

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 195306 (2002).
[Crossref]

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal Laser by unit cell Structure Design,” Science 293(5532), 1123–1125 (2001).
[Crossref] [PubMed]

Mott, J. S.

J. S. Mott and S. H. Macomber, “Two-dimensional surface emitting distributed feedback laser arrays,” IEEE Photon. Technol. Lett. 1(8), 202–204 (1989).
[Crossref]

S. H. Macomber, J. S. Mott, R. J. Noll, G. M. Gallatin, E. J. Gratrix, S. L. O’Dwyer, and S. A. Lambert, “Surface‐emitting distributed feedback semiconductor laser,” Appl. Phys. Lett. 51(7), 472–474 (1987).
[Crossref]

Mujagic, E.

E. Mujagić, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, and G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett. 98(14), 141101 (2011).
[Crossref]

Murata, M.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
[Crossref]

Noda, S.

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
[Crossref]

Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave analysis for square-lattice photonic crystal surface emitting lasers with transverse-electric polarization: finite-size effects,” Opt. Express 20(14), 15945–15961 (2012).
[Crossref] [PubMed]

Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave model for square-lattice photonic crystal lasers with transverse electric polarization: A general approach,” Phys. Rev. B 84(19), 195119 (2011).
[Crossref]

K. Sakai, E. Miyai, and S. Noda, “Coupled-wave theory for square-lattice photonic crystal lasers with TE polarization,” IEEE J. Quantum Electron. 46(5), 788–795 (2010).
[Crossref]

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 195306 (2002).
[Crossref]

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal Laser by unit cell Structure Design,” Science 293(5532), 1123–1125 (2001).
[Crossref] [PubMed]

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
[Crossref]

Noll, R. J.

R. J. Noll and S. H. Macomber, “Analysis of grating surface emitting lasers,” IEEE J. Quantum Electron. 26(3), 456–466 (1990).
[Crossref]

S. H. Macomber, J. S. Mott, R. J. Noll, G. M. Gallatin, E. J. Gratrix, S. L. O’Dwyer, and S. A. Lambert, “Surface‐emitting distributed feedback semiconductor laser,” Appl. Phys. Lett. 51(7), 472–474 (1987).
[Crossref]

O’Dwyer, S. L.

S. H. Macomber, J. S. Mott, R. J. Noll, G. M. Gallatin, E. J. Gratrix, S. L. O’Dwyer, and S. A. Lambert, “Surface‐emitting distributed feedback semiconductor laser,” Appl. Phys. Lett. 51(7), 472–474 (1987).
[Crossref]

Olson, D.

M. Kanskar, J. Cai, D. Kedlaya, D. Olson, Y. Xiao, T. Klos, M. Martin, C. Galstad, and S. H. Macomber, “High-brightness 975-nm surface-emitting distributed feedback laser and arrays,” Proc. SPIE 7686, 76860J(2010).
[Crossref]

Ouvrard, A.

Peng, C.

Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave analysis for square-lattice photonic crystal surface emitting lasers with transverse-electric polarization: finite-size effects,” Opt. Express 20(14), 15945–15961 (2012).
[Crossref] [PubMed]

Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave model for square-lattice photonic crystal lasers with transverse electric polarization: A general approach,” Phys. Rev. B 84(19), 195119 (2011).
[Crossref]

Romanini, D.

Rößner, K.

A. Bauer, K. Rößner, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Mid-infrared semiconductor heterostructure lasers for gas sensing applications,” Semicond. Sci. Technol. 26(1), 014032 (2011).
[Crossref]

Rouillard, Y.

M. Jahjah, A. Vicet, and Y. Rouillard, “A QEPAS based methane sensor with a 2.35 μm antimonide laser,” Appl. Phys. B 106(2), 483–489 (2012).
[Crossref]

A. Salhi, D. Barat, D. Romanini, Y. Rouillard, A. Ouvrard, R. Werner, J. Seufert, J. Koeth, A. Vicet, and A. Garnache, “Single-frequency Sb-based distributed-feedback lasers emitting at 2.3 μm above room temperature for application in tunable diode laser absorption spectroscopy,” Appl. Opt. 45(20), 4957–4965 (2006).
[Crossref] [PubMed]

S. Schilt, A. Vicet, R. Werner, M. Mattiello, L. Thévenaz, A. Salhi, Y. Rouillard, and J. Koeth, “Application of antimonide diode lasers in photoacoustic spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3431–3436 (2004).
[Crossref] [PubMed]

Sakai, K.

Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave analysis for square-lattice photonic crystal surface emitting lasers with transverse-electric polarization: finite-size effects,” Opt. Express 20(14), 15945–15961 (2012).
[Crossref] [PubMed]

Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave model for square-lattice photonic crystal lasers with transverse electric polarization: A general approach,” Phys. Rev. B 84(19), 195119 (2011).
[Crossref]

K. Sakai, E. Miyai, and S. Noda, “Coupled-wave theory for square-lattice photonic crystal lasers with TE polarization,” IEEE J. Quantum Electron. 46(5), 788–795 (2010).
[Crossref]

Salhi, A.

A. Salhi, D. Barat, D. Romanini, Y. Rouillard, A. Ouvrard, R. Werner, J. Seufert, J. Koeth, A. Vicet, and A. Garnache, “Single-frequency Sb-based distributed-feedback lasers emitting at 2.3 μm above room temperature for application in tunable diode laser absorption spectroscopy,” Appl. Opt. 45(20), 4957–4965 (2006).
[Crossref] [PubMed]

S. Schilt, A. Vicet, R. Werner, M. Mattiello, L. Thévenaz, A. Salhi, Y. Rouillard, and J. Koeth, “Application of antimonide diode lasers in photoacoustic spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3431–3436 (2004).
[Crossref] [PubMed]

Sasaki, G.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
[Crossref]

Schilt, S.

S. Schilt, A. Vicet, R. Werner, M. Mattiello, L. Thévenaz, A. Salhi, Y. Rouillard, and J. Koeth, “Application of antimonide diode lasers in photoacoustic spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3431–3436 (2004).
[Crossref] [PubMed]

Schwarzer, C.

E. Mujagić, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, and G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett. 98(14), 141101 (2011).
[Crossref]

Seufert, J.

Strasser, G.

E. Mujagić, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, and G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett. 98(14), 141101 (2011).
[Crossref]

Sugiyama, T.

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
[Crossref]

Tang, X.

Z. Yin and X. Tang, “A review of energy bandgap engineering in III–V semiconductor alloys for mid-infrared laser applications,” Solid-State Electron. 51(1), 6–15 (2007).
[Crossref]

Thévenaz, L.

S. Schilt, A. Vicet, R. Werner, M. Mattiello, L. Thévenaz, A. Salhi, Y. Rouillard, and J. Koeth, “Application of antimonide diode lasers in photoacoustic spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3431–3436 (2004).
[Crossref] [PubMed]

Tokuda, T.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
[Crossref]

Vicet, A.

M. Jahjah, A. Vicet, and Y. Rouillard, “A QEPAS based methane sensor with a 2.35 μm antimonide laser,” Appl. Phys. B 106(2), 483–489 (2012).
[Crossref]

A. Salhi, D. Barat, D. Romanini, Y. Rouillard, A. Ouvrard, R. Werner, J. Seufert, J. Koeth, A. Vicet, and A. Garnache, “Single-frequency Sb-based distributed-feedback lasers emitting at 2.3 μm above room temperature for application in tunable diode laser absorption spectroscopy,” Appl. Opt. 45(20), 4957–4965 (2006).
[Crossref] [PubMed]

S. Schilt, A. Vicet, R. Werner, M. Mattiello, L. Thévenaz, A. Salhi, Y. Rouillard, and J. Koeth, “Application of antimonide diode lasers in photoacoustic spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3431–3436 (2004).
[Crossref] [PubMed]

Vurgaftman, I.

M. Kim, C. S. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared,” Appl. Phys. Lett. 88(19), 191105 (2006).
[Crossref]

I. Vurgaftman and J. R. Meyer, “Design optimization for high-brightness surface-emitting photonic-crystal distributed-feedback lasers,” IEEE J. Quantum Electron. 39(6), 689–700 (2003).
[Crossref]

Wagner, C. J.

M. Lu, S. S. Choi, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser,” Appl. Phys. Lett. 92(26), 261502 (2008).
[Crossref]

Watanabe, A.

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
[Crossref]

Werner, R.

A. Salhi, D. Barat, D. Romanini, Y. Rouillard, A. Ouvrard, R. Werner, J. Seufert, J. Koeth, A. Vicet, and A. Garnache, “Single-frequency Sb-based distributed-feedback lasers emitting at 2.3 μm above room temperature for application in tunable diode laser absorption spectroscopy,” Appl. Opt. 45(20), 4957–4965 (2006).
[Crossref] [PubMed]

S. Schilt, A. Vicet, R. Werner, M. Mattiello, L. Thévenaz, A. Salhi, Y. Rouillard, and J. Koeth, “Application of antimonide diode lasers in photoacoustic spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3431–3436 (2004).
[Crossref] [PubMed]

J. Seufert, M. Fischer, M. Legge, J. Koeth, R. Werner, M. Kamp, and A. Forchel, “DFB laser diodes in the wavelength range from 760 nm to 2.5 µm,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3243–3247 (2004).
[Crossref] [PubMed]

Witinski, M. F.

Worschech, L.

A. Bauer, K. Rößner, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Mid-infrared semiconductor heterostructure lasers for gas sensing applications,” Semicond. Sci. Technol. 26(1), 014032 (2011).
[Crossref]

Xiao, Y.

M. Kanskar, J. Cai, D. Kedlaya, D. Olson, Y. Xiao, T. Klos, M. Martin, C. Galstad, and S. H. Macomber, “High-brightness 975-nm surface-emitting distributed feedback laser and arrays,” Proc. SPIE 7686, 76860J(2010).
[Crossref]

Yao, Y.

E. Mujagić, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, and G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett. 98(14), 141101 (2011).
[Crossref]

Yin, Z.

Z. Yin and X. Tang, “A review of energy bandgap engineering in III–V semiconductor alloys for mid-infrared laser applications,” Solid-State Electron. 51(1), 6–15 (2007).
[Crossref]

Yokoyama, M.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal Laser by unit cell Structure Design,” Science 293(5532), 1123–1125 (2001).
[Crossref] [PubMed]

Zhang, W.

C. Ge, M. Lu, W. Zhang, and B. T. Cunningham, “Distributed feedback laser biosensor incorporating a titanium dioxide nanorod surface,” Appl. Phys. Lett. 96(16), 163702 (2010).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

M. Jahjah, A. Vicet, and Y. Rouillard, “A QEPAS based methane sensor with a 2.35 μm antimonide laser,” Appl. Phys. B 106(2), 483–489 (2012).
[Crossref]

Appl. Phys. Lett. (7)

M. Kim, C. S. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared,” Appl. Phys. Lett. 88(19), 191105 (2006).
[Crossref]

S. H. Macomber, J. S. Mott, R. J. Noll, G. M. Gallatin, E. J. Gratrix, S. L. O’Dwyer, and S. A. Lambert, “Surface‐emitting distributed feedback semiconductor laser,” Appl. Phys. Lett. 51(7), 472–474 (1987).
[Crossref]

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
[Crossref]

M. Lu, S. S. Choi, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser,” Appl. Phys. Lett. 92(26), 261502 (2008).
[Crossref]

T.-C. Lu, S.-W. Chen, T.-T. Kao, and T.-W. Liu, “Characteristics of GaN-based photonic crystal surface emitting lasers,” Appl. Phys. Lett. 93(11), 111111 (2008).
[Crossref] [PubMed]

C. Ge, M. Lu, W. Zhang, and B. T. Cunningham, “Distributed feedback laser biosensor incorporating a titanium dioxide nanorod surface,” Appl. Phys. Lett. 96(16), 163702 (2010).
[Crossref]

E. Mujagić, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, and G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett. 98(14), 141101 (2011).
[Crossref]

C. R. Phys. (1)

A. Joullié and P. Christol, “GaSb-based mid-infrared 2–5 μm laser diodes,” C. R. Phys. 4(6), 621–637 (2003).
[Crossref]

IEEE J. Quantum Electron. (3)

R. J. Noll and S. H. Macomber, “Analysis of grating surface emitting lasers,” IEEE J. Quantum Electron. 26(3), 456–466 (1990).
[Crossref]

I. Vurgaftman and J. R. Meyer, “Design optimization for high-brightness surface-emitting photonic-crystal distributed-feedback lasers,” IEEE J. Quantum Electron. 39(6), 689–700 (2003).
[Crossref]

K. Sakai, E. Miyai, and S. Noda, “Coupled-wave theory for square-lattice photonic crystal lasers with TE polarization,” IEEE J. Quantum Electron. 46(5), 788–795 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. S. Mott and S. H. Macomber, “Two-dimensional surface emitting distributed feedback laser arrays,” IEEE Photon. Technol. Lett. 1(8), 202–204 (1989).
[Crossref]

J. Appl. Phys. (1)

C.-H. Lin and C.-P. Lee, “Enhanced optical property in quaternary GaInAsSb/AlGaAsSb quantum wells,” J. Appl. Phys. 116(15), 153504 (2014).
[Crossref]

Nat. Photonics (1)

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
[Crossref]

Opt. Express (2)

Phys. Rev. B (2)

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 195306 (2002).
[Crossref]

Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave model for square-lattice photonic crystal lasers with transverse electric polarization: A general approach,” Phys. Rev. B 84(19), 195119 (2011).
[Crossref]

Proc. SPIE (1)

M. Kanskar, J. Cai, D. Kedlaya, D. Olson, Y. Xiao, T. Klos, M. Martin, C. Galstad, and S. H. Macomber, “High-brightness 975-nm surface-emitting distributed feedback laser and arrays,” Proc. SPIE 7686, 76860J(2010).
[Crossref]

Science (1)

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal Laser by unit cell Structure Design,” Science 293(5532), 1123–1125 (2001).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

A. Bauer, K. Rößner, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Mid-infrared semiconductor heterostructure lasers for gas sensing applications,” Semicond. Sci. Technol. 26(1), 014032 (2011).
[Crossref]

Solid-State Electron. (1)

Z. Yin and X. Tang, “A review of energy bandgap engineering in III–V semiconductor alloys for mid-infrared laser applications,” Solid-State Electron. 51(1), 6–15 (2007).
[Crossref]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (2)

J. Seufert, M. Fischer, M. Legge, J. Koeth, R. Werner, M. Kamp, and A. Forchel, “DFB laser diodes in the wavelength range from 760 nm to 2.5 µm,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3243–3247 (2004).
[Crossref] [PubMed]

S. Schilt, A. Vicet, R. Werner, M. Mattiello, L. Thévenaz, A. Salhi, Y. Rouillard, and J. Koeth, “Application of antimonide diode lasers in photoacoustic spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3431–3436 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The schematic diagram of PCSELs (middle), the laser epi-structure (right), and the SEM top view of the PC pattern (left). The PC pattern is a square lattice (650 nm period) with the round shape air-holes (0.12 filling factor). Four coupled in-plane waves are represented by green arrows, with the wave vector magnitude ki~G1 = 2π/p (the PC reciprocal lattice). The surface emitting wave (kd) is represented by the red arrow with a normal angle to the surface.
Fig. 2
Fig. 2 The sample A (a) light in-light out curves and (b) lasing spectra with temperature varied from 290K to 350K in steps of 10K.
Fig. 3
Fig. 3 The temperature dependent characteristics of PCSELs for sample A (170 nm etching depth) and sample B (220 nm etching depth) with solid symbols. Temperature dependence of (a) lasing wavelength (λlasing), (b) threshold pumping power density (Pth), and (c) slope efficiency, where solid lines are fitted curves. For comparison, an optically pumped FP laser with 0.8 mm cavity length shown with open symbols and dash fitted curves.
Fig. 4
Fig. 4 The refractive index of the model structure (left-axis) and the normalized TE mode field (right-axis) vertical distributions for the simulation case (etching depth x = 170nm). The layers were presented with different colors for better understanding of the overlap between electric field and active (and PC) region.
Fig. 5
Fig. 5 Simulation results of (a) λlasing and (b) threshold gain versus etched depth in the solid lines, and the experiment data shown with the open symbols, where the Pth correlated to the threshold gain on the right axis in (b).

Tables (1)

Tables Icon

Table 1 The layer thickness (d) and the refraction index (n) of the PCSELs model structure for the simulations

Metrics