Abstract

Recently, the visible light communication (VLC) based on LEDs has attracted much attention. In order to realize multi-users indoor VLC system based on the hybrid full-duplex, we design a kind of illumination/communication terminal and present the corresponding network model in this paper. We propose a multi-access scheme, which can avoid the access collision and network congestion. Meanwhile, we present a method to establish the link between users and expound the routing strategy of information forwarding. Besides, we evaluate the network performance by numerical simulations in aspects of access collision probability, throughput, access time and link establishment time. The results show that the proposed multi-access scheme and routing strategy are feasible for indoor VLC system.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improvement of indoor VLC network downlink scheduling and resource allocation

Yan Chen, Anthony E. Kelly, and John H. Marsh
Opt. Express 24(23) 26838-26850 (2016)

User-centric quality of experience optimized resource allocation algorithm in VLC network with multi-color LED

Xu Bao, Xinxin Gu, and Wence Zhang
Opt. Express 26(21) 27826-27841 (2018)

Decoupled TCP Extension for VLC Hybrid Network

Yanbing Liu, Xiaowei Qin, Tianyi Zhang, Ting Zhu, Xiaohui Chen, and Guo Wei
J. Opt. Commun. Netw. 10(5) 563-572 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y. Tanaka, S. Haruyama, and M. Nakagawa, “Wireless optical transmissions with white colored LED for wireless home links,” in Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE, 2000), pp. 1325–1329.
    [Crossref]
  2. T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
    [Crossref]
  3. D. O’Brien, “Indoor optical wireless communications: recent developments and future challenges,” Proc. SPIE 7464, 74640B (2009).
    [Crossref]
  4. S. Haruyama, “Progress of visible light communication,” in Optical Fiber Communication Conference, collocated National Fiber Optic Engineers Conference (2010), paper OThH2.
  5. Y. Q. Zheng and M. L. Zhang, “Visible light communications-recent progresses and future outlooks,” in Proceedings of Symposium on Photonics and Optoelectronic (2010), pp. 1–6.
    [Crossref]
  6. J. Vucicet, C. Kottke, S. Nerreter, K. Habel, A. Büttner, K. D. Langer, and J. W. Walewski, “230 Mbit/s via a wireless visible-light link based on OOK modulation of phosphorescent white LEDs,” in Optical Fiber Communication Conference, collocated National Fiber Optic Engineers Conference (2010), Paper OThH3.
  7. A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
    [Crossref]
  8. L. B. Zeng, D. O’Brien, H. L. Minh, G. E. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. Sel. Areas Comm. 27(9), 1654–1662 (2009).
    [Crossref]
  9. N. Saha, R. K. Mondal, N. T. Le, and Y. M. Jang, “Mitigation of interference using OFDM in visible light communication,” in Proceedings of International Conference on ICT Convergence (2012), pp. 159–162.
    [Crossref]
  10. M. Afgani, H. Haas, H. Elgala, and D. Knipp, “Visible light communication using OFDM,” in Proceedings of 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities (2006), pp. 129–134.
  11. Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, “Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express 21(1), 1203–1208 (2013).
    [Crossref] [PubMed]
  12. H. Lee, Y. Kim, and K. Sohn, “Optical wireless sensor networks based on VLC with PLC-ethernet interface,” in Proceedings of World Academy of Science, Engineering and Technology (2011), pp. 225–228.
  13. S. Rajagopal, R. Roberts, and S. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
    [Crossref]
  14. G. Bianchi, “Performance analysis of the IEEE 802.11 distributed coordination function,” IEEE J. Sel. Areas Comm. 18(3), 535–547 (2000).
    [Crossref]
  15. Z. Wu, “Free space optical networking with visible light: a multi-hop multi-access solution,” Diss. Boston Univ. (2012).
  16. Y. H. Son, H. S. Kim, Y. Y. Won, and S. K. Han, “Bidirectional visible light wireless transmission supported by reflective semiconductor optical amplifier based optical access network,” Microw. Opt. Technol. Lett. 53(5), 1032–1036 (2011).
    [Crossref]
  17. “IEEE Standard for Local and Metropolitan Area Networks-Part 15.7: Short-Range Wireless Optical Communication Using Visible Light,” September 2011.
  18. “IEEE Standard for Information Technology-Telecommunications and Information Exchange between Systems Local and Metropolitan Area Networks-Specific Requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications-Amendment 4: Enhancements for Very High Throughput for Operation in Bands below 6 GHz,” December 2013.
  19. “IrDA Link Access Protocol (IrLAP) v.1.1,” June 1996.
  20. Z. Wu and T. Little, “Network solutions for the line-of-sight problem of new multi-user indoor free-space optical system,” IET Commun. 6(5), 525–531 (2012).
    [Crossref]

2013 (1)

2012 (3)

S. Rajagopal, R. Roberts, and S. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
[Crossref]

Z. Wu and T. Little, “Network solutions for the line-of-sight problem of new multi-user indoor free-space optical system,” IET Commun. 6(5), 525–531 (2012).
[Crossref]

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

2011 (1)

Y. H. Son, H. S. Kim, Y. Y. Won, and S. K. Han, “Bidirectional visible light wireless transmission supported by reflective semiconductor optical amplifier based optical access network,” Microw. Opt. Technol. Lett. 53(5), 1032–1036 (2011).
[Crossref]

2009 (2)

L. B. Zeng, D. O’Brien, H. L. Minh, G. E. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. Sel. Areas Comm. 27(9), 1654–1662 (2009).
[Crossref]

D. O’Brien, “Indoor optical wireless communications: recent developments and future challenges,” Proc. SPIE 7464, 74640B (2009).
[Crossref]

2004 (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

2000 (1)

G. Bianchi, “Performance analysis of the IEEE 802.11 distributed coordination function,” IEEE J. Sel. Areas Comm. 18(3), 535–547 (2000).
[Crossref]

Afgani, M.

M. Afgani, H. Haas, H. Elgala, and D. Knipp, “Visible light communication using OFDM,” in Proceedings of 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities (2006), pp. 129–134.

Bianchi, G.

G. Bianchi, “Performance analysis of the IEEE 802.11 distributed coordination function,” IEEE J. Sel. Areas Comm. 18(3), 535–547 (2000).
[Crossref]

Chi, N.

Choudhury, P.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

Ciaramella, E.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

Corsini, R.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

Cossu, G.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

Elgala, H.

M. Afgani, H. Haas, H. Elgala, and D. Knipp, “Visible light communication using OFDM,” in Proceedings of 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities (2006), pp. 129–134.

Faulkner, G. E.

L. B. Zeng, D. O’Brien, H. L. Minh, G. E. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. Sel. Areas Comm. 27(9), 1654–1662 (2009).
[Crossref]

Haas, H.

M. Afgani, H. Haas, H. Elgala, and D. Knipp, “Visible light communication using OFDM,” in Proceedings of 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities (2006), pp. 129–134.

Han, S. K.

Y. H. Son, H. S. Kim, Y. Y. Won, and S. K. Han, “Bidirectional visible light wireless transmission supported by reflective semiconductor optical amplifier based optical access network,” Microw. Opt. Technol. Lett. 53(5), 1032–1036 (2011).
[Crossref]

Haruyama, S.

Y. Tanaka, S. Haruyama, and M. Nakagawa, “Wireless optical transmissions with white colored LED for wireless home links,” in Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE, 2000), pp. 1325–1329.
[Crossref]

Jang, Y. M.

N. Saha, R. K. Mondal, N. T. Le, and Y. M. Jang, “Mitigation of interference using OFDM in visible light communication,” in Proceedings of International Conference on ICT Convergence (2012), pp. 159–162.
[Crossref]

Jung, D.

L. B. Zeng, D. O’Brien, H. L. Minh, G. E. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. Sel. Areas Comm. 27(9), 1654–1662 (2009).
[Crossref]

Khalid, A. M.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

Kim, H. S.

Y. H. Son, H. S. Kim, Y. Y. Won, and S. K. Han, “Bidirectional visible light wireless transmission supported by reflective semiconductor optical amplifier based optical access network,” Microw. Opt. Technol. Lett. 53(5), 1032–1036 (2011).
[Crossref]

Knipp, D.

M. Afgani, H. Haas, H. Elgala, and D. Knipp, “Visible light communication using OFDM,” in Proceedings of 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities (2006), pp. 129–134.

Komine, T.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

Le, N. T.

N. Saha, R. K. Mondal, N. T. Le, and Y. M. Jang, “Mitigation of interference using OFDM in visible light communication,” in Proceedings of International Conference on ICT Convergence (2012), pp. 159–162.
[Crossref]

Lee, K.

L. B. Zeng, D. O’Brien, H. L. Minh, G. E. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. Sel. Areas Comm. 27(9), 1654–1662 (2009).
[Crossref]

Lim, S.

S. Rajagopal, R. Roberts, and S. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
[Crossref]

Little, T.

Z. Wu and T. Little, “Network solutions for the line-of-sight problem of new multi-user indoor free-space optical system,” IET Commun. 6(5), 525–531 (2012).
[Crossref]

Minh, H. L.

L. B. Zeng, D. O’Brien, H. L. Minh, G. E. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. Sel. Areas Comm. 27(9), 1654–1662 (2009).
[Crossref]

Mondal, R. K.

N. Saha, R. K. Mondal, N. T. Le, and Y. M. Jang, “Mitigation of interference using OFDM in visible light communication,” in Proceedings of International Conference on ICT Convergence (2012), pp. 159–162.
[Crossref]

Nakagawa, M.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

Y. Tanaka, S. Haruyama, and M. Nakagawa, “Wireless optical transmissions with white colored LED for wireless home links,” in Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE, 2000), pp. 1325–1329.
[Crossref]

O’Brien, D.

D. O’Brien, “Indoor optical wireless communications: recent developments and future challenges,” Proc. SPIE 7464, 74640B (2009).
[Crossref]

L. B. Zeng, D. O’Brien, H. L. Minh, G. E. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. Sel. Areas Comm. 27(9), 1654–1662 (2009).
[Crossref]

Oh, Y.

L. B. Zeng, D. O’Brien, H. L. Minh, G. E. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. Sel. Areas Comm. 27(9), 1654–1662 (2009).
[Crossref]

Rajagopal, S.

S. Rajagopal, R. Roberts, and S. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
[Crossref]

Roberts, R.

S. Rajagopal, R. Roberts, and S. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
[Crossref]

Saha, N.

N. Saha, R. K. Mondal, N. T. Le, and Y. M. Jang, “Mitigation of interference using OFDM in visible light communication,” in Proceedings of International Conference on ICT Convergence (2012), pp. 159–162.
[Crossref]

Shang, H.

Son, Y. H.

Y. H. Son, H. S. Kim, Y. Y. Won, and S. K. Han, “Bidirectional visible light wireless transmission supported by reflective semiconductor optical amplifier based optical access network,” Microw. Opt. Technol. Lett. 53(5), 1032–1036 (2011).
[Crossref]

Tanaka, Y.

Y. Tanaka, S. Haruyama, and M. Nakagawa, “Wireless optical transmissions with white colored LED for wireless home links,” in Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE, 2000), pp. 1325–1329.
[Crossref]

Wang, Y.

Won, E. T.

L. B. Zeng, D. O’Brien, H. L. Minh, G. E. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. Sel. Areas Comm. 27(9), 1654–1662 (2009).
[Crossref]

Won, Y. Y.

Y. H. Son, H. S. Kim, Y. Y. Won, and S. K. Han, “Bidirectional visible light wireless transmission supported by reflective semiconductor optical amplifier based optical access network,” Microw. Opt. Technol. Lett. 53(5), 1032–1036 (2011).
[Crossref]

Wu, Z.

Z. Wu and T. Little, “Network solutions for the line-of-sight problem of new multi-user indoor free-space optical system,” IET Commun. 6(5), 525–531 (2012).
[Crossref]

Yu, J.

Zeng, L. B.

L. B. Zeng, D. O’Brien, H. L. Minh, G. E. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. Sel. Areas Comm. 27(9), 1654–1662 (2009).
[Crossref]

Zhang, M. L.

Y. Q. Zheng and M. L. Zhang, “Visible light communications-recent progresses and future outlooks,” in Proceedings of Symposium on Photonics and Optoelectronic (2010), pp. 1–6.
[Crossref]

Zheng, Y. Q.

Y. Q. Zheng and M. L. Zhang, “Visible light communications-recent progresses and future outlooks,” in Proceedings of Symposium on Photonics and Optoelectronic (2010), pp. 1–6.
[Crossref]

IEEE Commun. Mag. (1)

S. Rajagopal, R. Roberts, and S. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
[Crossref]

IEEE J. Sel. Areas Comm. (2)

G. Bianchi, “Performance analysis of the IEEE 802.11 distributed coordination function,” IEEE J. Sel. Areas Comm. 18(3), 535–547 (2000).
[Crossref]

L. B. Zeng, D. O’Brien, H. L. Minh, G. E. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. Sel. Areas Comm. 27(9), 1654–1662 (2009).
[Crossref]

IEEE Photonics J. (1)

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

IEEE Trans. Consum. Electron. (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

IET Commun. (1)

Z. Wu and T. Little, “Network solutions for the line-of-sight problem of new multi-user indoor free-space optical system,” IET Commun. 6(5), 525–531 (2012).
[Crossref]

Microw. Opt. Technol. Lett. (1)

Y. H. Son, H. S. Kim, Y. Y. Won, and S. K. Han, “Bidirectional visible light wireless transmission supported by reflective semiconductor optical amplifier based optical access network,” Microw. Opt. Technol. Lett. 53(5), 1032–1036 (2011).
[Crossref]

Opt. Express (1)

Proc. SPIE (1)

D. O’Brien, “Indoor optical wireless communications: recent developments and future challenges,” Proc. SPIE 7464, 74640B (2009).
[Crossref]

Other (11)

S. Haruyama, “Progress of visible light communication,” in Optical Fiber Communication Conference, collocated National Fiber Optic Engineers Conference (2010), paper OThH2.

Y. Q. Zheng and M. L. Zhang, “Visible light communications-recent progresses and future outlooks,” in Proceedings of Symposium on Photonics and Optoelectronic (2010), pp. 1–6.
[Crossref]

J. Vucicet, C. Kottke, S. Nerreter, K. Habel, A. Büttner, K. D. Langer, and J. W. Walewski, “230 Mbit/s via a wireless visible-light link based on OOK modulation of phosphorescent white LEDs,” in Optical Fiber Communication Conference, collocated National Fiber Optic Engineers Conference (2010), Paper OThH3.

Y. Tanaka, S. Haruyama, and M. Nakagawa, “Wireless optical transmissions with white colored LED for wireless home links,” in Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE, 2000), pp. 1325–1329.
[Crossref]

N. Saha, R. K. Mondal, N. T. Le, and Y. M. Jang, “Mitigation of interference using OFDM in visible light communication,” in Proceedings of International Conference on ICT Convergence (2012), pp. 159–162.
[Crossref]

M. Afgani, H. Haas, H. Elgala, and D. Knipp, “Visible light communication using OFDM,” in Proceedings of 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities (2006), pp. 129–134.

H. Lee, Y. Kim, and K. Sohn, “Optical wireless sensor networks based on VLC with PLC-ethernet interface,” in Proceedings of World Academy of Science, Engineering and Technology (2011), pp. 225–228.

Z. Wu, “Free space optical networking with visible light: a multi-hop multi-access solution,” Diss. Boston Univ. (2012).

“IEEE Standard for Local and Metropolitan Area Networks-Part 15.7: Short-Range Wireless Optical Communication Using Visible Light,” September 2011.

“IEEE Standard for Information Technology-Telecommunications and Information Exchange between Systems Local and Metropolitan Area Networks-Specific Requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications-Amendment 4: Enhancements for Very High Throughput for Operation in Bands below 6 GHz,” December 2013.

“IrDA Link Access Protocol (IrLAP) v.1.1,” June 1996.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1 Schematic diagram of illumination/communication terminal and three infrared receivers are spaced distributed in 120°.
Fig. 2
Fig. 2 Schematic diagram of indoor VLC network model.
Fig. 3
Fig. 3 Diagram of User S access, RTS#1 indicates that User S sends request message, RTS#2 indicates that User S sends request message with MAC address of a certain terminal, CTS#1 indicates that User S sends the clear message with MAC address of a certain terminal, CTS#2 indicates that User S sends the clear message.
Fig. 4
Fig. 4 Flowchart of User S accessing VLC network.
Fig. 5
Fig. 5 Establishing links between users in the VLC network.
Fig. 6
Fig. 6 Flowchart of establishing the link between User S1 and S2 in the VLC network.
Fig. 7
Fig. 7 Topological structure of illumination/communication terminals.
Fig. 8
Fig. 8 Diagram of the LED illumination distribution.
Fig. 9
Fig. 9 Diagram of the LED radiation characteristic.
Fig. 10
Fig. 10 Diagram of VLC coverage of terminal, the VLC overlapping area between the terminals on their diagonal is eliminated.
Fig. 11
Fig. 11 Diagram of VLC overlapping area of Terminal B and D on their diagonal.
Fig. 12
Fig. 12 Indoor illumination distribution.
Fig. 13
Fig. 13 Collision probability of different number of users.
Fig. 14
Fig. 14 Calculated results of network normalized throughput.
Fig. 15
Fig. 15 Numerical simulation results of average access time.
Fig. 16
Fig. 16 Locations of User S2.
Fig. 17
Fig. 17 Result of link establishment time.

Tables (1)

Tables Icon

Table 1 Time parameters in indoor VLC network

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

τ= 2(12p) (12p)(W+1)+pW(1 (2p) m )
p=1 (1 1 3 τ) n1
p tr =1 (1τ) n
p s = nτ (1τ) n1 + C n 2 2 3 τ 2 (1τ) n2 + C n 3 2 3 1 3 τ 3 (1τ) n3 p tr
T succ =RT S #1 /Rat e IR +SIFS+CT S #1 /Rat e VLC +N×(RT S #1 /Rat e IR +SIFS) +CT S #1 /Rat e VLC )+SIFS+RT S #2 /Rat e IR +SIFS+CT S #2 /Rat e IR +SIFS +(heade r MAC +heade r PHY )/Rat e IR +Payload/Rat e IR +SIFS +N×ACK/Rat e IR +ACK/Rat e VLC +DIFS
T fail =RT S #1 /Rat e IR +DIFS
S= p s p tr (Header+Payload)/Rat e IR p s p tr T succ + p tr (1 p s ) T fail
T1=(CT S #1 )/Rat e VLC +SIFS+(RT S #2 )/Rat e IR
T2=(RT S #1 /Rat e IR +SIFS+CT S #1 /Rat e VLC +SIFS+RT S #2 /Rat e IR )
T3=2×(RT S #1 /Rat e IR +SIFS+CT S #1 /Rat e VLC +SIFS+RT S #2 /Rat e IR )
I(θ)= m+1 2π I cos m (θ)
m=ln2/(cos Φ 1/2 )
E= I(θ)cos(φ) d 2
E 1 = I cos m (α)cos(β) l 1 2
E i =ρ I cos m (α)cos(β) cos m (γ)cos(ψ) l 1 2 l 2 2 dA
E ref = wall d E i
P R =H(0) P S
H(0)={ (m+1) A R 2π d 2 cos m (ϕ)cos(ω), 0ω ω c 0, ω> ω c
P R ={ P S (m+1) A R 2π d 2 cos n (ϕ)cos(ω), 0ωFOV 0, ω>FOV
P S (m+1) A R 2π L 2 cos m+1 (ω)= P R
L=h/cosω
cosω= 2πR h 2 (m+1) A R m+3
L= h 2πR h 2 P s (m+1) A R m+3

Metrics