Abstract

This paper presents the study of a fabrication technique of lenses arrays based on the reflow of glass inside cylindrical silicon cavities. Lenses whose sizes are out of the microfabrication standards are considered. In particular, the case of high fill factor arrays is discussed in detail since the proximity between lenses generates undesired effects. These effects, not experienced when lenses are sufficiently separated so that they can be considered as single items, are corrected by properly designing the silicon cavities. Complete topographic as well as optical characterizations are reported. The compatibility of materials with Micro-Opto-Electromechanical Systems (MOEMS) integration processes makes this technology attractive for the miniaturization of inspection systems, especially those devoted to imaging.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of microoptical freeform arrays on wafer level for imaging applications

Jens Dunkel, Frank Wippermann, Andreas Reimann, Andreas Brückner, and Andreas Bräuer
Opt. Express 23(25) 31915-31925 (2015)

Wafer-level fabrication of multi-element glass lenses: lens doublet with improved optical performances

Jorge Albero, Stéphane Perrin, Nicolas Passilly, Johann Krauter, Ludovic Gauthier-Manuel, Luc Froehly, Justine Lullin, Sylwester Bargiel, Wolfgang Osten, and Christophe Gorecki
Opt. Lett. 41(1) 96-99 (2016)

Laser-fabricated glass microlens arrays

M. Fritze, M. B. Stern, and P. W. Wyatt
Opt. Lett. 23(2) 141-143 (1998)

References

  • View by:
  • |
  • |
  • |

  1. V. Lin, H.-C. Wei, H.-T. Hsieh, and G.-D. J. Su, “An optical wavefront sensor based on a double layer microlens array,” Sensors (Basel) 11(12), 10293–10307 (2011).
    [Crossref] [PubMed]
  2. A. Moini, “Image Sensor Architectures,” in Smart Cameras, A. N. Belbachir, ed. (Springer, 2013).
  3. S. Bargiel, C. Gorecki, M. Barański, N. Passilly, M. Wiemer, C. Jia, and J. Froemel, “3D micro-optical lens scanner made by multi-wafer bonding technology,” Proc. SPIE 8616, 861605 (2013).
    [Crossref]
  4. D. Kuang, X. Zhang, M. Gui, and Z. Fang, “Hexagonal microlens array fabricated by direct laser writing and inductively coupled plasma etching on organic light emitting devices to enhance the outcoupling efficiency,” Appl. Opt. 48(5), 974–978 (2009).
    [Crossref] [PubMed]
  5. Z. D. Popovic, R. A. Sprague, and G. A. Connell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27(7), 1281–1284 (1988).
    [Crossref] [PubMed]
  6. D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1(8), 759–766 (1990).
    [Crossref]
  7. H. Yang, C.-K. Chao, M.-K. Wei, and C.-P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14(8), 1197–1204 (2004).
    [Crossref]
  8. C. T. Pan and C. H. Su, “Fabrication of gapless triangular micro-lens array,” Sensor Actuat, A-Phys. 134, 631–640 (2007).
  9. J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, H. Thienpont, J. Pietarinen, B. Päivänranta, and N. Passilly, “Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques,” Opt. Express 17(8), 6283–6292 (2009).
    [Crossref] [PubMed]
  10. N. F. Borrelli, D. L. Morse, R. H. Bellman, and W. L. Morgan, “Photolytic technique for producing microlenses in photosensitive glass,” Appl. Opt. 24(16), 2520–2525 (1985).
    [Crossref] [PubMed]
  11. M. Fritze, M. B. Stern, and P. W. Wyatt, “Laser-fabricated glass microlens arrays,” Opt. Lett. 23(2), 141–143 (1998).
    [Crossref] [PubMed]
  12. G. Beadie and N. M. Lawandy, “Single-step laser fabrication of refractive microlenses in semiconductor-doped glasses,” Opt. Lett. 20(21), 2153–2155 (1995).
    [Crossref] [PubMed]
  13. A. Y. Smuk and N. M. Lawandy, “Direct laser fabrication of dense microlens arrays in semiconductor-doped glass,” J. Appl. Phys. 87(8), 4026–4030 (2000).
    [Crossref]
  14. M. Wakaki, Y. Komachi, and G. Kanai, “Microlenses and microlens arrays formed on a glass plate by use of a CO2 laser,” Appl. Opt. 37(4), 627–631 (1998).
    [Crossref] [PubMed]
  15. C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
    [Crossref]
  16. D. Nieto, J. Arines, C. Gomez-Reino, G. M. O’Connor, and M. T. Flores-Arias, “Fabrication and characterization of microlens arrays on soda-lime glass using a combination of laser direct-write and thermal reflow techniques,” J. Appl. Phys. 110(2), 023108 (2011).
    [Crossref]
  17. F. Chen, Z. Deng, Q. Yang, H. Bian, G. Du, J. Si, and X. Hou, “Rapid fabrication of a large-area close-packed quasi-periodic microlens array on BK7 glass,” Opt. Lett. 39(3), 606–609 (2014).
    [Crossref] [PubMed]
  18. S. Scheiding, A. Y. Yi, A. Gebhardt, L. Li, S. Risse, R. Eberhardt, and A. Tünnermann, “Freeform manufacturing of a microoptical lens array on a steep curved substrate by use of a voice coil fast tool servo,” Opt. Express 19(24), 23938–23951 (2011).
    [Crossref] [PubMed]
  19. P. Savander, “Microlens arrays etched into glass and silicon,” Opt. Lasers Eng. 20(2), 97–107 (1994).
    [Crossref]
  20. T. Knieling, M. Shafi, W. Lang, and W. Benecke, “Microlens array production in a microtechnological dry etch and reflow process for display applications,” J. Eur. Opt. Soc.-, Rapid 7, 12007 (2012).
    [Crossref]
  21. A. Sayah, V. K. Parashar, and M. A. M. Gijs, “Micro-replication of optical lenses in glass using a novel sol gel technology, in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (IEEE, 2002), pp. 516-519.
    [Crossref]
  22. T. Kreuzberger, A. Harnisch, M. Helgert, L. Erdmann, and R. Brunner, “Sol–gel process to cast quartz glass microlens arrays,” Microelectron. Eng. 86(4-6), 1173–1175 (2009).
    [Crossref]
  23. M. He, X.-C. Yuan, N. Q. Ngo, J. Bu, and V. Kudryashov, “Simple reflow technique for fabrication of a microlens array in solgel glass,” Opt. Lett. 28(9), 731–733 (2003).
    [Crossref] [PubMed]
  24. J. A. Dziuban, “Bonding” in Bonding in Microsystem Technology, K. Itoh, T. Lee, T. Sakurai, W. M. C. Sansen, D. Schmitt-Landsiedel, ed. (Springer-Verlag, 2006).
  25. Y. Chen, A. Y. Yil, D. Yao, F. Klocke, and G. Pongs, “A reflow process for glass microlens array fabrication by use of precision compression molding,” J. Micromech. Microeng. 18(5), 055022 (2008).
    [Crossref]
  26. C.-Y. Huang, W.-T. Hsiao, K.-C. Huang, K.-S. Chang, H.-Y. Chou, and C.-P. Chou, “Fabrication of a double-sided micro-lens array by a glass molding technique,” J. Micromech. Microeng. 21(8), 085020 (2011).
    [Crossref]
  27. P. Merz, H. J. Quenzer, H. Bernt, B. Wagner, and M. Zoberbier, “A novel micromachining technology for structuring borosilicate glass substrates,” in Proceedings of IEEE Conference on Solid State Sensors, Actuators and Microsystems, (IEEE, 2003), pp. 258–261.
    [Crossref]
  28. J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, and J. Pietarinen, “Si moulds for glass and polymer microlenses replication,” Proc. SPIE 6992, 69920A (2008).
    [Crossref]
  29. S. Yoo, J.-G. Ha, J.-Y. Jin, C.-H. Ji, and Y.-K. Kim, “Monolithically integrated glass microlens scanner using a thermal reflow process,” J. Micromech. Microeng. 23(6), 065012 (2013).
    [Crossref]
  30. J. Albero, S. Bargiel, N. Passilly, P. Dannberg, M. Stumpf, U. D. Zeitner, C. Rousselot, K. Gastinger, and C. Gorecki, “Micromachined array-type Mirau interferometer for parallel inspection of MEMS,” J. Micromech. Microeng. 21(6), 065005 (2011).
    [Crossref]
  31. J. Krauter, T. Boettcher, W. Osten, W. Lyda, N. Passilly, L. Froehly, S. Bargiel, J. Albero, S. Perrin, J. Lullin, and C. Gorecki, “Optical Design of a Vertically Integrated Array-type Mirau-based OCT system,” Proc. SPIE 9132, 91320L (2014).
    [Crossref]
  32. J. Albero, C. Gorecki, L. Nieradko, B. Päivänranta, V. Gomez, H. Thienpont, and N. Passilly, “Matrixes of unconventional micro-optical components molded with etched silicon,” J. Eur. Opt. Soc.-, Rapid 5, 10001 (2010).
    [Crossref]
  33. M. Baranski, N. Passilly, J. Albero, and C. Gorecki, “Fabrication of 100% fill factor arrays of microlenses from silicon molds,” Proc. SPIE 8428, 84281G (2012).
    [Crossref]
  34. A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39(8), 2171–2176 (2000).
    [Crossref]
  35. Thermal properties of Borofloat®33 in http://www.schott.com/borofloat/english/attribute/thermic/index.html
  36. M. Baranski, S. Perrin, N. Passilly, L. Froehly, J. Albero, S. Bargiel, and C. Gorecki, “A simple method for quality evaluation of micro-optical components based on 3D IPSF measurement,” Opt. Express 22(11), 13202–13212 (2014).
    [Crossref] [PubMed]
  37. Borofloat®33 Temperature dependence of the viscosity in http://www.schott.com/borofloat/english/attribute/thermic/index.html
  38. D. Wu, Q.-D. Chen, L. G. Niu, J. Jiao, H. Xia, J.-F. Song, and H.-B. Sun, “100% fill-factor aspheric microlens arrays (AMLA) with sub-20-nm precision,” IEEE Photonic. Tech. L. 21(20), 1535–1537 (2009).
    [Crossref]
  39. H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A, Pure Appl. Opt. 8(7), 407–429 (2006).
    [Crossref]
  40. H. Scholze, Glass: Nature, Structure and Properties (Springer-Verlag, 1991).

2014 (3)

2013 (2)

S. Yoo, J.-G. Ha, J.-Y. Jin, C.-H. Ji, and Y.-K. Kim, “Monolithically integrated glass microlens scanner using a thermal reflow process,” J. Micromech. Microeng. 23(6), 065012 (2013).
[Crossref]

S. Bargiel, C. Gorecki, M. Barański, N. Passilly, M. Wiemer, C. Jia, and J. Froemel, “3D micro-optical lens scanner made by multi-wafer bonding technology,” Proc. SPIE 8616, 861605 (2013).
[Crossref]

2012 (2)

T. Knieling, M. Shafi, W. Lang, and W. Benecke, “Microlens array production in a microtechnological dry etch and reflow process for display applications,” J. Eur. Opt. Soc.-, Rapid 7, 12007 (2012).
[Crossref]

M. Baranski, N. Passilly, J. Albero, and C. Gorecki, “Fabrication of 100% fill factor arrays of microlenses from silicon molds,” Proc. SPIE 8428, 84281G (2012).
[Crossref]

2011 (5)

J. Albero, S. Bargiel, N. Passilly, P. Dannberg, M. Stumpf, U. D. Zeitner, C. Rousselot, K. Gastinger, and C. Gorecki, “Micromachined array-type Mirau interferometer for parallel inspection of MEMS,” J. Micromech. Microeng. 21(6), 065005 (2011).
[Crossref]

C.-Y. Huang, W.-T. Hsiao, K.-C. Huang, K.-S. Chang, H.-Y. Chou, and C.-P. Chou, “Fabrication of a double-sided micro-lens array by a glass molding technique,” J. Micromech. Microeng. 21(8), 085020 (2011).
[Crossref]

V. Lin, H.-C. Wei, H.-T. Hsieh, and G.-D. J. Su, “An optical wavefront sensor based on a double layer microlens array,” Sensors (Basel) 11(12), 10293–10307 (2011).
[Crossref] [PubMed]

S. Scheiding, A. Y. Yi, A. Gebhardt, L. Li, S. Risse, R. Eberhardt, and A. Tünnermann, “Freeform manufacturing of a microoptical lens array on a steep curved substrate by use of a voice coil fast tool servo,” Opt. Express 19(24), 23938–23951 (2011).
[Crossref] [PubMed]

D. Nieto, J. Arines, C. Gomez-Reino, G. M. O’Connor, and M. T. Flores-Arias, “Fabrication and characterization of microlens arrays on soda-lime glass using a combination of laser direct-write and thermal reflow techniques,” J. Appl. Phys. 110(2), 023108 (2011).
[Crossref]

2010 (1)

J. Albero, C. Gorecki, L. Nieradko, B. Päivänranta, V. Gomez, H. Thienpont, and N. Passilly, “Matrixes of unconventional micro-optical components molded with etched silicon,” J. Eur. Opt. Soc.-, Rapid 5, 10001 (2010).
[Crossref]

2009 (5)

T. Kreuzberger, A. Harnisch, M. Helgert, L. Erdmann, and R. Brunner, “Sol–gel process to cast quartz glass microlens arrays,” Microelectron. Eng. 86(4-6), 1173–1175 (2009).
[Crossref]

D. Wu, Q.-D. Chen, L. G. Niu, J. Jiao, H. Xia, J.-F. Song, and H.-B. Sun, “100% fill-factor aspheric microlens arrays (AMLA) with sub-20-nm precision,” IEEE Photonic. Tech. L. 21(20), 1535–1537 (2009).
[Crossref]

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[Crossref]

D. Kuang, X. Zhang, M. Gui, and Z. Fang, “Hexagonal microlens array fabricated by direct laser writing and inductively coupled plasma etching on organic light emitting devices to enhance the outcoupling efficiency,” Appl. Opt. 48(5), 974–978 (2009).
[Crossref] [PubMed]

J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, H. Thienpont, J. Pietarinen, B. Päivänranta, and N. Passilly, “Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques,” Opt. Express 17(8), 6283–6292 (2009).
[Crossref] [PubMed]

2008 (2)

Y. Chen, A. Y. Yil, D. Yao, F. Klocke, and G. Pongs, “A reflow process for glass microlens array fabrication by use of precision compression molding,” J. Micromech. Microeng. 18(5), 055022 (2008).
[Crossref]

J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, and J. Pietarinen, “Si moulds for glass and polymer microlenses replication,” Proc. SPIE 6992, 69920A (2008).
[Crossref]

2007 (1)

C. T. Pan and C. H. Su, “Fabrication of gapless triangular micro-lens array,” Sensor Actuat, A-Phys. 134, 631–640 (2007).

2006 (1)

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A, Pure Appl. Opt. 8(7), 407–429 (2006).
[Crossref]

2004 (1)

H. Yang, C.-K. Chao, M.-K. Wei, and C.-P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14(8), 1197–1204 (2004).
[Crossref]

2003 (1)

2000 (2)

A. Y. Smuk and N. M. Lawandy, “Direct laser fabrication of dense microlens arrays in semiconductor-doped glass,” J. Appl. Phys. 87(8), 4026–4030 (2000).
[Crossref]

A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39(8), 2171–2176 (2000).
[Crossref]

1998 (2)

1995 (1)

1994 (1)

P. Savander, “Microlens arrays etched into glass and silicon,” Opt. Lasers Eng. 20(2), 97–107 (1994).
[Crossref]

1990 (1)

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1(8), 759–766 (1990).
[Crossref]

1988 (1)

1985 (1)

Albero, J.

J. Krauter, T. Boettcher, W. Osten, W. Lyda, N. Passilly, L. Froehly, S. Bargiel, J. Albero, S. Perrin, J. Lullin, and C. Gorecki, “Optical Design of a Vertically Integrated Array-type Mirau-based OCT system,” Proc. SPIE 9132, 91320L (2014).
[Crossref]

M. Baranski, S. Perrin, N. Passilly, L. Froehly, J. Albero, S. Bargiel, and C. Gorecki, “A simple method for quality evaluation of micro-optical components based on 3D IPSF measurement,” Opt. Express 22(11), 13202–13212 (2014).
[Crossref] [PubMed]

M. Baranski, N. Passilly, J. Albero, and C. Gorecki, “Fabrication of 100% fill factor arrays of microlenses from silicon molds,” Proc. SPIE 8428, 84281G (2012).
[Crossref]

J. Albero, S. Bargiel, N. Passilly, P. Dannberg, M. Stumpf, U. D. Zeitner, C. Rousselot, K. Gastinger, and C. Gorecki, “Micromachined array-type Mirau interferometer for parallel inspection of MEMS,” J. Micromech. Microeng. 21(6), 065005 (2011).
[Crossref]

J. Albero, C. Gorecki, L. Nieradko, B. Päivänranta, V. Gomez, H. Thienpont, and N. Passilly, “Matrixes of unconventional micro-optical components molded with etched silicon,” J. Eur. Opt. Soc.-, Rapid 5, 10001 (2010).
[Crossref]

J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, H. Thienpont, J. Pietarinen, B. Päivänranta, and N. Passilly, “Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques,” Opt. Express 17(8), 6283–6292 (2009).
[Crossref] [PubMed]

J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, and J. Pietarinen, “Si moulds for glass and polymer microlenses replication,” Proc. SPIE 6992, 69920A (2008).
[Crossref]

Arines, J.

D. Nieto, J. Arines, C. Gomez-Reino, G. M. O’Connor, and M. T. Flores-Arias, “Fabrication and characterization of microlens arrays on soda-lime glass using a combination of laser direct-write and thermal reflow techniques,” J. Appl. Phys. 110(2), 023108 (2011).
[Crossref]

Baranski, M.

M. Baranski, S. Perrin, N. Passilly, L. Froehly, J. Albero, S. Bargiel, and C. Gorecki, “A simple method for quality evaluation of micro-optical components based on 3D IPSF measurement,” Opt. Express 22(11), 13202–13212 (2014).
[Crossref] [PubMed]

S. Bargiel, C. Gorecki, M. Barański, N. Passilly, M. Wiemer, C. Jia, and J. Froemel, “3D micro-optical lens scanner made by multi-wafer bonding technology,” Proc. SPIE 8616, 861605 (2013).
[Crossref]

M. Baranski, N. Passilly, J. Albero, and C. Gorecki, “Fabrication of 100% fill factor arrays of microlenses from silicon molds,” Proc. SPIE 8428, 84281G (2012).
[Crossref]

Bargiel, S.

J. Krauter, T. Boettcher, W. Osten, W. Lyda, N. Passilly, L. Froehly, S. Bargiel, J. Albero, S. Perrin, J. Lullin, and C. Gorecki, “Optical Design of a Vertically Integrated Array-type Mirau-based OCT system,” Proc. SPIE 9132, 91320L (2014).
[Crossref]

M. Baranski, S. Perrin, N. Passilly, L. Froehly, J. Albero, S. Bargiel, and C. Gorecki, “A simple method for quality evaluation of micro-optical components based on 3D IPSF measurement,” Opt. Express 22(11), 13202–13212 (2014).
[Crossref] [PubMed]

S. Bargiel, C. Gorecki, M. Barański, N. Passilly, M. Wiemer, C. Jia, and J. Froemel, “3D micro-optical lens scanner made by multi-wafer bonding technology,” Proc. SPIE 8616, 861605 (2013).
[Crossref]

J. Albero, S. Bargiel, N. Passilly, P. Dannberg, M. Stumpf, U. D. Zeitner, C. Rousselot, K. Gastinger, and C. Gorecki, “Micromachined array-type Mirau interferometer for parallel inspection of MEMS,” J. Micromech. Microeng. 21(6), 065005 (2011).
[Crossref]

Beadie, G.

Bellman, R. H.

Benecke, W.

T. Knieling, M. Shafi, W. Lang, and W. Benecke, “Microlens array production in a microtechnological dry etch and reflow process for display applications,” J. Eur. Opt. Soc.-, Rapid 7, 12007 (2012).
[Crossref]

Bernt, H.

P. Merz, H. J. Quenzer, H. Bernt, B. Wagner, and M. Zoberbier, “A novel micromachining technology for structuring borosilicate glass substrates,” in Proceedings of IEEE Conference on Solid State Sensors, Actuators and Microsystems, (IEEE, 2003), pp. 258–261.
[Crossref]

Bian, H.

Boettcher, T.

J. Krauter, T. Boettcher, W. Osten, W. Lyda, N. Passilly, L. Froehly, S. Bargiel, J. Albero, S. Perrin, J. Lullin, and C. Gorecki, “Optical Design of a Vertically Integrated Array-type Mirau-based OCT system,” Proc. SPIE 9132, 91320L (2014).
[Crossref]

Borrelli, N. F.

Brunner, R.

T. Kreuzberger, A. Harnisch, M. Helgert, L. Erdmann, and R. Brunner, “Sol–gel process to cast quartz glass microlens arrays,” Microelectron. Eng. 86(4-6), 1173–1175 (2009).
[Crossref]

Bu, J.

Chai, Y. H.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[Crossref]

Chang, K.-S.

C.-Y. Huang, W.-T. Hsiao, K.-C. Huang, K.-S. Chang, H.-Y. Chou, and C.-P. Chou, “Fabrication of a double-sided micro-lens array by a glass molding technique,” J. Micromech. Microeng. 21(8), 085020 (2011).
[Crossref]

Chao, C.-K.

H. Yang, C.-K. Chao, M.-K. Wei, and C.-P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14(8), 1197–1204 (2004).
[Crossref]

Chen, F.

Chen, Q.-D.

D. Wu, Q.-D. Chen, L. G. Niu, J. Jiao, H. Xia, J.-F. Song, and H.-B. Sun, “100% fill-factor aspheric microlens arrays (AMLA) with sub-20-nm precision,” IEEE Photonic. Tech. L. 21(20), 1535–1537 (2009).
[Crossref]

Chen, S. J.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[Crossref]

Chen, Y.

Y. Chen, A. Y. Yil, D. Yao, F. Klocke, and G. Pongs, “A reflow process for glass microlens array fabrication by use of precision compression molding,” J. Micromech. Microeng. 18(5), 055022 (2008).
[Crossref]

Chou, C.-P.

C.-Y. Huang, W.-T. Hsiao, K.-C. Huang, K.-S. Chang, H.-Y. Chou, and C.-P. Chou, “Fabrication of a double-sided micro-lens array by a glass molding technique,” J. Micromech. Microeng. 21(8), 085020 (2011).
[Crossref]

Chou, H.-Y.

C.-Y. Huang, W.-T. Hsiao, K.-C. Huang, K.-S. Chang, H.-Y. Chou, and C.-P. Chou, “Fabrication of a double-sided micro-lens array by a glass molding technique,” J. Micromech. Microeng. 21(8), 085020 (2011).
[Crossref]

Connell, G. A.

Cox, R.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A, Pure Appl. Opt. 8(7), 407–429 (2006).
[Crossref]

Daly, D.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1(8), 759–766 (1990).
[Crossref]

Dannberg, P.

J. Albero, S. Bargiel, N. Passilly, P. Dannberg, M. Stumpf, U. D. Zeitner, C. Rousselot, K. Gastinger, and C. Gorecki, “Micromachined array-type Mirau interferometer for parallel inspection of MEMS,” J. Micromech. Microeng. 21(6), 065005 (2011).
[Crossref]

Davies, N.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1(8), 759–766 (1990).
[Crossref]

Deng, Z.

Du, G.

Eberhardt, R.

Erdmann, L.

T. Kreuzberger, A. Harnisch, M. Helgert, L. Erdmann, and R. Brunner, “Sol–gel process to cast quartz glass microlens arrays,” Microelectron. Eng. 86(4-6), 1173–1175 (2009).
[Crossref]

Fang, Z.

Flores-Arias, M. T.

D. Nieto, J. Arines, C. Gomez-Reino, G. M. O’Connor, and M. T. Flores-Arias, “Fabrication and characterization of microlens arrays on soda-lime glass using a combination of laser direct-write and thermal reflow techniques,” J. Appl. Phys. 110(2), 023108 (2011).
[Crossref]

Fritze, M.

Froehly, L.

J. Krauter, T. Boettcher, W. Osten, W. Lyda, N. Passilly, L. Froehly, S. Bargiel, J. Albero, S. Perrin, J. Lullin, and C. Gorecki, “Optical Design of a Vertically Integrated Array-type Mirau-based OCT system,” Proc. SPIE 9132, 91320L (2014).
[Crossref]

M. Baranski, S. Perrin, N. Passilly, L. Froehly, J. Albero, S. Bargiel, and C. Gorecki, “A simple method for quality evaluation of micro-optical components based on 3D IPSF measurement,” Opt. Express 22(11), 13202–13212 (2014).
[Crossref] [PubMed]

Froemel, J.

S. Bargiel, C. Gorecki, M. Barański, N. Passilly, M. Wiemer, C. Jia, and J. Froemel, “3D micro-optical lens scanner made by multi-wafer bonding technology,” Proc. SPIE 8616, 861605 (2013).
[Crossref]

Gastinger, K.

J. Albero, S. Bargiel, N. Passilly, P. Dannberg, M. Stumpf, U. D. Zeitner, C. Rousselot, K. Gastinger, and C. Gorecki, “Micromachined array-type Mirau interferometer for parallel inspection of MEMS,” J. Micromech. Microeng. 21(6), 065005 (2011).
[Crossref]

Gebhardt, A.

Gijs, M. A. M.

A. Sayah, V. K. Parashar, and M. A. M. Gijs, “Micro-replication of optical lenses in glass using a novel sol gel technology, in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (IEEE, 2002), pp. 516-519.
[Crossref]

Gomez, V.

J. Albero, C. Gorecki, L. Nieradko, B. Päivänranta, V. Gomez, H. Thienpont, and N. Passilly, “Matrixes of unconventional micro-optical components molded with etched silicon,” J. Eur. Opt. Soc.-, Rapid 5, 10001 (2010).
[Crossref]

J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, H. Thienpont, J. Pietarinen, B. Päivänranta, and N. Passilly, “Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques,” Opt. Express 17(8), 6283–6292 (2009).
[Crossref] [PubMed]

J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, and J. Pietarinen, “Si moulds for glass and polymer microlenses replication,” Proc. SPIE 6992, 69920A (2008).
[Crossref]

Gomez-Reino, C.

D. Nieto, J. Arines, C. Gomez-Reino, G. M. O’Connor, and M. T. Flores-Arias, “Fabrication and characterization of microlens arrays on soda-lime glass using a combination of laser direct-write and thermal reflow techniques,” J. Appl. Phys. 110(2), 023108 (2011).
[Crossref]

Gorecki, C.

J. Krauter, T. Boettcher, W. Osten, W. Lyda, N. Passilly, L. Froehly, S. Bargiel, J. Albero, S. Perrin, J. Lullin, and C. Gorecki, “Optical Design of a Vertically Integrated Array-type Mirau-based OCT system,” Proc. SPIE 9132, 91320L (2014).
[Crossref]

M. Baranski, S. Perrin, N. Passilly, L. Froehly, J. Albero, S. Bargiel, and C. Gorecki, “A simple method for quality evaluation of micro-optical components based on 3D IPSF measurement,” Opt. Express 22(11), 13202–13212 (2014).
[Crossref] [PubMed]

S. Bargiel, C. Gorecki, M. Barański, N. Passilly, M. Wiemer, C. Jia, and J. Froemel, “3D micro-optical lens scanner made by multi-wafer bonding technology,” Proc. SPIE 8616, 861605 (2013).
[Crossref]

M. Baranski, N. Passilly, J. Albero, and C. Gorecki, “Fabrication of 100% fill factor arrays of microlenses from silicon molds,” Proc. SPIE 8428, 84281G (2012).
[Crossref]

J. Albero, S. Bargiel, N. Passilly, P. Dannberg, M. Stumpf, U. D. Zeitner, C. Rousselot, K. Gastinger, and C. Gorecki, “Micromachined array-type Mirau interferometer for parallel inspection of MEMS,” J. Micromech. Microeng. 21(6), 065005 (2011).
[Crossref]

J. Albero, C. Gorecki, L. Nieradko, B. Päivänranta, V. Gomez, H. Thienpont, and N. Passilly, “Matrixes of unconventional micro-optical components molded with etched silicon,” J. Eur. Opt. Soc.-, Rapid 5, 10001 (2010).
[Crossref]

J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, H. Thienpont, J. Pietarinen, B. Päivänranta, and N. Passilly, “Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques,” Opt. Express 17(8), 6283–6292 (2009).
[Crossref] [PubMed]

J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, and J. Pietarinen, “Si moulds for glass and polymer microlenses replication,” Proc. SPIE 6992, 69920A (2008).
[Crossref]

Gui, M.

Ha, J.-G.

S. Yoo, J.-G. Ha, J.-Y. Jin, C.-H. Ji, and Y.-K. Kim, “Monolithically integrated glass microlens scanner using a thermal reflow process,” J. Micromech. Microeng. 23(6), 065012 (2013).
[Crossref]

Harnisch, A.

T. Kreuzberger, A. Harnisch, M. Helgert, L. Erdmann, and R. Brunner, “Sol–gel process to cast quartz glass microlens arrays,” Microelectron. Eng. 86(4-6), 1173–1175 (2009).
[Crossref]

He, M.

Helgert, M.

T. Kreuzberger, A. Harnisch, M. Helgert, L. Erdmann, and R. Brunner, “Sol–gel process to cast quartz glass microlens arrays,” Microelectron. Eng. 86(4-6), 1173–1175 (2009).
[Crossref]

Herzig, H. P.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A, Pure Appl. Opt. 8(7), 407–429 (2006).
[Crossref]

A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39(8), 2171–2176 (2000).
[Crossref]

Hou, X.

Hsiao, W.-T.

C.-Y. Huang, W.-T. Hsiao, K.-C. Huang, K.-S. Chang, H.-Y. Chou, and C.-P. Chou, “Fabrication of a double-sided micro-lens array by a glass molding technique,” J. Micromech. Microeng. 21(8), 085020 (2011).
[Crossref]

Hsieh, H.-T.

V. Lin, H.-C. Wei, H.-T. Hsieh, and G.-D. J. Su, “An optical wavefront sensor based on a double layer microlens array,” Sensors (Basel) 11(12), 10293–10307 (2011).
[Crossref] [PubMed]

Huang, C.-Y.

C.-Y. Huang, W.-T. Hsiao, K.-C. Huang, K.-S. Chang, H.-Y. Chou, and C.-P. Chou, “Fabrication of a double-sided micro-lens array by a glass molding technique,” J. Micromech. Microeng. 21(8), 085020 (2011).
[Crossref]

Huang, K.-C.

C.-Y. Huang, W.-T. Hsiao, K.-C. Huang, K.-S. Chang, H.-Y. Chou, and C.-P. Chou, “Fabrication of a double-sided micro-lens array by a glass molding technique,” J. Micromech. Microeng. 21(8), 085020 (2011).
[Crossref]

Hutley, M. C.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1(8), 759–766 (1990).
[Crossref]

Ji, C.-H.

S. Yoo, J.-G. Ha, J.-Y. Jin, C.-H. Ji, and Y.-K. Kim, “Monolithically integrated glass microlens scanner using a thermal reflow process,” J. Micromech. Microeng. 23(6), 065012 (2013).
[Crossref]

Jia, C.

S. Bargiel, C. Gorecki, M. Barański, N. Passilly, M. Wiemer, C. Jia, and J. Froemel, “3D micro-optical lens scanner made by multi-wafer bonding technology,” Proc. SPIE 8616, 861605 (2013).
[Crossref]

Jiang, L.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[Crossref]

Jiao, J.

D. Wu, Q.-D. Chen, L. G. Niu, J. Jiao, H. Xia, J.-F. Song, and H.-B. Sun, “100% fill-factor aspheric microlens arrays (AMLA) with sub-20-nm precision,” IEEE Photonic. Tech. L. 21(20), 1535–1537 (2009).
[Crossref]

Jin, J.-Y.

S. Yoo, J.-G. Ha, J.-Y. Jin, C.-H. Ji, and Y.-K. Kim, “Monolithically integrated glass microlens scanner using a thermal reflow process,” J. Micromech. Microeng. 23(6), 065012 (2013).
[Crossref]

Kanai, G.

Kim, Y.-K.

S. Yoo, J.-G. Ha, J.-Y. Jin, C.-H. Ji, and Y.-K. Kim, “Monolithically integrated glass microlens scanner using a thermal reflow process,” J. Micromech. Microeng. 23(6), 065012 (2013).
[Crossref]

Klocke, F.

Y. Chen, A. Y. Yil, D. Yao, F. Klocke, and G. Pongs, “A reflow process for glass microlens array fabrication by use of precision compression molding,” J. Micromech. Microeng. 18(5), 055022 (2008).
[Crossref]

Knieling, T.

T. Knieling, M. Shafi, W. Lang, and W. Benecke, “Microlens array production in a microtechnological dry etch and reflow process for display applications,” J. Eur. Opt. Soc.-, Rapid 7, 12007 (2012).
[Crossref]

Komachi, Y.

Krauter, J.

J. Krauter, T. Boettcher, W. Osten, W. Lyda, N. Passilly, L. Froehly, S. Bargiel, J. Albero, S. Perrin, J. Lullin, and C. Gorecki, “Optical Design of a Vertically Integrated Array-type Mirau-based OCT system,” Proc. SPIE 9132, 91320L (2014).
[Crossref]

Kreuzberger, T.

T. Kreuzberger, A. Harnisch, M. Helgert, L. Erdmann, and R. Brunner, “Sol–gel process to cast quartz glass microlens arrays,” Microelectron. Eng. 86(4-6), 1173–1175 (2009).
[Crossref]

Kuang, D.

Kudryashov, V.

Lang, W.

T. Knieling, M. Shafi, W. Lang, and W. Benecke, “Microlens array production in a microtechnological dry etch and reflow process for display applications,” J. Eur. Opt. Soc.-, Rapid 7, 12007 (2012).
[Crossref]

Lawandy, N. M.

A. Y. Smuk and N. M. Lawandy, “Direct laser fabrication of dense microlens arrays in semiconductor-doped glass,” J. Appl. Phys. 87(8), 4026–4030 (2000).
[Crossref]

G. Beadie and N. M. Lawandy, “Single-step laser fabrication of refractive microlenses in semiconductor-doped glasses,” Opt. Lett. 20(21), 2153–2155 (1995).
[Crossref] [PubMed]

Li, L.

Lin, C. H.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[Crossref]

Lin, C.-P.

H. Yang, C.-K. Chao, M.-K. Wei, and C.-P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14(8), 1197–1204 (2004).
[Crossref]

Lin, V.

V. Lin, H.-C. Wei, H.-T. Hsieh, and G.-D. J. Su, “An optical wavefront sensor based on a double layer microlens array,” Sensors (Basel) 11(12), 10293–10307 (2011).
[Crossref] [PubMed]

Lullin, J.

J. Krauter, T. Boettcher, W. Osten, W. Lyda, N. Passilly, L. Froehly, S. Bargiel, J. Albero, S. Perrin, J. Lullin, and C. Gorecki, “Optical Design of a Vertically Integrated Array-type Mirau-based OCT system,” Proc. SPIE 9132, 91320L (2014).
[Crossref]

Lyda, W.

J. Krauter, T. Boettcher, W. Osten, W. Lyda, N. Passilly, L. Froehly, S. Bargiel, J. Albero, S. Perrin, J. Lullin, and C. Gorecki, “Optical Design of a Vertically Integrated Array-type Mirau-based OCT system,” Proc. SPIE 9132, 91320L (2014).
[Crossref]

Merz, P.

P. Merz, H. J. Quenzer, H. Bernt, B. Wagner, and M. Zoberbier, “A novel micromachining technology for structuring borosilicate glass substrates,” in Proceedings of IEEE Conference on Solid State Sensors, Actuators and Microsystems, (IEEE, 2003), pp. 258–261.
[Crossref]

Merz, R.

A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39(8), 2171–2176 (2000).
[Crossref]

Miyashita, T.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A, Pure Appl. Opt. 8(7), 407–429 (2006).
[Crossref]

Morgan, W. L.

Morse, D. L.

Naessens, K.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A, Pure Appl. Opt. 8(7), 407–429 (2006).
[Crossref]

Ngo, N. Q.

Nieradko, L.

J. Albero, C. Gorecki, L. Nieradko, B. Päivänranta, V. Gomez, H. Thienpont, and N. Passilly, “Matrixes of unconventional micro-optical components molded with etched silicon,” J. Eur. Opt. Soc.-, Rapid 5, 10001 (2010).
[Crossref]

J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, H. Thienpont, J. Pietarinen, B. Päivänranta, and N. Passilly, “Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques,” Opt. Express 17(8), 6283–6292 (2009).
[Crossref] [PubMed]

J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, and J. Pietarinen, “Si moulds for glass and polymer microlenses replication,” Proc. SPIE 6992, 69920A (2008).
[Crossref]

Nieto, D.

D. Nieto, J. Arines, C. Gomez-Reino, G. M. O’Connor, and M. T. Flores-Arias, “Fabrication and characterization of microlens arrays on soda-lime glass using a combination of laser direct-write and thermal reflow techniques,” J. Appl. Phys. 110(2), 023108 (2011).
[Crossref]

Niu, L. G.

D. Wu, Q.-D. Chen, L. G. Niu, J. Jiao, H. Xia, J.-F. Song, and H.-B. Sun, “100% fill-factor aspheric microlens arrays (AMLA) with sub-20-nm precision,” IEEE Photonic. Tech. L. 21(20), 1535–1537 (2009).
[Crossref]

O’Connor, G. M.

D. Nieto, J. Arines, C. Gomez-Reino, G. M. O’Connor, and M. T. Flores-Arias, “Fabrication and characterization of microlens arrays on soda-lime glass using a combination of laser direct-write and thermal reflow techniques,” J. Appl. Phys. 110(2), 023108 (2011).
[Crossref]

Ossmann, C.

A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39(8), 2171–2176 (2000).
[Crossref]

Osten, W.

J. Krauter, T. Boettcher, W. Osten, W. Lyda, N. Passilly, L. Froehly, S. Bargiel, J. Albero, S. Perrin, J. Lullin, and C. Gorecki, “Optical Design of a Vertically Integrated Array-type Mirau-based OCT system,” Proc. SPIE 9132, 91320L (2014).
[Crossref]

Ottevaere, H.

J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, H. Thienpont, J. Pietarinen, B. Päivänranta, and N. Passilly, “Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques,” Opt. Express 17(8), 6283–6292 (2009).
[Crossref] [PubMed]

J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, and J. Pietarinen, “Si moulds for glass and polymer microlenses replication,” Proc. SPIE 6992, 69920A (2008).
[Crossref]

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A, Pure Appl. Opt. 8(7), 407–429 (2006).
[Crossref]

Päivänranta, B.

J. Albero, C. Gorecki, L. Nieradko, B. Päivänranta, V. Gomez, H. Thienpont, and N. Passilly, “Matrixes of unconventional micro-optical components molded with etched silicon,” J. Eur. Opt. Soc.-, Rapid 5, 10001 (2010).
[Crossref]

J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, H. Thienpont, J. Pietarinen, B. Päivänranta, and N. Passilly, “Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques,” Opt. Express 17(8), 6283–6292 (2009).
[Crossref] [PubMed]

Pan, C. T.

C. T. Pan and C. H. Su, “Fabrication of gapless triangular micro-lens array,” Sensor Actuat, A-Phys. 134, 631–640 (2007).

Parashar, V. K.

A. Sayah, V. K. Parashar, and M. A. M. Gijs, “Micro-replication of optical lenses in glass using a novel sol gel technology, in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (IEEE, 2002), pp. 516-519.
[Crossref]

Passilly, N.

J. Krauter, T. Boettcher, W. Osten, W. Lyda, N. Passilly, L. Froehly, S. Bargiel, J. Albero, S. Perrin, J. Lullin, and C. Gorecki, “Optical Design of a Vertically Integrated Array-type Mirau-based OCT system,” Proc. SPIE 9132, 91320L (2014).
[Crossref]

M. Baranski, S. Perrin, N. Passilly, L. Froehly, J. Albero, S. Bargiel, and C. Gorecki, “A simple method for quality evaluation of micro-optical components based on 3D IPSF measurement,” Opt. Express 22(11), 13202–13212 (2014).
[Crossref] [PubMed]

S. Bargiel, C. Gorecki, M. Barański, N. Passilly, M. Wiemer, C. Jia, and J. Froemel, “3D micro-optical lens scanner made by multi-wafer bonding technology,” Proc. SPIE 8616, 861605 (2013).
[Crossref]

M. Baranski, N. Passilly, J. Albero, and C. Gorecki, “Fabrication of 100% fill factor arrays of microlenses from silicon molds,” Proc. SPIE 8428, 84281G (2012).
[Crossref]

J. Albero, S. Bargiel, N. Passilly, P. Dannberg, M. Stumpf, U. D. Zeitner, C. Rousselot, K. Gastinger, and C. Gorecki, “Micromachined array-type Mirau interferometer for parallel inspection of MEMS,” J. Micromech. Microeng. 21(6), 065005 (2011).
[Crossref]

J. Albero, C. Gorecki, L. Nieradko, B. Päivänranta, V. Gomez, H. Thienpont, and N. Passilly, “Matrixes of unconventional micro-optical components molded with etched silicon,” J. Eur. Opt. Soc.-, Rapid 5, 10001 (2010).
[Crossref]

J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, H. Thienpont, J. Pietarinen, B. Päivänranta, and N. Passilly, “Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques,” Opt. Express 17(8), 6283–6292 (2009).
[Crossref] [PubMed]

Perrin, S.

M. Baranski, S. Perrin, N. Passilly, L. Froehly, J. Albero, S. Bargiel, and C. Gorecki, “A simple method for quality evaluation of micro-optical components based on 3D IPSF measurement,” Opt. Express 22(11), 13202–13212 (2014).
[Crossref] [PubMed]

J. Krauter, T. Boettcher, W. Osten, W. Lyda, N. Passilly, L. Froehly, S. Bargiel, J. Albero, S. Perrin, J. Lullin, and C. Gorecki, “Optical Design of a Vertically Integrated Array-type Mirau-based OCT system,” Proc. SPIE 9132, 91320L (2014).
[Crossref]

Pietarinen, J.

Pongs, G.

Y. Chen, A. Y. Yil, D. Yao, F. Klocke, and G. Pongs, “A reflow process for glass microlens array fabrication by use of precision compression molding,” J. Micromech. Microeng. 18(5), 055022 (2008).
[Crossref]

Popovic, Z. D.

Quenzer, H. J.

P. Merz, H. J. Quenzer, H. Bernt, B. Wagner, and M. Zoberbier, “A novel micromachining technology for structuring borosilicate glass substrates,” in Proceedings of IEEE Conference on Solid State Sensors, Actuators and Microsystems, (IEEE, 2003), pp. 258–261.
[Crossref]

Risse, S.

Rousselot, C.

J. Albero, S. Bargiel, N. Passilly, P. Dannberg, M. Stumpf, U. D. Zeitner, C. Rousselot, K. Gastinger, and C. Gorecki, “Micromachined array-type Mirau interferometer for parallel inspection of MEMS,” J. Micromech. Microeng. 21(6), 065005 (2011).
[Crossref]

Savander, P.

P. Savander, “Microlens arrays etched into glass and silicon,” Opt. Lasers Eng. 20(2), 97–107 (1994).
[Crossref]

Sayah, A.

A. Sayah, V. K. Parashar, and M. A. M. Gijs, “Micro-replication of optical lenses in glass using a novel sol gel technology, in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (IEEE, 2002), pp. 516-519.
[Crossref]

Scheiding, S.

Schilling, A.

A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39(8), 2171–2176 (2000).
[Crossref]

Shafi, M.

T. Knieling, M. Shafi, W. Lang, and W. Benecke, “Microlens array production in a microtechnological dry etch and reflow process for display applications,” J. Eur. Opt. Soc.-, Rapid 7, 12007 (2012).
[Crossref]

Si, J.

Smuk, A. Y.

A. Y. Smuk and N. M. Lawandy, “Direct laser fabrication of dense microlens arrays in semiconductor-doped glass,” J. Appl. Phys. 87(8), 4026–4030 (2000).
[Crossref]

Song, J.-F.

D. Wu, Q.-D. Chen, L. G. Niu, J. Jiao, H. Xia, J.-F. Song, and H.-B. Sun, “100% fill-factor aspheric microlens arrays (AMLA) with sub-20-nm precision,” IEEE Photonic. Tech. L. 21(20), 1535–1537 (2009).
[Crossref]

Sprague, R. A.

Stern, M. B.

Stevens, R. F.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1(8), 759–766 (1990).
[Crossref]

Stumpf, M.

J. Albero, S. Bargiel, N. Passilly, P. Dannberg, M. Stumpf, U. D. Zeitner, C. Rousselot, K. Gastinger, and C. Gorecki, “Micromachined array-type Mirau interferometer for parallel inspection of MEMS,” J. Micromech. Microeng. 21(6), 065005 (2011).
[Crossref]

Su, C. H.

C. T. Pan and C. H. Su, “Fabrication of gapless triangular micro-lens array,” Sensor Actuat, A-Phys. 134, 631–640 (2007).

Su, G.-D. J.

V. Lin, H.-C. Wei, H.-T. Hsieh, and G.-D. J. Su, “An optical wavefront sensor based on a double layer microlens array,” Sensors (Basel) 11(12), 10293–10307 (2011).
[Crossref] [PubMed]

Sun, H.-B.

D. Wu, Q.-D. Chen, L. G. Niu, J. Jiao, H. Xia, J.-F. Song, and H.-B. Sun, “100% fill-factor aspheric microlens arrays (AMLA) with sub-20-nm precision,” IEEE Photonic. Tech. L. 21(20), 1535–1537 (2009).
[Crossref]

Taghizadeh, M.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A, Pure Appl. Opt. 8(7), 407–429 (2006).
[Crossref]

Thienpont, H.

J. Albero, C. Gorecki, L. Nieradko, B. Päivänranta, V. Gomez, H. Thienpont, and N. Passilly, “Matrixes of unconventional micro-optical components molded with etched silicon,” J. Eur. Opt. Soc.-, Rapid 5, 10001 (2010).
[Crossref]

J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, H. Thienpont, J. Pietarinen, B. Päivänranta, and N. Passilly, “Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques,” Opt. Express 17(8), 6283–6292 (2009).
[Crossref] [PubMed]

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A, Pure Appl. Opt. 8(7), 407–429 (2006).
[Crossref]

Tsai, H. L.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[Crossref]

Tünnermann, A.

Völkel, R.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A, Pure Appl. Opt. 8(7), 407–429 (2006).
[Crossref]

Wagner, B.

P. Merz, H. J. Quenzer, H. Bernt, B. Wagner, and M. Zoberbier, “A novel micromachining technology for structuring borosilicate glass substrates,” in Proceedings of IEEE Conference on Solid State Sensors, Actuators and Microsystems, (IEEE, 2003), pp. 258–261.
[Crossref]

Wakaki, M.

Wei, H.-C.

V. Lin, H.-C. Wei, H.-T. Hsieh, and G.-D. J. Su, “An optical wavefront sensor based on a double layer microlens array,” Sensors (Basel) 11(12), 10293–10307 (2011).
[Crossref] [PubMed]

Wei, M.-K.

H. Yang, C.-K. Chao, M.-K. Wei, and C.-P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14(8), 1197–1204 (2004).
[Crossref]

Wiemer, M.

S. Bargiel, C. Gorecki, M. Barański, N. Passilly, M. Wiemer, C. Jia, and J. Froemel, “3D micro-optical lens scanner made by multi-wafer bonding technology,” Proc. SPIE 8616, 861605 (2013).
[Crossref]

Woo, H. J.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A, Pure Appl. Opt. 8(7), 407–429 (2006).
[Crossref]

Wu, D.

D. Wu, Q.-D. Chen, L. G. Niu, J. Jiao, H. Xia, J.-F. Song, and H.-B. Sun, “100% fill-factor aspheric microlens arrays (AMLA) with sub-20-nm precision,” IEEE Photonic. Tech. L. 21(20), 1535–1537 (2009).
[Crossref]

Wyatt, P. W.

Xia, H.

D. Wu, Q.-D. Chen, L. G. Niu, J. Jiao, H. Xia, J.-F. Song, and H.-B. Sun, “100% fill-factor aspheric microlens arrays (AMLA) with sub-20-nm precision,” IEEE Photonic. Tech. L. 21(20), 1535–1537 (2009).
[Crossref]

Xiao, H.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[Crossref]

Yang, H.

H. Yang, C.-K. Chao, M.-K. Wei, and C.-P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14(8), 1197–1204 (2004).
[Crossref]

Yang, Q.

Yao, D.

Y. Chen, A. Y. Yil, D. Yao, F. Klocke, and G. Pongs, “A reflow process for glass microlens array fabrication by use of precision compression molding,” J. Micromech. Microeng. 18(5), 055022 (2008).
[Crossref]

Yi, A. Y.

Yil, A. Y.

Y. Chen, A. Y. Yil, D. Yao, F. Klocke, and G. Pongs, “A reflow process for glass microlens array fabrication by use of precision compression molding,” J. Micromech. Microeng. 18(5), 055022 (2008).
[Crossref]

Yoo, S.

S. Yoo, J.-G. Ha, J.-Y. Jin, C.-H. Ji, and Y.-K. Kim, “Monolithically integrated glass microlens scanner using a thermal reflow process,” J. Micromech. Microeng. 23(6), 065012 (2013).
[Crossref]

Yuan, X.-C.

Zeitner, U. D.

J. Albero, S. Bargiel, N. Passilly, P. Dannberg, M. Stumpf, U. D. Zeitner, C. Rousselot, K. Gastinger, and C. Gorecki, “Micromachined array-type Mirau interferometer for parallel inspection of MEMS,” J. Micromech. Microeng. 21(6), 065005 (2011).
[Crossref]

Zhang, X.

Zoberbier, M.

P. Merz, H. J. Quenzer, H. Bernt, B. Wagner, and M. Zoberbier, “A novel micromachining technology for structuring borosilicate glass substrates,” in Proceedings of IEEE Conference on Solid State Sensors, Actuators and Microsystems, (IEEE, 2003), pp. 258–261.
[Crossref]

Appl. Opt. (4)

Appl. Phys., A Mater. Sci. Process. (1)

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[Crossref]

IEEE Photonic. Tech. L. (1)

D. Wu, Q.-D. Chen, L. G. Niu, J. Jiao, H. Xia, J.-F. Song, and H.-B. Sun, “100% fill-factor aspheric microlens arrays (AMLA) with sub-20-nm precision,” IEEE Photonic. Tech. L. 21(20), 1535–1537 (2009).
[Crossref]

J. Appl. Phys. (2)

D. Nieto, J. Arines, C. Gomez-Reino, G. M. O’Connor, and M. T. Flores-Arias, “Fabrication and characterization of microlens arrays on soda-lime glass using a combination of laser direct-write and thermal reflow techniques,” J. Appl. Phys. 110(2), 023108 (2011).
[Crossref]

A. Y. Smuk and N. M. Lawandy, “Direct laser fabrication of dense microlens arrays in semiconductor-doped glass,” J. Appl. Phys. 87(8), 4026–4030 (2000).
[Crossref]

J. Eur. Opt. Soc.-, Rapid (2)

J. Albero, C. Gorecki, L. Nieradko, B. Päivänranta, V. Gomez, H. Thienpont, and N. Passilly, “Matrixes of unconventional micro-optical components molded with etched silicon,” J. Eur. Opt. Soc.-, Rapid 5, 10001 (2010).
[Crossref]

T. Knieling, M. Shafi, W. Lang, and W. Benecke, “Microlens array production in a microtechnological dry etch and reflow process for display applications,” J. Eur. Opt. Soc.-, Rapid 7, 12007 (2012).
[Crossref]

J. Micromech. Microeng. (5)

S. Yoo, J.-G. Ha, J.-Y. Jin, C.-H. Ji, and Y.-K. Kim, “Monolithically integrated glass microlens scanner using a thermal reflow process,” J. Micromech. Microeng. 23(6), 065012 (2013).
[Crossref]

J. Albero, S. Bargiel, N. Passilly, P. Dannberg, M. Stumpf, U. D. Zeitner, C. Rousselot, K. Gastinger, and C. Gorecki, “Micromachined array-type Mirau interferometer for parallel inspection of MEMS,” J. Micromech. Microeng. 21(6), 065005 (2011).
[Crossref]

Y. Chen, A. Y. Yil, D. Yao, F. Klocke, and G. Pongs, “A reflow process for glass microlens array fabrication by use of precision compression molding,” J. Micromech. Microeng. 18(5), 055022 (2008).
[Crossref]

C.-Y. Huang, W.-T. Hsiao, K.-C. Huang, K.-S. Chang, H.-Y. Chou, and C.-P. Chou, “Fabrication of a double-sided micro-lens array by a glass molding technique,” J. Micromech. Microeng. 21(8), 085020 (2011).
[Crossref]

H. Yang, C.-K. Chao, M.-K. Wei, and C.-P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14(8), 1197–1204 (2004).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A, Pure Appl. Opt. 8(7), 407–429 (2006).
[Crossref]

Meas. Sci. Technol. (1)

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1(8), 759–766 (1990).
[Crossref]

Microelectron. Eng. (1)

T. Kreuzberger, A. Harnisch, M. Helgert, L. Erdmann, and R. Brunner, “Sol–gel process to cast quartz glass microlens arrays,” Microelectron. Eng. 86(4-6), 1173–1175 (2009).
[Crossref]

Opt. Eng. (1)

A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39(8), 2171–2176 (2000).
[Crossref]

Opt. Express (3)

Opt. Lasers Eng. (1)

P. Savander, “Microlens arrays etched into glass and silicon,” Opt. Lasers Eng. 20(2), 97–107 (1994).
[Crossref]

Opt. Lett. (4)

Proc. SPIE (4)

S. Bargiel, C. Gorecki, M. Barański, N. Passilly, M. Wiemer, C. Jia, and J. Froemel, “3D micro-optical lens scanner made by multi-wafer bonding technology,” Proc. SPIE 8616, 861605 (2013).
[Crossref]

J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, and J. Pietarinen, “Si moulds for glass and polymer microlenses replication,” Proc. SPIE 6992, 69920A (2008).
[Crossref]

J. Krauter, T. Boettcher, W. Osten, W. Lyda, N. Passilly, L. Froehly, S. Bargiel, J. Albero, S. Perrin, J. Lullin, and C. Gorecki, “Optical Design of a Vertically Integrated Array-type Mirau-based OCT system,” Proc. SPIE 9132, 91320L (2014).
[Crossref]

M. Baranski, N. Passilly, J. Albero, and C. Gorecki, “Fabrication of 100% fill factor arrays of microlenses from silicon molds,” Proc. SPIE 8428, 84281G (2012).
[Crossref]

Sensor Actuat, A-Phys. (1)

C. T. Pan and C. H. Su, “Fabrication of gapless triangular micro-lens array,” Sensor Actuat, A-Phys. 134, 631–640 (2007).

Sensors (Basel) (1)

V. Lin, H.-C. Wei, H.-T. Hsieh, and G.-D. J. Su, “An optical wavefront sensor based on a double layer microlens array,” Sensors (Basel) 11(12), 10293–10307 (2011).
[Crossref] [PubMed]

Other (7)

A. Moini, “Image Sensor Architectures,” in Smart Cameras, A. N. Belbachir, ed. (Springer, 2013).

J. A. Dziuban, “Bonding” in Bonding in Microsystem Technology, K. Itoh, T. Lee, T. Sakurai, W. M. C. Sansen, D. Schmitt-Landsiedel, ed. (Springer-Verlag, 2006).

P. Merz, H. J. Quenzer, H. Bernt, B. Wagner, and M. Zoberbier, “A novel micromachining technology for structuring borosilicate glass substrates,” in Proceedings of IEEE Conference on Solid State Sensors, Actuators and Microsystems, (IEEE, 2003), pp. 258–261.
[Crossref]

Thermal properties of Borofloat®33 in http://www.schott.com/borofloat/english/attribute/thermic/index.html

A. Sayah, V. K. Parashar, and M. A. M. Gijs, “Micro-replication of optical lenses in glass using a novel sol gel technology, in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (IEEE, 2002), pp. 516-519.
[Crossref]

Borofloat®33 Temperature dependence of the viscosity in http://www.schott.com/borofloat/english/attribute/thermic/index.html

H. Scholze, Glass: Nature, Structure and Properties (Springer-Verlag, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Glass millimeter-sized lenses process flowchart at wafer level.

Fig. 2
Fig. 2

Microfabricated glass lenses, a) completely released by wet etching and surrounded by a silicon frame, b) silicon is selectively eliminated by grinding and polishing for vertical integration purposes. Lenses on both arrays are the same size.

Fig. 3
Fig. 3

a) Measured sag as a function of time for different glass reflow temperatures. All groups of values are linearly fitted; b) image of the transverse cut of a lens on a 6x6 matrix after glass reflow and prior to the grinding and polishing of its backside, and a detailed view of the 100 µm-wide Si ring and the piston effect, with the radius of curvature varying near the lenses’ edge; c) percentage of the maximum diameter of fabricated lenses providing a certain level of optical performances as a function of their sag.

Fig. 4
Fig. 4

IPSF measurement of the beam near the focal plane of lenses having sag of 80, 115, 150 and 180 µm (L1 to L4, respectively), each one belonging to 6x6 independent matrices: a) transverse beam profiles in the focal plane and b) false color longitudinal profiles of the same beams (range of the vertical scale is 50 µm for each image).

Fig. 5
Fig. 5

Refraction index variation of L5 after thermal processing of glass inside the silicon cavity, a) transverse profile variation of the phase retrieved from the 3D IPSF compared to the estimated phase profile obtained from the topography, the latter considering a constant refraction index value measured at the lens’ edge nborder.; b) 2D map of the refraction index.

Fig. 6
Fig. 6

Measured 2D MTF of glass millimeter-sized lenses in different situations, a) single item, b) square array with applied compensation strategies and c) square array without compensation. Vertical and horizontal axes represent resolved frequencies, normalized to 2NA/ λ. Contours are traced at contrasts equal to 0.1, 0.25, 0.4, 0.55, 0.7 and 0.85.

Tables (1)

Tables Icon

Table 1 Measured and calculated values of FWHM.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

NA 2D f'
FWH M geo =0.51 λ NA .
f'= ROC (n1) ,

Metrics