Abstract

We propose and demonstrate an ultrabroad terahertz (THz) bandpass filter (BPF) by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption and transmission bands, into a unit cell. With proper structural design of each HMM waveguide to control the absorption and transmission bands, we numerically demonstrate the designed BPF is capable of operating with a broad passband in the THz domain. A typical TM-polarized HMM BPF has a peak transmission of 37% at 3.3 THz with the passband bandwidth of 2.2 THz ranging from 2.97 to 5.17 THz. The co-designed three-dimensional HMM BPF also shows the capability of operating with independence to the polarization of incident light because of the structural symmetry and has sharp bandedge transitions of 22.6 and 17.6 dB/THz to the stop bands, respectively. The presented results here hold great promise for developing practical THz BPF with various applications in THz field.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
GaN-based metamaterial terahertz bandpass filter design: tunability and ultra-broad passband attainment

M. Khodaee, M. Banakermani, and H. Baghban
Appl. Opt. 54(29) 8617-8624 (2015)

Highly Selective Terahertz Bandpass Filters Based on Trapped Mode Excitation

Oliver Paul, René Beigang, and Marco Rahm
Opt. Express 17(21) 18590-18595 (2009)

Manipulating light polarizations with a hyperbolic metamaterial waveguide

Hua Zhu, Xiang Yin, Lin Chen, Zhongshu Zhu, and Xun Li
Opt. Lett. 40(20) 4595-4598 (2015)

References

  • View by:
  • |
  • |
  • |

  1. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [Crossref] [PubMed]
  2. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
    [Crossref] [PubMed]
  3. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
    [Crossref] [PubMed]
  4. H. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
    [Crossref]
  5. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
    [Crossref] [PubMed]
  6. A. C. Strikwerda, M. Zalkovskij, D. L. Lorenzen, A. Krabbe, A. V. Lavrinenko, and P. U. Jepsen, “Metamaterial composite bandpass filter with an ultra-broadband rejection bandwidth of up to 240 terahertz,” Appl. Phys. Lett. 104(19), 191103 (2014).
    [Crossref]
  7. J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
    [Crossref]
  8. A. Dobroiu, C. Otani, and K. Kawase, “Terahertz-wave sources and imaging applications,” Meas. Sci. Technol. 17(11), R161–R174 (2006).
    [Crossref]
  9. M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” in Terahertz for Military and Security Applications, R. J. Hwu and D. L. Woolard, eds, Proc. SPIE 5070, 44–52 (2003).
  10. A. M. Melo, M. A. Kornberg, P. Kaufmann, M. H. Piazzetta, E. C. Bortolucci, M. B. Zakia, O. H. Bauer, A. Poglitsch, and A. M. da Silva, “Metal mesh resonant filters for terahertz frequencies,” Appl. Opt. 47(32), 6064–6069 (2008).
    [Crossref] [PubMed]
  11. W. Withayachumnankul, B. M. Fischer, and D. Abbott, “Quarter-wavelength multilayer interference filter for terahertz waves,” Opt. Commun. 281(9), 2374–2379 (2008).
    [Crossref]
  12. R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97(13), 131106 (2010).
    [Crossref]
  13. J. He, P. Liu, Y. He, and Z. Hong, “Narrow bandpass tunable terahertz filter based on photonic crystal cavity,” Appl. Opt. 51(6), 776–779 (2012).
    [Crossref] [PubMed]
  14. O. Paul, R. Beigang, and M. Rahm, “Highly selective terahertz bandpass filters based on trapped mode excitation,” Opt. Express 17(21), 18590–18595 (2009).
    [Crossref] [PubMed]
  15. N. Jin and J. S. Li, “Terahertz wave bandpass filter based on metamaterials,” Microw. Opt. Technol. Lett. 53(8), 1858–1860 (2011).
    [Crossref]
  16. N. Born, M. Reuter, M. Koch, and M. Scheller, “High-Q terahertz bandpass filters based on coherently interfering metasurface reflections,” Opt. Lett. 38(6), 908–910 (2013).
    [Crossref] [PubMed]
  17. Y. Zhu, S. Vegesna, Y. Zhao, V. Kuryatkov, M. Holtz, Z. Fan, M. Saed, and A. A. Bernussi, “Tunable dual-band terahertz metamaterial bandpass filters,” Opt. Lett. 38(14), 2382–2384 (2013).
    [Crossref] [PubMed]
  18. X. Zhang, J. Gu, W. Cao, J. Han, A. Lakhtakia, and W. Zhang, “Bilayer-fish-scale ultrabroad terahertz bandpass filter,” Opt. Lett. 37(5), 906–908 (2012).
    [Crossref] [PubMed]
  19. Y. Chiang, C. Yang, Y. Yang, C. Pan, and T. Yen, “An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial,” Appl. Phys. Lett. 99(19), 191909 (2011).
    [Crossref]
  20. T. T. Yeh, S. Genovesi, A. Monorchio, E. Prati, F. Costa, T. Y. Huang, and T. J. Yen, “Ultra-broad and sharp-transition bandpass terahertz filters by hybridizing multiple resonances mode in monolithic metamaterials,” Opt. Express 20(7), 7580–7589 (2012).
    [Crossref] [PubMed]
  21. M. Lu, W. Li, and E. R. Brown, “Second-order bandpass terahertz filter achieved by multilayer complementary metamaterial structures,” Opt. Lett. 36(7), 1071–1073 (2011).
    [Crossref] [PubMed]
  22. H. N. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
    [Crossref] [PubMed]
  23. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
    [Crossref] [PubMed]
  24. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
    [Crossref] [PubMed]
  25. H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep. 3, 1249 (2013).
    [Crossref] [PubMed]
  26. V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71(20), 201101 (2005).
    [Crossref]
  27. L. V. Alekseyev and E. Narimanov, “Slow light and 3D imaging with non-magnetic negative index systems,” Opt. Express 14(23), 11184–11193 (2006).
    [Crossref] [PubMed]
  28. L. Chen and G. P. Wang, “Pyramid-shaped hyperlenses for three-dimensional subdiffraction optical imaging,” Opt. Express 17(5), 3903–3912 (2009).
    [Crossref] [PubMed]
  29. T. Zhang, L. Chen, and X. Li, “Graphene-based tunable broadband hyperlens for far-field subdiffraction imaging at mid-infrared frequencies,” Opt. Express 21(18), 20888–20899 (2013).
    [Crossref] [PubMed]
  30. C. Rizza, A. Ciattoni, E. Spinozzi, and L. Columbo, “Terahertz active spatial filtering through optically tunable hyperbolic metamaterials,” Opt. Lett. 37(16), 3345–3347 (2012).
    [Crossref] [PubMed]
  31. D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2014).
    [Crossref] [PubMed]
  32. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  33. K. Kunc and R. Resta, “External fields in the self-consistent theory of electronic states: a new method for direct evaluation of macroscopic and microscopic dielectric response,” Phys. Rev. Lett. 51(8), 686–689 (1983).
    [Crossref]
  34. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
    [Crossref]
  35. Y. Jin, G. Kim, and S. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49(2), 513–517 (2006).
  36. J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and Theory of the Broadband Absorption by a Tapered Hyperbolic Metamaterial Array,” ACS Photon. 1(7), 618–624 (2014).
    [Crossref]
  37. S. He, F. Ding, L. Mo, and F. Bao, “Light Absorber with an Ultra-Broad Flat Band Based on Multi-Sized Slow-Wave Hyperbolic Metamaterial Thin-Films,” Prog. Electromagnetics Res. 147, 69–79 (2014).
    [Crossref]

2014 (4)

A. C. Strikwerda, M. Zalkovskij, D. L. Lorenzen, A. Krabbe, A. V. Lavrinenko, and P. U. Jepsen, “Metamaterial composite bandpass filter with an ultra-broadband rejection bandwidth of up to 240 terahertz,” Appl. Phys. Lett. 104(19), 191103 (2014).
[Crossref]

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2014).
[Crossref] [PubMed]

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and Theory of the Broadband Absorption by a Tapered Hyperbolic Metamaterial Array,” ACS Photon. 1(7), 618–624 (2014).
[Crossref]

S. He, F. Ding, L. Mo, and F. Bao, “Light Absorber with an Ultra-Broad Flat Band Based on Multi-Sized Slow-Wave Hyperbolic Metamaterial Thin-Films,” Prog. Electromagnetics Res. 147, 69–79 (2014).
[Crossref]

2013 (5)

2012 (6)

2011 (3)

M. Lu, W. Li, and E. R. Brown, “Second-order bandpass terahertz filter achieved by multilayer complementary metamaterial structures,” Opt. Lett. 36(7), 1071–1073 (2011).
[Crossref] [PubMed]

N. Jin and J. S. Li, “Terahertz wave bandpass filter based on metamaterials,” Microw. Opt. Technol. Lett. 53(8), 1858–1860 (2011).
[Crossref]

Y. Chiang, C. Yang, Y. Yang, C. Pan, and T. Yen, “An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial,” Appl. Phys. Lett. 99(19), 191909 (2011).
[Crossref]

2010 (2)

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97(13), 131106 (2010).
[Crossref]

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[Crossref]

2009 (3)

2008 (5)

2006 (3)

A. Dobroiu, C. Otani, and K. Kawase, “Terahertz-wave sources and imaging applications,” Meas. Sci. Technol. 17(11), R161–R174 (2006).
[Crossref]

Y. Jin, G. Kim, and S. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49(2), 513–517 (2006).

L. V. Alekseyev and E. Narimanov, “Slow light and 3D imaging with non-magnetic negative index systems,” Opt. Express 14(23), 11184–11193 (2006).
[Crossref] [PubMed]

2005 (1)

V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71(20), 201101 (2005).
[Crossref]

2002 (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

1983 (1)

K. Kunc and R. Resta, “External fields in the self-consistent theory of electronic states: a new method for direct evaluation of macroscopic and microscopic dielectric response,” Phys. Rev. Lett. 51(8), 686–689 (1983).
[Crossref]

1966 (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[Crossref]

Abbott, D.

W. Withayachumnankul, B. M. Fischer, and D. Abbott, “Quarter-wavelength multilayer interference filter for terahertz waves,” Opt. Commun. 281(9), 2374–2379 (2008).
[Crossref]

Alekseyev, L. V.

Averitt, R. D.

H. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

Azad, A. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

H. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Bao, F.

S. He, F. Ding, L. Mo, and F. Bao, “Light Absorber with an Ultra-Broad Flat Band Based on Multi-Sized Slow-Wave Hyperbolic Metamaterial Thin-Films,” Prog. Electromagnetics Res. 147, 69–79 (2014).
[Crossref]

Bartal, G.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Bauer, O. H.

Beigang, R.

Bernussi, A. A.

Bingham, C. M.

Born, N.

Bortolucci, E. C.

Brener, I.

Brown, E. R.

Cao, W.

Chen, F.

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97(13), 131106 (2010).
[Crossref]

Chen, H.

H. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Chen, H. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Chen, L.

Chiang, Y.

Y. Chiang, C. Yang, Y. Yang, C. Pan, and T. Yen, “An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial,” Appl. Phys. Lett. 99(19), 191909 (2011).
[Crossref]

Chowdhury, D. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Ciattoni, A.

Cich, M. J.

H. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Columbo, L.

Costa, F.

Cui, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

da Silva, A. M.

Dalvit, D. A.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Ding, F.

S. He, F. Ding, L. Mo, and F. Bao, “Light Absorber with an Ultra-Broad Flat Band Based on Multi-Sized Slow-Wave Hyperbolic Metamaterial Thin-Films,” Prog. Electromagnetics Res. 147, 69–79 (2014).
[Crossref]

Dobroiu, A.

A. Dobroiu, C. Otani, and K. Kawase, “Terahertz-wave sources and imaging applications,” Meas. Sci. Technol. 17(11), R161–R174 (2006).
[Crossref]

Fan, Z.

Fang, N. X.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Federici, J.

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[Crossref]

Ferguson, B.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Fischer, B. M.

W. Withayachumnankul, B. M. Fischer, and D. Abbott, “Quarter-wavelength multilayer interference filter for terahertz waves,” Opt. Commun. 281(9), 2374–2379 (2008).
[Crossref]

Fung, K. H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Gan, Q.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2014).
[Crossref] [PubMed]

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep. 3, 1249 (2013).
[Crossref] [PubMed]

Genovesi, S.

Grady, N. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Gu, J.

Guo, L. J.

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and Theory of the Broadband Absorption by a Tapered Hyperbolic Metamaterial Array,” ACS Photon. 1(7), 618–624 (2014).
[Crossref]

Han, J.

He, J.

He, S.

S. He, F. Ding, L. Mo, and F. Bao, “Light Absorber with an Ultra-Broad Flat Band Based on Multi-Sized Slow-Wave Hyperbolic Metamaterial Thin-Films,” Prog. Electromagnetics Res. 147, 69–79 (2014).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

He, Y.

Heyes, J. E.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Holtz, M.

Hong, Z.

Hu, H.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2014).
[Crossref] [PubMed]

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep. 3, 1249 (2013).
[Crossref] [PubMed]

Huang, T. Y.

Jacob, Z.

H. N. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Jeon, S.

Y. Jin, G. Kim, and S. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49(2), 513–517 (2006).

Jepsen, P. U.

A. C. Strikwerda, M. Zalkovskij, D. L. Lorenzen, A. Krabbe, A. V. Lavrinenko, and P. U. Jepsen, “Metamaterial composite bandpass filter with an ultra-broadband rejection bandwidth of up to 240 terahertz,” Appl. Phys. Lett. 104(19), 191103 (2014).
[Crossref]

Ji, D.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2014).
[Crossref] [PubMed]

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep. 3, 1249 (2013).
[Crossref] [PubMed]

Jin, N.

N. Jin and J. S. Li, “Terahertz wave bandpass filter based on metamaterials,” Microw. Opt. Technol. Lett. 53(8), 1858–1860 (2011).
[Crossref]

Jin, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Y. Jin, G. Kim, and S. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49(2), 513–517 (2006).

Kaplan, A. F.

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and Theory of the Broadband Absorption by a Tapered Hyperbolic Metamaterial Array,” ACS Photon. 1(7), 618–624 (2014).
[Crossref]

Kaufmann, P.

Kawase, K.

A. Dobroiu, C. Otani, and K. Kawase, “Terahertz-wave sources and imaging applications,” Meas. Sci. Technol. 17(11), R161–R174 (2006).
[Crossref]

Kim, G.

Y. Jin, G. Kim, and S. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49(2), 513–517 (2006).

Koch, M.

Kornberg, M. A.

Krabbe, A.

A. C. Strikwerda, M. Zalkovskij, D. L. Lorenzen, A. Krabbe, A. V. Lavrinenko, and P. U. Jepsen, “Metamaterial composite bandpass filter with an ultra-broadband rejection bandwidth of up to 240 terahertz,” Appl. Phys. Lett. 104(19), 191103 (2014).
[Crossref]

Kretzschmar, I.

H. N. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Krishnamoorthy, H. N.

H. N. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Kunc, K.

K. Kunc and R. Resta, “External fields in the self-consistent theory of electronic states: a new method for direct evaluation of macroscopic and microscopic dielectric response,” Phys. Rev. Lett. 51(8), 686–689 (1983).
[Crossref]

Kuryatkov, V.

Lakhtakia, A.

Landy, N. I.

Lavrinenko, A. V.

A. C. Strikwerda, M. Zalkovskij, D. L. Lorenzen, A. Krabbe, A. V. Lavrinenko, and P. U. Jepsen, “Metamaterial composite bandpass filter with an ultra-broadband rejection bandwidth of up to 240 terahertz,” Appl. Phys. Lett. 104(19), 191103 (2014).
[Crossref]

Li, J. S.

N. Jin and J. S. Li, “Terahertz wave bandpass filter based on metamaterials,” Microw. Opt. Technol. Lett. 53(8), 1858–1860 (2011).
[Crossref]

Li, W.

Li, X.

Liu, K.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2014).
[Crossref] [PubMed]

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep. 3, 1249 (2013).
[Crossref] [PubMed]

Liu, P.

Liu, Y.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Liu, Z.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Lorenzen, D. L.

A. C. Strikwerda, M. Zalkovskij, D. L. Lorenzen, A. Krabbe, A. V. Lavrinenko, and P. U. Jepsen, “Metamaterial composite bandpass filter with an ultra-broadband rejection bandwidth of up to 240 terahertz,” Appl. Phys. Lett. 104(19), 191103 (2014).
[Crossref]

Lu, M.

Ma, H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Melo, A. M.

Mendis, R.

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97(13), 131106 (2010).
[Crossref]

Menon, V. M.

H. N. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Mittleman, D. M.

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97(13), 131106 (2010).
[Crossref]

Mo, L.

S. He, F. Ding, L. Mo, and F. Bao, “Light Absorber with an Ultra-Broad Flat Band Based on Multi-Sized Slow-Wave Hyperbolic Metamaterial Thin-Films,” Prog. Electromagnetics Res. 147, 69–79 (2014).
[Crossref]

Moeller, L.

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[Crossref]

Monorchio, A.

Nag, A.

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97(13), 131106 (2010).
[Crossref]

Narimanov, E.

H. N. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

L. V. Alekseyev and E. Narimanov, “Slow light and 3D imaging with non-magnetic negative index systems,” Opt. Express 14(23), 11184–11193 (2006).
[Crossref] [PubMed]

Narimanov, E. E.

V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71(20), 201101 (2005).
[Crossref]

O’Hara, J. F.

Otani, C.

A. Dobroiu, C. Otani, and K. Kawase, “Terahertz-wave sources and imaging applications,” Meas. Sci. Technol. 17(11), R161–R174 (2006).
[Crossref]

Padilla, W. J.

H. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

Pan, C.

Y. Chiang, C. Yang, Y. Yang, C. Pan, and T. Yen, “An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial,” Appl. Phys. Lett. 99(19), 191909 (2011).
[Crossref]

Paul, O.

Piazzetta, M. H.

Podolskiy, V. A.

V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71(20), 201101 (2005).
[Crossref]

Poglitsch, A.

Prati, E.

Rahm, M.

Reiten, M. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Resta, R.

K. Kunc and R. Resta, “External fields in the self-consistent theory of electronic states: a new method for direct evaluation of macroscopic and microscopic dielectric response,” Phys. Rev. Lett. 51(8), 686–689 (1983).
[Crossref]

Reuter, M.

Rizza, C.

Saed, M.

Scheller, M.

Singh, R.

Smirnova, E.

Song, H.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2014).
[Crossref] [PubMed]

Spinozzi, E.

Stacy, A. M.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Strikwerda, A. C.

A. C. Strikwerda, M. Zalkovskij, D. L. Lorenzen, A. Krabbe, A. V. Lavrinenko, and P. U. Jepsen, “Metamaterial composite bandpass filter with an ultra-broadband rejection bandwidth of up to 240 terahertz,” Appl. Phys. Lett. 104(19), 191103 (2014).
[Crossref]

Sun, C.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Tao, H.

Taylor, A. J.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

H. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
[Crossref] [PubMed]

Vegesna, S.

Wang, G. P.

Wang, Y.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Withayachumnankul, W.

W. Withayachumnankul, B. M. Fischer, and D. Abbott, “Quarter-wavelength multilayer interference filter for terahertz waves,” Opt. Commun. 281(9), 2374–2379 (2008).
[Crossref]

Xu, J.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Yang, C.

Y. Chiang, C. Yang, Y. Yang, C. Pan, and T. Yen, “An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial,” Appl. Phys. Lett. 99(19), 191909 (2011).
[Crossref]

Yang, Y.

Y. Chiang, C. Yang, Y. Yang, C. Pan, and T. Yen, “An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial,” Appl. Phys. Lett. 99(19), 191909 (2011).
[Crossref]

Yao, J.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Yee, K. S.

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[Crossref]

Yeh, T. T.

Yen, T.

Y. Chiang, C. Yang, Y. Yang, C. Pan, and T. Yen, “An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial,” Appl. Phys. Lett. 99(19), 191909 (2011).
[Crossref]

Yen, T. J.

Zakia, M. B.

Zalkovskij, M.

A. C. Strikwerda, M. Zalkovskij, D. L. Lorenzen, A. Krabbe, A. V. Lavrinenko, and P. U. Jepsen, “Metamaterial composite bandpass filter with an ultra-broadband rejection bandwidth of up to 240 terahertz,” Appl. Phys. Lett. 104(19), 191103 (2014).
[Crossref]

Zeng, X.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2014).
[Crossref] [PubMed]

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep. 3, 1249 (2013).
[Crossref] [PubMed]

Zeng, Y.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Zhang, N.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2014).
[Crossref] [PubMed]

Zhang, T.

Zhang, W.

Zhang, X.

Zhang, X. C.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Zhao, Y.

Zhou, J.

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and Theory of the Broadband Absorption by a Tapered Hyperbolic Metamaterial Array,” ACS Photon. 1(7), 618–624 (2014).
[Crossref]

Zhu, Y.

ACS Photon. (1)

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and Theory of the Broadband Absorption by a Tapered Hyperbolic Metamaterial Array,” ACS Photon. 1(7), 618–624 (2014).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

A. C. Strikwerda, M. Zalkovskij, D. L. Lorenzen, A. Krabbe, A. V. Lavrinenko, and P. U. Jepsen, “Metamaterial composite bandpass filter with an ultra-broadband rejection bandwidth of up to 240 terahertz,” Appl. Phys. Lett. 104(19), 191103 (2014).
[Crossref]

Y. Chiang, C. Yang, Y. Yang, C. Pan, and T. Yen, “An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial,” Appl. Phys. Lett. 99(19), 191909 (2011).
[Crossref]

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97(13), 131106 (2010).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[Crossref]

J. Appl. Phys. (1)

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[Crossref]

J. Korean Phys. Soc. (1)

Y. Jin, G. Kim, and S. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49(2), 513–517 (2006).

Meas. Sci. Technol. (1)

A. Dobroiu, C. Otani, and K. Kawase, “Terahertz-wave sources and imaging applications,” Meas. Sci. Technol. 17(11), R161–R174 (2006).
[Crossref]

Microw. Opt. Technol. Lett. (1)

N. Jin and J. S. Li, “Terahertz wave bandpass filter based on metamaterials,” Microw. Opt. Technol. Lett. 53(8), 1858–1860 (2011).
[Crossref]

Nano Lett. (1)

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Nat. Photonics (1)

H. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Opt. Commun. (1)

W. Withayachumnankul, B. M. Fischer, and D. Abbott, “Quarter-wavelength multilayer interference filter for terahertz waves,” Opt. Commun. 281(9), 2374–2379 (2008).
[Crossref]

Opt. Express (7)

Opt. Lett. (5)

Phys. Rev. B (1)

V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71(20), 201101 (2005).
[Crossref]

Phys. Rev. Lett. (1)

K. Kunc and R. Resta, “External fields in the self-consistent theory of electronic states: a new method for direct evaluation of macroscopic and microscopic dielectric response,” Phys. Rev. Lett. 51(8), 686–689 (1983).
[Crossref]

Prog. Electromagnetics Res. (1)

S. He, F. Ding, L. Mo, and F. Bao, “Light Absorber with an Ultra-Broad Flat Band Based on Multi-Sized Slow-Wave Hyperbolic Metamaterial Thin-Films,” Prog. Electromagnetics Res. 147, 69–79 (2014).
[Crossref]

Sci. Rep. (2)

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2014).
[Crossref] [PubMed]

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep. 3, 1249 (2013).
[Crossref] [PubMed]

Science (3)

H. N. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Other (2)

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” in Terahertz for Military and Security Applications, R. J. Hwu and D. L. Woolard, eds, Proc. SPIE 5070, 44–52 (2003).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of uniform HMM waveguide arrays with a period P1. Each HMM waveguide consists of alternating Al [32] and GaAs [33] (εGaAs = 12.96) layers with thickness denoted as tm and td. (b) Dispersion curves of uniform HMM waveguide array for two widths of 17 and 20 µm. The dispersion curves are calculated when the Bloch mode propagates along z direction. In the calculation, the lattice constant along x direction is set to be P1 = 23 µm. P represents the lattice constant (P = tm + td, tm = td = 0.25 µm) along z direction.
Fig. 2
Fig. 2 (a) Schematic of a unit cell consisting of single-sized tapered HMM waveguide array on a high-density polyethylene (HDPE) substrate. HDPE has low refractive index (1.54), high stability and small absorption coefficient in the terahertz region [35]. The height of the tapered HMM waveguide array is denoted as H. The top and bottom widths are denoted as Wt1 and Wb1, respectively. (b) The simulated transmission curves of the tapered HMM waveguide array under normal incidence. (c)-(e): The electric field intensity distributions of (|E|2) at (c) 2.2 THz, (d) 4 THz, and (e) 7.3 THz. In the simulation, the height is set to be H = 40 µm. The top and bottom widths are assumed to be Wt1 = 17 and Wb1 = 20 µm. All the other parameters are the same as those in Fig. 1.
Fig. 3
Fig. 3 (a) Schematic of a unit cell of an OS-HMM BPF with a combination of two different-sized tapered HMM waveguide arrays. The height, H, gap separation, d, and period, P2, are 40, 3, and 32 µm, respectively. Wt1 = 17 µm, Wb1 = 20 µm, Wt2 = 4 µm, Wb2 = 6 µm. The HMM is comprised of alternating Al and GaAs layers with equal thickness of 0.25 µm. (b) Schematic of two different-sized uniform HMM waveguide arrays with a period P2 and height H. (c) Dispersion curves of one uniform HMM waveguide array with two widths of 17 and 20 µm when another uniform HMM waveguide array with two widths of 4 and 6 µm is added in Fig. 3(b). (d) Dispersion curves of one uniform HMM waveguide array with two widths of 4 and 6 µm when another uniform HMM waveguide array with two widths of 17 and 20 µm is added in Fig. 3(b).
Fig. 4
Fig. 4 (a) The simulated transmission spectrum of the designed OS-HMM BPF under normal-incidence. The bandedge transitions to the stop bands are 16.6 and 11.9 dB/THz, respectively. (b)-(d) The electric field intensity (|E|2) in the OS-HMM BPF with the frequency of (b) 2.15 THz, (c) 4 THz and (d) 7.3 THz.
Fig. 5
Fig. 5 (a) The simulated transmission spectrum of the OS-HMM BPF with varied gap separation from 0 to 6 µm under normal-incidence. (b) The simulated transmission spectrum of the OS-HMM BPF versus the incidence angle ranging from 0° to 60°.
Fig. 6
Fig. 6 (a) Schematic of a unit cell of the three-dimensional OS-HMM BPF. (b) The simulated transmission spectrum of the OS-HMM BPF under normal-incidence. The bandedge transitions to the stop bands are 22.6 and 17.6 dB/THz, respectively. The geometrical parameters used in the simulation are H = 40 µm, Wt1 = 17 and Wb1 = 20 µm, Wt2 = 4.5 and Wb2 = 6.5 µm. The HMM waveguide is comprised of alternating Al and GaAs layers with equal thickness of 0.25 µm.

Metrics