Abstract

We present a new technique for permanent metamaterial reconfiguration via optically induced mass transfer of gold. This mass transfer, which can be explained by field-emission induced electromigration, causes a geometric change in the metamaterial sample. Since a metamaterial’s electromagnetic response is dictated by its geometry, this structural change massively alters the metamaterial’s behavior. We show this by optically forming a conducting pathway between two closely spaced dipole antennas, thereby changing the resonance frequency by a factor of two. After discussing the physics of the process, we conclude by presenting an optical fuse that can be used as a sacrificial element to protect sensitive components, demonstrating the applicability of optically induced mass transfer for device design.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Reconfigurable terahertz metamaterial device with pressure memory

Jinqi Wang, Shuchang Liu, Sivaraman Guruswamy, and Ajay Nahata
Opt. Express 22(4) 4065-4074 (2014)

Location-dependent metamaterials in terahertz range for reconfiguration purposes

Ting Bu, Kejian Chen, Hong Liu, Jianjun Liu, Zhi Hong, and Songlin Zhuang
Photon. Res. 4(3) 122-125 (2016)

Nonlinear terahertz metamaterial perfect absorbers using GaAs [Invited]

Xiaoguang Zhao, Jingdi Zhang, Kebin Fan, Guangwu Duan, Grace D. Metcalfe, Michael Wraback, Xin Zhang, and Richard D. Averitt
Photon. Res. 4(3) A16-A21 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. Tao, C. Bingham, A. C. Strikwerda, D. V. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
    [Crossref]
  2. B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, and M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100(22), 221101 (2012).
    [Crossref]
  3. A. C. Strikwerda, R. D. Averitt, K. Fan, X. Zhang, G. D. Metcalfe, and M. Wraback, “Electromagnetic composite-based reflecting terahertz waveplates,” Int. J. High Speed Electron. Syst. 20(03), 583–588 (2011).
    [Crossref]
  4. A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express 17(1), 136–149 (2009).
    [Crossref] [PubMed]
  5. H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Modulated Multiband Terahertz Perfect Absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
    [Crossref]
  6. H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
    [Crossref]
  7. D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express 19(10), 9968–9975 (2011).
    [Crossref] [PubMed]
  8. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [Crossref] [PubMed]
  9. T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
    [Crossref]
  10. H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “MEMS based structurally tunable metamaterials at terahertz frequencies,” J. Infr. Millim. THz Waves 32(5), 580–595 (2011).
    [Crossref]
  11. L. Liu, W. Chen, D. A. Powell, W. J. Padilla, F. Karouta, H. T. Hattori, D. N. Neshev, and I. V. Shadrivov, “Post-processing approach for tuning multi-layered metamaterials,” Appl. Phys. Lett. 105(15), 151102 (2014).
    [Crossref]
  12. M. Rahm, J.-S. Li, and W. J. Padilla, “THz Wave Modulators: A Brief Review on Different Modulation Techniques,” J. Infr. Millim. THz Waves 34(1), 1–27 (2013).
    [Crossref]
  13. P. G. Slade and E. D. Taylor, “Electrical breakdown in atmospheric air between closely spaced (0.2 μm-40 μm) electrical contacts,” IEEE Trans. Compon. Packag. Tech. 25(3), 390–396 (2002).
    [Crossref]
  14. M. Vincent, S. W. Rowe, C. Poulain, D. Mariolle, L. Chiesi, F. Houzé, and J. Delamare, “Field emission and material transfer in microswitches electrical contacts,” Appl. Phys. Lett. 97(26), 263503 (2010).
    [Crossref]
  15. A. Semnani, A. Venkattraman, A. A. Alexeenko, and D. Peroulis, “Frequency response of atmospheric pressure gas breakdown in micro/nanogaps,” Appl. Phys. Lett. 103(6), 063102 (2013).
    [Crossref]
  16. H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
    [Crossref]
  17. A. Tarekegne, K. Iwaszczuk, M. Zalkovskij, A. C. Strikwerda, and P. U. Jepsen, “Impact ionization in high resistivity silicon induced by an intense terahertz field enhanced by an antenna array,” New J. Phys. 17(4), 043002 (2015).
    [Crossref]
  18. N. C. J. van der Valk, T. Wenckebach, and P. C. M. Planken, “Full mathematical description of electro-optic detection in optically isotropic crystals,” J. Opt. Soc. Am. B 21(3), 622 (2004).
    [Crossref]
  19. M. C. Hoffmann, J. Hebling, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, “Impact ionization in InSb probed by terahertz pump-terahertz probe spectroscopy,” Phys. Rev. B 79(16), 161201 (2009).
    [Crossref]
  20. K. Fan, H. Y. Hwang, M. Liu, A. C. Strikwerda, A. Sternbach, J. Zhang, X. Zhao, X. Zhang, K. A. Nelson, and R. D. Averitt, “Nonlinear terahertz metamaterials via field-enhanced carrier dynamics in GaAs,” Phys. Rev. Lett. 110(21), 217404 (2013).
    [Crossref] [PubMed]
  21. H. Hirori, K. Shinokita, M. Shirai, S. Tani, Y. Kadoya, and K. Tanaka, “Extraordinary carrier multiplication gated by a picosecond electric field pulse,” Nat. Commun. 2, 594 (2011).
    [Crossref] [PubMed]
  22. C. A. Werley, K. Fan, A. C. Strikwerda, S. M. Teo, X. Zhang, R. D. Averitt, and K. A. Nelson, “Time-resolved imaging of near-fields in THz antennas and direct quantitative measurement of field enhancements,” Opt. Express 20(8), 8551–8567 (2012).
    [Crossref] [PubMed]
  23. Handbook of Chemistry and Physics, 95th Edition,” http://www.hbcpnetbase.com/ .
  24. TOPSIL, http://www.topsil.com/en/silicon-products/silicon-wafer-products/hires TM.aspx.
  25. P. S. Ho and T. Kwok, “Electromigration in metals,” Rep. Prog. Phys. 52(3), 301–348 (1989).
    [Crossref]
  26. H. Park, A. K. L. Lim, A. P. Alivisatos, J. Park, and P. L. McEuen, “Fabrication of metallic electrodes with nanometer separation by electromigration,” Appl. Phys. Lett. 75(2), 301 (1999).
    [Crossref]
  27. G. A. Mesyats, “A Cyclical Explosive Model of the Cathode Spot,” IEEE Trans. Electr. Insul. EI-20(4), 729–734 (1985).
    [Crossref]
  28. E. Hourdakis, B. J. Simonds, and N. M. Zimmerman, “Submicron gap capacitor for measurement of breakdown voltage in air,” Rev. Sci. Instrum. 77(3), 034702 (2006).
    [Crossref]
  29. R. G. Forbes and J. H. B. Deane, “Reformulation of the standard theory of Fowler–Nordheim tunnelling and cold field electron emission,” Proc. R. Soc. A Math. Phys. Eng. Sci. 463, 2907–2927 (2007).
    [Crossref]
  30. R. Tirumala and D. B. Go, “An analytical formulation for the modified Paschen’s curve,” Appl. Phys. Lett. 97(15), 151502 (2010).
    [Crossref]
  31. A. Peschot, N. Bonifaci, O. Lesaint, C. Valadares, and C. Poulain, “Deviations from the Paschen’s law at short gap distances from 100 nm to 10 μm in air and nitrogen,” Appl. Phys. Lett. 105(12), 123109 (2014).
    [Crossref]
  32. P. Rumbach and D. B. Go, “Fundamental properties of field emission-driven direct current microdischarges,” J. Appl. Phys. 112(10), 103302 (2012).
    [Crossref]
  33. T. W. Dakin, “Breakdown of gases in uniform fields. Paschen curves for nitrogen, air and sulfur hexafluoride,” Electra 32, 61–82 (1974).
  34. K. Iwaszczuk, M. Zalkovskij, A. C. Strikwerda, and P. U. Jepsen, “Nitrogen plasma formation through terahertz-induced ultrafast electron field emission,” Optica 2(2), 116–123 (2015).
    [Crossref]
  35. L. Verlet, “Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules,” Phys. Rev. 159(1), 98–103 (1967).
    [Crossref]
  36. Y. Itikawa, “Cross Sections for Electron Collisions with Nitrogen Molecules,” J. Phys. Chem. Ref. Data 35(1), 31 (2006).
    [Crossref]
  37. R. F. Egerton, R. McLeod, F. Wang, and M. Malac, “Basic questions related to electron-induced sputtering in the TEM,” Ultramicroscopy 110(8), 991–997 (2010).
    [Crossref]
  38. K. Takano, F. Miyamaru, K. Akiyama, H. Miyazaki, M. W. Takeda, Y. Abe, Y. Tokuda, H. Ito, and M. Hangyo, “Crossover from capacitive to inductive electromagnetic responses in near self-complementary metallic checkerboard patterns,” Opt. Express 22(20), 24787–24795 (2014).
    [Crossref] [PubMed]
  39. K. Kempa, “Percolation effects in the checkerboard Babinet series of metamaterial structures,” Phys. Status Solidi Rapid Res. Lett. 4(8-9), 218–220 (2010).
    [Crossref]
  40. Y. Nakata, Y. Urade, T. Nakanishi, and M. Kitano, “Plane-wave scattering by self-complementary metasurfaces in terms of electromagnetic duality and Babinet’s principle,” Phys. Rev. B 88(20), 205138 (2013).
    [Crossref]
  41. M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
    [Crossref] [PubMed]

2015 (2)

A. Tarekegne, K. Iwaszczuk, M. Zalkovskij, A. C. Strikwerda, and P. U. Jepsen, “Impact ionization in high resistivity silicon induced by an intense terahertz field enhanced by an antenna array,” New J. Phys. 17(4), 043002 (2015).
[Crossref]

K. Iwaszczuk, M. Zalkovskij, A. C. Strikwerda, and P. U. Jepsen, “Nitrogen plasma formation through terahertz-induced ultrafast electron field emission,” Optica 2(2), 116–123 (2015).
[Crossref]

2014 (4)

K. Takano, F. Miyamaru, K. Akiyama, H. Miyazaki, M. W. Takeda, Y. Abe, Y. Tokuda, H. Ito, and M. Hangyo, “Crossover from capacitive to inductive electromagnetic responses in near self-complementary metallic checkerboard patterns,” Opt. Express 22(20), 24787–24795 (2014).
[Crossref] [PubMed]

L. Liu, W. Chen, D. A. Powell, W. J. Padilla, F. Karouta, H. T. Hattori, D. N. Neshev, and I. V. Shadrivov, “Post-processing approach for tuning multi-layered metamaterials,” Appl. Phys. Lett. 105(15), 151102 (2014).
[Crossref]

A. Peschot, N. Bonifaci, O. Lesaint, C. Valadares, and C. Poulain, “Deviations from the Paschen’s law at short gap distances from 100 nm to 10 μm in air and nitrogen,” Appl. Phys. Lett. 105(12), 123109 (2014).
[Crossref]

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Modulated Multiband Terahertz Perfect Absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

2013 (4)

Y. Nakata, Y. Urade, T. Nakanishi, and M. Kitano, “Plane-wave scattering by self-complementary metasurfaces in terms of electromagnetic duality and Babinet’s principle,” Phys. Rev. B 88(20), 205138 (2013).
[Crossref]

M. Rahm, J.-S. Li, and W. J. Padilla, “THz Wave Modulators: A Brief Review on Different Modulation Techniques,” J. Infr. Millim. THz Waves 34(1), 1–27 (2013).
[Crossref]

A. Semnani, A. Venkattraman, A. A. Alexeenko, and D. Peroulis, “Frequency response of atmospheric pressure gas breakdown in micro/nanogaps,” Appl. Phys. Lett. 103(6), 063102 (2013).
[Crossref]

K. Fan, H. Y. Hwang, M. Liu, A. C. Strikwerda, A. Sternbach, J. Zhang, X. Zhao, X. Zhang, K. A. Nelson, and R. D. Averitt, “Nonlinear terahertz metamaterials via field-enhanced carrier dynamics in GaAs,” Phys. Rev. Lett. 110(21), 217404 (2013).
[Crossref] [PubMed]

2012 (4)

B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, and M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100(22), 221101 (2012).
[Crossref]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

C. A. Werley, K. Fan, A. C. Strikwerda, S. M. Teo, X. Zhang, R. D. Averitt, and K. A. Nelson, “Time-resolved imaging of near-fields in THz antennas and direct quantitative measurement of field enhancements,” Opt. Express 20(8), 8551–8567 (2012).
[Crossref] [PubMed]

P. Rumbach and D. B. Go, “Fundamental properties of field emission-driven direct current microdischarges,” J. Appl. Phys. 112(10), 103302 (2012).
[Crossref]

2011 (5)

D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express 19(10), 9968–9975 (2011).
[Crossref] [PubMed]

A. C. Strikwerda, R. D. Averitt, K. Fan, X. Zhang, G. D. Metcalfe, and M. Wraback, “Electromagnetic composite-based reflecting terahertz waveplates,” Int. J. High Speed Electron. Syst. 20(03), 583–588 (2011).
[Crossref]

H. Hirori, K. Shinokita, M. Shirai, S. Tani, Y. Kadoya, and K. Tanaka, “Extraordinary carrier multiplication gated by a picosecond electric field pulse,” Nat. Commun. 2, 594 (2011).
[Crossref] [PubMed]

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “MEMS based structurally tunable metamaterials at terahertz frequencies,” J. Infr. Millim. THz Waves 32(5), 580–595 (2011).
[Crossref]

2010 (4)

M. Vincent, S. W. Rowe, C. Poulain, D. Mariolle, L. Chiesi, F. Houzé, and J. Delamare, “Field emission and material transfer in microswitches electrical contacts,” Appl. Phys. Lett. 97(26), 263503 (2010).
[Crossref]

K. Kempa, “Percolation effects in the checkerboard Babinet series of metamaterial structures,” Phys. Status Solidi Rapid Res. Lett. 4(8-9), 218–220 (2010).
[Crossref]

R. Tirumala and D. B. Go, “An analytical formulation for the modified Paschen’s curve,” Appl. Phys. Lett. 97(15), 151502 (2010).
[Crossref]

R. F. Egerton, R. McLeod, F. Wang, and M. Malac, “Basic questions related to electron-induced sputtering in the TEM,” Ultramicroscopy 110(8), 991–997 (2010).
[Crossref]

2009 (2)

A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express 17(1), 136–149 (2009).
[Crossref] [PubMed]

M. C. Hoffmann, J. Hebling, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, “Impact ionization in InSb probed by terahertz pump-terahertz probe spectroscopy,” Phys. Rev. B 79(16), 161201 (2009).
[Crossref]

2008 (3)

H. Tao, C. Bingham, A. C. Strikwerda, D. V. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

2006 (3)

Y. Itikawa, “Cross Sections for Electron Collisions with Nitrogen Molecules,” J. Phys. Chem. Ref. Data 35(1), 31 (2006).
[Crossref]

E. Hourdakis, B. J. Simonds, and N. M. Zimmerman, “Submicron gap capacitor for measurement of breakdown voltage in air,” Rev. Sci. Instrum. 77(3), 034702 (2006).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

2004 (1)

2002 (1)

P. G. Slade and E. D. Taylor, “Electrical breakdown in atmospheric air between closely spaced (0.2 μm-40 μm) electrical contacts,” IEEE Trans. Compon. Packag. Tech. 25(3), 390–396 (2002).
[Crossref]

1999 (1)

H. Park, A. K. L. Lim, A. P. Alivisatos, J. Park, and P. L. McEuen, “Fabrication of metallic electrodes with nanometer separation by electromigration,” Appl. Phys. Lett. 75(2), 301 (1999).
[Crossref]

1989 (1)

P. S. Ho and T. Kwok, “Electromigration in metals,” Rep. Prog. Phys. 52(3), 301–348 (1989).
[Crossref]

1985 (1)

G. A. Mesyats, “A Cyclical Explosive Model of the Cathode Spot,” IEEE Trans. Electr. Insul. EI-20(4), 729–734 (1985).
[Crossref]

1974 (1)

T. W. Dakin, “Breakdown of gases in uniform fields. Paschen curves for nitrogen, air and sulfur hexafluoride,” Electra 32, 61–82 (1974).

1967 (1)

L. Verlet, “Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules,” Phys. Rev. 159(1), 98–103 (1967).
[Crossref]

Abe, Y.

Akiyama, K.

Alexeenko, A. A.

A. Semnani, A. Venkattraman, A. A. Alexeenko, and D. Peroulis, “Frequency response of atmospheric pressure gas breakdown in micro/nanogaps,” Appl. Phys. Lett. 103(6), 063102 (2013).
[Crossref]

Alivisatos, A. P.

H. Park, A. K. L. Lim, A. P. Alivisatos, J. Park, and P. L. McEuen, “Fabrication of metallic electrodes with nanometer separation by electromigration,” Appl. Phys. Lett. 75(2), 301 (1999).
[Crossref]

Averitt, R. D.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Modulated Multiband Terahertz Perfect Absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

K. Fan, H. Y. Hwang, M. Liu, A. C. Strikwerda, A. Sternbach, J. Zhang, X. Zhao, X. Zhang, K. A. Nelson, and R. D. Averitt, “Nonlinear terahertz metamaterials via field-enhanced carrier dynamics in GaAs,” Phys. Rev. Lett. 110(21), 217404 (2013).
[Crossref] [PubMed]

C. A. Werley, K. Fan, A. C. Strikwerda, S. M. Teo, X. Zhang, R. D. Averitt, and K. A. Nelson, “Time-resolved imaging of near-fields in THz antennas and direct quantitative measurement of field enhancements,” Opt. Express 20(8), 8551–8567 (2012).
[Crossref] [PubMed]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express 19(10), 9968–9975 (2011).
[Crossref] [PubMed]

A. C. Strikwerda, R. D. Averitt, K. Fan, X. Zhang, G. D. Metcalfe, and M. Wraback, “Electromagnetic composite-based reflecting terahertz waveplates,” Int. J. High Speed Electron. Syst. 20(03), 583–588 (2011).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “MEMS based structurally tunable metamaterials at terahertz frequencies,” J. Infr. Millim. THz Waves 32(5), 580–595 (2011).
[Crossref]

A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express 17(1), 136–149 (2009).
[Crossref] [PubMed]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

H. Tao, C. Bingham, A. C. Strikwerda, D. V. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Azad, A. K.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Basov, D. N.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Beigang, R.

B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, and M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100(22), 221101 (2012).
[Crossref]

Bingham, C.

D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express 19(10), 9968–9975 (2011).
[Crossref] [PubMed]

H. Tao, C. Bingham, A. C. Strikwerda, D. V. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Blanchard, F.

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

Bonifaci, N.

A. Peschot, N. Bonifaci, O. Lesaint, C. Valadares, and C. Poulain, “Deviations from the Paschen’s law at short gap distances from 100 nm to 10 μm in air and nitrogen,” Appl. Phys. Lett. 105(12), 123109 (2014).
[Crossref]

Brehm, M.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Cao, L.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Modulated Multiband Terahertz Perfect Absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Chae, B.-G.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Chen, H.-T.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Chen, W.

L. Liu, W. Chen, D. A. Powell, W. J. Padilla, F. Karouta, H. T. Hattori, D. N. Neshev, and I. V. Shadrivov, “Post-processing approach for tuning multi-layered metamaterials,” Appl. Phys. Lett. 105(15), 151102 (2014).
[Crossref]

Chiesi, L.

M. Vincent, S. W. Rowe, C. Poulain, D. Mariolle, L. Chiesi, F. Houzé, and J. Delamare, “Field emission and material transfer in microswitches electrical contacts,” Appl. Phys. Lett. 97(26), 263503 (2010).
[Crossref]

Cho, S. Y.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Dakin, T. W.

T. W. Dakin, “Breakdown of gases in uniform fields. Paschen curves for nitrogen, air and sulfur hexafluoride,” Electra 32, 61–82 (1974).

Delamare, J.

M. Vincent, S. W. Rowe, C. Poulain, D. Mariolle, L. Chiesi, F. Houzé, and J. Delamare, “Field emission and material transfer in microswitches electrical contacts,” Appl. Phys. Lett. 97(26), 263503 (2010).
[Crossref]

Doi, A.

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

Driscoll, T.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Egerton, R. F.

R. F. Egerton, R. McLeod, F. Wang, and M. Malac, “Basic questions related to electron-induced sputtering in the TEM,” Ultramicroscopy 110(8), 991–997 (2010).
[Crossref]

Fan, K.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Modulated Multiband Terahertz Perfect Absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

K. Fan, H. Y. Hwang, M. Liu, A. C. Strikwerda, A. Sternbach, J. Zhang, X. Zhao, X. Zhang, K. A. Nelson, and R. D. Averitt, “Nonlinear terahertz metamaterials via field-enhanced carrier dynamics in GaAs,” Phys. Rev. Lett. 110(21), 217404 (2013).
[Crossref] [PubMed]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

C. A. Werley, K. Fan, A. C. Strikwerda, S. M. Teo, X. Zhang, R. D. Averitt, and K. A. Nelson, “Time-resolved imaging of near-fields in THz antennas and direct quantitative measurement of field enhancements,” Opt. Express 20(8), 8551–8567 (2012).
[Crossref] [PubMed]

A. C. Strikwerda, R. D. Averitt, K. Fan, X. Zhang, G. D. Metcalfe, and M. Wraback, “Electromagnetic composite-based reflecting terahertz waveplates,” Int. J. High Speed Electron. Syst. 20(03), 583–588 (2011).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “MEMS based structurally tunable metamaterials at terahertz frequencies,” J. Infr. Millim. THz Waves 32(5), 580–595 (2011).
[Crossref]

A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express 17(1), 136–149 (2009).
[Crossref] [PubMed]

H. Tao, C. Bingham, A. C. Strikwerda, D. V. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Go, D. B.

P. Rumbach and D. B. Go, “Fundamental properties of field emission-driven direct current microdischarges,” J. Appl. Phys. 112(10), 103302 (2012).
[Crossref]

R. Tirumala and D. B. Go, “An analytical formulation for the modified Paschen’s curve,” Appl. Phys. Lett. 97(15), 151502 (2010).
[Crossref]

Gossard, A. C.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Hangyo, M.

Hattori, H. T.

L. Liu, W. Chen, D. A. Powell, W. J. Padilla, F. Karouta, H. T. Hattori, D. N. Neshev, and I. V. Shadrivov, “Post-processing approach for tuning multi-layered metamaterials,” Appl. Phys. Lett. 105(15), 151102 (2014).
[Crossref]

Hebling, J.

M. C. Hoffmann, J. Hebling, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, “Impact ionization in InSb probed by terahertz pump-terahertz probe spectroscopy,” Phys. Rev. B 79(16), 161201 (2009).
[Crossref]

Hirori, H.

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

H. Hirori, K. Shinokita, M. Shirai, S. Tani, Y. Kadoya, and K. Tanaka, “Extraordinary carrier multiplication gated by a picosecond electric field pulse,” Nat. Commun. 2, 594 (2011).
[Crossref] [PubMed]

Ho, P. S.

P. S. Ho and T. Kwok, “Electromigration in metals,” Rep. Prog. Phys. 52(3), 301–348 (1989).
[Crossref]

Hoffmann, M. C.

M. C. Hoffmann, J. Hebling, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, “Impact ionization in InSb probed by terahertz pump-terahertz probe spectroscopy,” Phys. Rev. B 79(16), 161201 (2009).
[Crossref]

Hourdakis, E.

E. Hourdakis, B. J. Simonds, and N. M. Zimmerman, “Submicron gap capacitor for measurement of breakdown voltage in air,” Rev. Sci. Instrum. 77(3), 034702 (2006).
[Crossref]

Houzé, F.

M. Vincent, S. W. Rowe, C. Poulain, D. Mariolle, L. Chiesi, F. Houzé, and J. Delamare, “Field emission and material transfer in microswitches electrical contacts,” Appl. Phys. Lett. 97(26), 263503 (2010).
[Crossref]

Hwang, H. Y.

K. Fan, H. Y. Hwang, M. Liu, A. C. Strikwerda, A. Sternbach, J. Zhang, X. Zhao, X. Zhang, K. A. Nelson, and R. D. Averitt, “Nonlinear terahertz metamaterials via field-enhanced carrier dynamics in GaAs,” Phys. Rev. Lett. 110(21), 217404 (2013).
[Crossref] [PubMed]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

M. C. Hoffmann, J. Hebling, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, “Impact ionization in InSb probed by terahertz pump-terahertz probe spectroscopy,” Phys. Rev. B 79(16), 161201 (2009).
[Crossref]

Itikawa, Y.

Y. Itikawa, “Cross Sections for Electron Collisions with Nitrogen Molecules,” J. Phys. Chem. Ref. Data 35(1), 31 (2006).
[Crossref]

Ito, H.

Iwaszczuk, K.

K. Iwaszczuk, M. Zalkovskij, A. C. Strikwerda, and P. U. Jepsen, “Nitrogen plasma formation through terahertz-induced ultrafast electron field emission,” Optica 2(2), 116–123 (2015).
[Crossref]

A. Tarekegne, K. Iwaszczuk, M. Zalkovskij, A. C. Strikwerda, and P. U. Jepsen, “Impact ionization in high resistivity silicon induced by an intense terahertz field enhanced by an antenna array,” New J. Phys. 17(4), 043002 (2015).
[Crossref]

Jepsen, P. U.

A. Tarekegne, K. Iwaszczuk, M. Zalkovskij, A. C. Strikwerda, and P. U. Jepsen, “Impact ionization in high resistivity silicon induced by an intense terahertz field enhanced by an antenna array,” New J. Phys. 17(4), 043002 (2015).
[Crossref]

K. Iwaszczuk, M. Zalkovskij, A. C. Strikwerda, and P. U. Jepsen, “Nitrogen plasma formation through terahertz-induced ultrafast electron field emission,” Optica 2(2), 116–123 (2015).
[Crossref]

Jokerst, N. M.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Kadoya, Y.

H. Hirori, K. Shinokita, M. Shirai, S. Tani, Y. Kadoya, and K. Tanaka, “Extraordinary carrier multiplication gated by a picosecond electric field pulse,” Nat. Commun. 2, 594 (2011).
[Crossref] [PubMed]

Karouta, F.

L. Liu, W. Chen, D. A. Powell, W. J. Padilla, F. Karouta, H. T. Hattori, D. N. Neshev, and I. V. Shadrivov, “Post-processing approach for tuning multi-layered metamaterials,” Appl. Phys. Lett. 105(15), 151102 (2014).
[Crossref]

Keilmann, F.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Keiser, G. R.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Modulated Multiband Terahertz Perfect Absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Kempa, K.

K. Kempa, “Percolation effects in the checkerboard Babinet series of metamaterial structures,” Phys. Status Solidi Rapid Res. Lett. 4(8-9), 218–220 (2010).
[Crossref]

Kim, H.-T.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Kitano, M.

Y. Nakata, Y. Urade, T. Nakanishi, and M. Kitano, “Plane-wave scattering by self-complementary metasurfaces in terms of electromagnetic duality and Babinet’s principle,” Phys. Rev. B 88(20), 205138 (2013).
[Crossref]

Kittiwatanakul, S.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Kwok, T.

P. S. Ho and T. Kwok, “Electromigration in metals,” Rep. Prog. Phys. 52(3), 301–348 (1989).
[Crossref]

Landy, N.

H. Tao, C. Bingham, A. C. Strikwerda, D. V. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Lesaint, O.

A. Peschot, N. Bonifaci, O. Lesaint, C. Valadares, and C. Poulain, “Deviations from the Paschen’s law at short gap distances from 100 nm to 10 μm in air and nitrogen,” Appl. Phys. Lett. 105(12), 123109 (2014).
[Crossref]

Li, J.-S.

M. Rahm, J.-S. Li, and W. J. Padilla, “THz Wave Modulators: A Brief Review on Different Modulation Techniques,” J. Infr. Millim. THz Waves 34(1), 1–27 (2013).
[Crossref]

Lim, A. K. L.

H. Park, A. K. L. Lim, A. P. Alivisatos, J. Park, and P. L. McEuen, “Fabrication of metallic electrodes with nanometer separation by electromigration,” Appl. Phys. Lett. 75(2), 301 (1999).
[Crossref]

Liu, L.

L. Liu, W. Chen, D. A. Powell, W. J. Padilla, F. Karouta, H. T. Hattori, D. N. Neshev, and I. V. Shadrivov, “Post-processing approach for tuning multi-layered metamaterials,” Appl. Phys. Lett. 105(15), 151102 (2014).
[Crossref]

Liu, M.

K. Fan, H. Y. Hwang, M. Liu, A. C. Strikwerda, A. Sternbach, J. Zhang, X. Zhao, X. Zhang, K. A. Nelson, and R. D. Averitt, “Nonlinear terahertz metamaterials via field-enhanced carrier dynamics in GaAs,” Phys. Rev. Lett. 110(21), 217404 (2013).
[Crossref] [PubMed]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Lu, J.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Malac, M.

R. F. Egerton, R. McLeod, F. Wang, and M. Malac, “Basic questions related to electron-induced sputtering in the TEM,” Ultramicroscopy 110(8), 991–997 (2010).
[Crossref]

Mariolle, D.

M. Vincent, S. W. Rowe, C. Poulain, D. Mariolle, L. Chiesi, F. Houzé, and J. Delamare, “Field emission and material transfer in microswitches electrical contacts,” Appl. Phys. Lett. 97(26), 263503 (2010).
[Crossref]

McEuen, P. L.

H. Park, A. K. L. Lim, A. P. Alivisatos, J. Park, and P. L. McEuen, “Fabrication of metallic electrodes with nanometer separation by electromigration,” Appl. Phys. Lett. 75(2), 301 (1999).
[Crossref]

McLeod, R.

R. F. Egerton, R. McLeod, F. Wang, and M. Malac, “Basic questions related to electron-induced sputtering in the TEM,” Ultramicroscopy 110(8), 991–997 (2010).
[Crossref]

Mesyats, G. A.

G. A. Mesyats, “A Cyclical Explosive Model of the Cathode Spot,” IEEE Trans. Electr. Insul. EI-20(4), 729–734 (1985).
[Crossref]

Metcalfe, G. D.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Modulated Multiband Terahertz Perfect Absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

A. C. Strikwerda, R. D. Averitt, K. Fan, X. Zhang, G. D. Metcalfe, and M. Wraback, “Electromagnetic composite-based reflecting terahertz waveplates,” Int. J. High Speed Electron. Syst. 20(03), 583–588 (2011).
[Crossref]

Miyamaru, F.

Miyazaki, H.

Nakanishi, T.

Y. Nakata, Y. Urade, T. Nakanishi, and M. Kitano, “Plane-wave scattering by self-complementary metasurfaces in terms of electromagnetic duality and Babinet’s principle,” Phys. Rev. B 88(20), 205138 (2013).
[Crossref]

Nakata, Y.

Y. Nakata, Y. Urade, T. Nakanishi, and M. Kitano, “Plane-wave scattering by self-complementary metasurfaces in terms of electromagnetic duality and Babinet’s principle,” Phys. Rev. B 88(20), 205138 (2013).
[Crossref]

Nelson, K. A.

K. Fan, H. Y. Hwang, M. Liu, A. C. Strikwerda, A. Sternbach, J. Zhang, X. Zhao, X. Zhang, K. A. Nelson, and R. D. Averitt, “Nonlinear terahertz metamaterials via field-enhanced carrier dynamics in GaAs,” Phys. Rev. Lett. 110(21), 217404 (2013).
[Crossref] [PubMed]

C. A. Werley, K. Fan, A. C. Strikwerda, S. M. Teo, X. Zhang, R. D. Averitt, and K. A. Nelson, “Time-resolved imaging of near-fields in THz antennas and direct quantitative measurement of field enhancements,” Opt. Express 20(8), 8551–8567 (2012).
[Crossref] [PubMed]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

M. C. Hoffmann, J. Hebling, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, “Impact ionization in InSb probed by terahertz pump-terahertz probe spectroscopy,” Phys. Rev. B 79(16), 161201 (2009).
[Crossref]

Neshev, D. N.

L. Liu, W. Chen, D. A. Powell, W. J. Padilla, F. Karouta, H. T. Hattori, D. N. Neshev, and I. V. Shadrivov, “Post-processing approach for tuning multi-layered metamaterials,” Appl. Phys. Lett. 105(15), 151102 (2014).
[Crossref]

Neu, J.

B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, and M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100(22), 221101 (2012).
[Crossref]

O’Hara, J. F.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Omenetto, F. G.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Padilla, W.

H. Tao, C. Bingham, A. C. Strikwerda, D. V. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Padilla, W. J.

L. Liu, W. Chen, D. A. Powell, W. J. Padilla, F. Karouta, H. T. Hattori, D. N. Neshev, and I. V. Shadrivov, “Post-processing approach for tuning multi-layered metamaterials,” Appl. Phys. Lett. 105(15), 151102 (2014).
[Crossref]

M. Rahm, J.-S. Li, and W. J. Padilla, “THz Wave Modulators: A Brief Review on Different Modulation Techniques,” J. Infr. Millim. THz Waves 34(1), 1–27 (2013).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “MEMS based structurally tunable metamaterials at terahertz frequencies,” J. Infr. Millim. THz Waves 32(5), 580–595 (2011).
[Crossref]

D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express 19(10), 9968–9975 (2011).
[Crossref] [PubMed]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Palit, S.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Park, H.

H. Park, A. K. L. Lim, A. P. Alivisatos, J. Park, and P. L. McEuen, “Fabrication of metallic electrodes with nanometer separation by electromigration,” Appl. Phys. Lett. 75(2), 301 (1999).
[Crossref]

Park, J.

H. Park, A. K. L. Lim, A. P. Alivisatos, J. Park, and P. L. McEuen, “Fabrication of metallic electrodes with nanometer separation by electromigration,” Appl. Phys. Lett. 75(2), 301 (1999).
[Crossref]

Peroulis, D.

A. Semnani, A. Venkattraman, A. A. Alexeenko, and D. Peroulis, “Frequency response of atmospheric pressure gas breakdown in micro/nanogaps,” Appl. Phys. Lett. 103(6), 063102 (2013).
[Crossref]

Peschot, A.

A. Peschot, N. Bonifaci, O. Lesaint, C. Valadares, and C. Poulain, “Deviations from the Paschen’s law at short gap distances from 100 nm to 10 μm in air and nitrogen,” Appl. Phys. Lett. 105(12), 123109 (2014).
[Crossref]

Pilon, D. V.

A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express 17(1), 136–149 (2009).
[Crossref] [PubMed]

H. Tao, C. Bingham, A. C. Strikwerda, D. V. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Planken, P. C. M.

Poulain, C.

A. Peschot, N. Bonifaci, O. Lesaint, C. Valadares, and C. Poulain, “Deviations from the Paschen’s law at short gap distances from 100 nm to 10 μm in air and nitrogen,” Appl. Phys. Lett. 105(12), 123109 (2014).
[Crossref]

M. Vincent, S. W. Rowe, C. Poulain, D. Mariolle, L. Chiesi, F. Houzé, and J. Delamare, “Field emission and material transfer in microswitches electrical contacts,” Appl. Phys. Lett. 97(26), 263503 (2010).
[Crossref]

Powell, D. A.

L. Liu, W. Chen, D. A. Powell, W. J. Padilla, F. Karouta, H. T. Hattori, D. N. Neshev, and I. V. Shadrivov, “Post-processing approach for tuning multi-layered metamaterials,” Appl. Phys. Lett. 105(15), 151102 (2014).
[Crossref]

Qazilbash, M. M.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Rahm, M.

M. Rahm, J.-S. Li, and W. J. Padilla, “THz Wave Modulators: A Brief Review on Different Modulation Techniques,” J. Infr. Millim. THz Waves 34(1), 1–27 (2013).
[Crossref]

B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, and M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100(22), 221101 (2012).
[Crossref]

Reinhard, B.

B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, and M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100(22), 221101 (2012).
[Crossref]

Rout, S.

Rowe, S. W.

M. Vincent, S. W. Rowe, C. Poulain, D. Mariolle, L. Chiesi, F. Houzé, and J. Delamare, “Field emission and material transfer in microswitches electrical contacts,” Appl. Phys. Lett. 97(26), 263503 (2010).
[Crossref]

Rumbach, P.

P. Rumbach and D. B. Go, “Fundamental properties of field emission-driven direct current microdischarges,” J. Appl. Phys. 112(10), 103302 (2012).
[Crossref]

Schmitt, K. M.

B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, and M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100(22), 221101 (2012).
[Crossref]

Semnani, A.

A. Semnani, A. Venkattraman, A. A. Alexeenko, and D. Peroulis, “Frequency response of atmospheric pressure gas breakdown in micro/nanogaps,” Appl. Phys. Lett. 103(6), 063102 (2013).
[Crossref]

Seren, H. R.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Modulated Multiband Terahertz Perfect Absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Shadrivov, I. V.

L. Liu, W. Chen, D. A. Powell, W. J. Padilla, F. Karouta, H. T. Hattori, D. N. Neshev, and I. V. Shadrivov, “Post-processing approach for tuning multi-layered metamaterials,” Appl. Phys. Lett. 105(15), 151102 (2014).
[Crossref]

Shinokita, K.

H. Hirori, K. Shinokita, M. Shirai, S. Tani, Y. Kadoya, and K. Tanaka, “Extraordinary carrier multiplication gated by a picosecond electric field pulse,” Nat. Commun. 2, 594 (2011).
[Crossref] [PubMed]

Shirai, M.

H. Hirori, K. Shinokita, M. Shirai, S. Tani, Y. Kadoya, and K. Tanaka, “Extraordinary carrier multiplication gated by a picosecond electric field pulse,” Nat. Commun. 2, 594 (2011).
[Crossref] [PubMed]

Shrekenhamer, D.

D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express 19(10), 9968–9975 (2011).
[Crossref] [PubMed]

H. Tao, C. Bingham, A. C. Strikwerda, D. V. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Shrekenhamer, D. B.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Simonds, B. J.

E. Hourdakis, B. J. Simonds, and N. M. Zimmerman, “Submicron gap capacitor for measurement of breakdown voltage in air,” Rev. Sci. Instrum. 77(3), 034702 (2006).
[Crossref]

Slade, P. G.

P. G. Slade and E. D. Taylor, “Electrical breakdown in atmospheric air between closely spaced (0.2 μm-40 μm) electrical contacts,” IEEE Trans. Compon. Packag. Tech. 25(3), 390–396 (2002).
[Crossref]

Smith, D. R.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Sonkusale, S.

Sternbach, A.

K. Fan, H. Y. Hwang, M. Liu, A. C. Strikwerda, A. Sternbach, J. Zhang, X. Zhao, X. Zhang, K. A. Nelson, and R. D. Averitt, “Nonlinear terahertz metamaterials via field-enhanced carrier dynamics in GaAs,” Phys. Rev. Lett. 110(21), 217404 (2013).
[Crossref] [PubMed]

Sternbach, A. J.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Strikwerda, A. C.

K. Iwaszczuk, M. Zalkovskij, A. C. Strikwerda, and P. U. Jepsen, “Nitrogen plasma formation through terahertz-induced ultrafast electron field emission,” Optica 2(2), 116–123 (2015).
[Crossref]

A. Tarekegne, K. Iwaszczuk, M. Zalkovskij, A. C. Strikwerda, and P. U. Jepsen, “Impact ionization in high resistivity silicon induced by an intense terahertz field enhanced by an antenna array,” New J. Phys. 17(4), 043002 (2015).
[Crossref]

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Modulated Multiband Terahertz Perfect Absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

K. Fan, H. Y. Hwang, M. Liu, A. C. Strikwerda, A. Sternbach, J. Zhang, X. Zhao, X. Zhang, K. A. Nelson, and R. D. Averitt, “Nonlinear terahertz metamaterials via field-enhanced carrier dynamics in GaAs,” Phys. Rev. Lett. 110(21), 217404 (2013).
[Crossref] [PubMed]

C. A. Werley, K. Fan, A. C. Strikwerda, S. M. Teo, X. Zhang, R. D. Averitt, and K. A. Nelson, “Time-resolved imaging of near-fields in THz antennas and direct quantitative measurement of field enhancements,” Opt. Express 20(8), 8551–8567 (2012).
[Crossref] [PubMed]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express 19(10), 9968–9975 (2011).
[Crossref] [PubMed]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “MEMS based structurally tunable metamaterials at terahertz frequencies,” J. Infr. Millim. THz Waves 32(5), 580–595 (2011).
[Crossref]

A. C. Strikwerda, R. D. Averitt, K. Fan, X. Zhang, G. D. Metcalfe, and M. Wraback, “Electromagnetic composite-based reflecting terahertz waveplates,” Int. J. High Speed Electron. Syst. 20(03), 583–588 (2011).
[Crossref]

A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express 17(1), 136–149 (2009).
[Crossref] [PubMed]

H. Tao, C. Bingham, A. C. Strikwerda, D. V. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Takano, K.

Takeda, M. W.

Tanaka, K.

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

H. Hirori, K. Shinokita, M. Shirai, S. Tani, Y. Kadoya, and K. Tanaka, “Extraordinary carrier multiplication gated by a picosecond electric field pulse,” Nat. Commun. 2, 594 (2011).
[Crossref] [PubMed]

Tani, S.

H. Hirori, K. Shinokita, M. Shirai, S. Tani, Y. Kadoya, and K. Tanaka, “Extraordinary carrier multiplication gated by a picosecond electric field pulse,” Nat. Commun. 2, 594 (2011).
[Crossref] [PubMed]

Tao, H.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “MEMS based structurally tunable metamaterials at terahertz frequencies,” J. Infr. Millim. THz Waves 32(5), 580–595 (2011).
[Crossref]

A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express 17(1), 136–149 (2009).
[Crossref] [PubMed]

H. Tao, C. Bingham, A. C. Strikwerda, D. V. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Tarekegne, A.

A. Tarekegne, K. Iwaszczuk, M. Zalkovskij, A. C. Strikwerda, and P. U. Jepsen, “Impact ionization in high resistivity silicon induced by an intense terahertz field enhanced by an antenna array,” New J. Phys. 17(4), 043002 (2015).
[Crossref]

Taylor, A. J.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Taylor, E. D.

P. G. Slade and E. D. Taylor, “Electrical breakdown in atmospheric air between closely spaced (0.2 μm-40 μm) electrical contacts,” IEEE Trans. Compon. Packag. Tech. 25(3), 390–396 (2002).
[Crossref]

Teo, S. M.

Tirumala, R.

R. Tirumala and D. B. Go, “An analytical formulation for the modified Paschen’s curve,” Appl. Phys. Lett. 97(15), 151502 (2010).
[Crossref]

Tokuda, Y.

Urade, Y.

Y. Nakata, Y. Urade, T. Nakanishi, and M. Kitano, “Plane-wave scattering by self-complementary metasurfaces in terms of electromagnetic duality and Babinet’s principle,” Phys. Rev. B 88(20), 205138 (2013).
[Crossref]

Valadares, C.

A. Peschot, N. Bonifaci, O. Lesaint, C. Valadares, and C. Poulain, “Deviations from the Paschen’s law at short gap distances from 100 nm to 10 μm in air and nitrogen,” Appl. Phys. Lett. 105(12), 123109 (2014).
[Crossref]

van der Valk, N. C. J.

Venkattraman, A.

A. Semnani, A. Venkattraman, A. A. Alexeenko, and D. Peroulis, “Frequency response of atmospheric pressure gas breakdown in micro/nanogaps,” Appl. Phys. Lett. 103(6), 063102 (2013).
[Crossref]

Verlet, L.

L. Verlet, “Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules,” Phys. Rev. 159(1), 98–103 (1967).
[Crossref]

Vincent, M.

M. Vincent, S. W. Rowe, C. Poulain, D. Mariolle, L. Chiesi, F. Houzé, and J. Delamare, “Field emission and material transfer in microswitches electrical contacts,” Appl. Phys. Lett. 97(26), 263503 (2010).
[Crossref]

Wang, F.

R. F. Egerton, R. McLeod, F. Wang, and M. Malac, “Basic questions related to electron-induced sputtering in the TEM,” Ultramicroscopy 110(8), 991–997 (2010).
[Crossref]

Wenckebach, T.

Werley, C. A.

West, K. G.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Wolf, S. A.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Wollrab, V.

B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, and M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100(22), 221101 (2012).
[Crossref]

Wraback, M.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Modulated Multiband Terahertz Perfect Absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

A. C. Strikwerda, R. D. Averitt, K. Fan, X. Zhang, G. D. Metcalfe, and M. Wraback, “Electromagnetic composite-based reflecting terahertz waveplates,” Int. J. High Speed Electron. Syst. 20(03), 583–588 (2011).
[Crossref]

Yeh, K.-L.

M. C. Hoffmann, J. Hebling, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, “Impact ionization in InSb probed by terahertz pump-terahertz probe spectroscopy,” Phys. Rev. B 79(16), 161201 (2009).
[Crossref]

Yun, S.-J.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Zalkovskij, M.

A. Tarekegne, K. Iwaszczuk, M. Zalkovskij, A. C. Strikwerda, and P. U. Jepsen, “Impact ionization in high resistivity silicon induced by an intense terahertz field enhanced by an antenna array,” New J. Phys. 17(4), 043002 (2015).
[Crossref]

K. Iwaszczuk, M. Zalkovskij, A. C. Strikwerda, and P. U. Jepsen, “Nitrogen plasma formation through terahertz-induced ultrafast electron field emission,” Optica 2(2), 116–123 (2015).
[Crossref]

Zhang, J.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Modulated Multiband Terahertz Perfect Absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

K. Fan, H. Y. Hwang, M. Liu, A. C. Strikwerda, A. Sternbach, J. Zhang, X. Zhao, X. Zhang, K. A. Nelson, and R. D. Averitt, “Nonlinear terahertz metamaterials via field-enhanced carrier dynamics in GaAs,” Phys. Rev. Lett. 110(21), 217404 (2013).
[Crossref] [PubMed]

Zhang, X.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Modulated Multiband Terahertz Perfect Absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

K. Fan, H. Y. Hwang, M. Liu, A. C. Strikwerda, A. Sternbach, J. Zhang, X. Zhao, X. Zhang, K. A. Nelson, and R. D. Averitt, “Nonlinear terahertz metamaterials via field-enhanced carrier dynamics in GaAs,” Phys. Rev. Lett. 110(21), 217404 (2013).
[Crossref] [PubMed]

C. A. Werley, K. Fan, A. C. Strikwerda, S. M. Teo, X. Zhang, R. D. Averitt, and K. A. Nelson, “Time-resolved imaging of near-fields in THz antennas and direct quantitative measurement of field enhancements,” Opt. Express 20(8), 8551–8567 (2012).
[Crossref] [PubMed]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

A. C. Strikwerda, R. D. Averitt, K. Fan, X. Zhang, G. D. Metcalfe, and M. Wraback, “Electromagnetic composite-based reflecting terahertz waveplates,” Int. J. High Speed Electron. Syst. 20(03), 583–588 (2011).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “MEMS based structurally tunable metamaterials at terahertz frequencies,” J. Infr. Millim. THz Waves 32(5), 580–595 (2011).
[Crossref]

A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express 17(1), 136–149 (2009).
[Crossref] [PubMed]

H. Tao, C. Bingham, A. C. Strikwerda, D. V. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Zhao, X.

K. Fan, H. Y. Hwang, M. Liu, A. C. Strikwerda, A. Sternbach, J. Zhang, X. Zhao, X. Zhang, K. A. Nelson, and R. D. Averitt, “Nonlinear terahertz metamaterials via field-enhanced carrier dynamics in GaAs,” Phys. Rev. Lett. 110(21), 217404 (2013).
[Crossref] [PubMed]

Zide, J. M. O.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Zimmerman, N. M.

E. Hourdakis, B. J. Simonds, and N. M. Zimmerman, “Submicron gap capacitor for measurement of breakdown voltage in air,” Rev. Sci. Instrum. 77(3), 034702 (2006).
[Crossref]

Adv. Opt. Mater. (1)

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Modulated Multiband Terahertz Perfect Absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Appl. Phys. Lett. (9)

B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, and M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100(22), 221101 (2012).
[Crossref]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

M. Vincent, S. W. Rowe, C. Poulain, D. Mariolle, L. Chiesi, F. Houzé, and J. Delamare, “Field emission and material transfer in microswitches electrical contacts,” Appl. Phys. Lett. 97(26), 263503 (2010).
[Crossref]

A. Semnani, A. Venkattraman, A. A. Alexeenko, and D. Peroulis, “Frequency response of atmospheric pressure gas breakdown in micro/nanogaps,” Appl. Phys. Lett. 103(6), 063102 (2013).
[Crossref]

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

L. Liu, W. Chen, D. A. Powell, W. J. Padilla, F. Karouta, H. T. Hattori, D. N. Neshev, and I. V. Shadrivov, “Post-processing approach for tuning multi-layered metamaterials,” Appl. Phys. Lett. 105(15), 151102 (2014).
[Crossref]

H. Park, A. K. L. Lim, A. P. Alivisatos, J. Park, and P. L. McEuen, “Fabrication of metallic electrodes with nanometer separation by electromigration,” Appl. Phys. Lett. 75(2), 301 (1999).
[Crossref]

R. Tirumala and D. B. Go, “An analytical formulation for the modified Paschen’s curve,” Appl. Phys. Lett. 97(15), 151502 (2010).
[Crossref]

A. Peschot, N. Bonifaci, O. Lesaint, C. Valadares, and C. Poulain, “Deviations from the Paschen’s law at short gap distances from 100 nm to 10 μm in air and nitrogen,” Appl. Phys. Lett. 105(12), 123109 (2014).
[Crossref]

Electra (1)

T. W. Dakin, “Breakdown of gases in uniform fields. Paschen curves for nitrogen, air and sulfur hexafluoride,” Electra 32, 61–82 (1974).

IEEE Trans. Compon. Packag. Tech. (1)

P. G. Slade and E. D. Taylor, “Electrical breakdown in atmospheric air between closely spaced (0.2 μm-40 μm) electrical contacts,” IEEE Trans. Compon. Packag. Tech. 25(3), 390–396 (2002).
[Crossref]

IEEE Trans. Electr. Insul. (1)

G. A. Mesyats, “A Cyclical Explosive Model of the Cathode Spot,” IEEE Trans. Electr. Insul. EI-20(4), 729–734 (1985).
[Crossref]

Int. J. High Speed Electron. Syst. (1)

A. C. Strikwerda, R. D. Averitt, K. Fan, X. Zhang, G. D. Metcalfe, and M. Wraback, “Electromagnetic composite-based reflecting terahertz waveplates,” Int. J. High Speed Electron. Syst. 20(03), 583–588 (2011).
[Crossref]

J. Appl. Phys. (1)

P. Rumbach and D. B. Go, “Fundamental properties of field emission-driven direct current microdischarges,” J. Appl. Phys. 112(10), 103302 (2012).
[Crossref]

J. Infr. Millim. THz Waves (2)

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “MEMS based structurally tunable metamaterials at terahertz frequencies,” J. Infr. Millim. THz Waves 32(5), 580–595 (2011).
[Crossref]

M. Rahm, J.-S. Li, and W. J. Padilla, “THz Wave Modulators: A Brief Review on Different Modulation Techniques,” J. Infr. Millim. THz Waves 34(1), 1–27 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Ref. Data (1)

Y. Itikawa, “Cross Sections for Electron Collisions with Nitrogen Molecules,” J. Phys. Chem. Ref. Data 35(1), 31 (2006).
[Crossref]

Nat. Commun. (1)

H. Hirori, K. Shinokita, M. Shirai, S. Tani, Y. Kadoya, and K. Tanaka, “Extraordinary carrier multiplication gated by a picosecond electric field pulse,” Nat. Commun. 2, 594 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Nature (2)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

New J. Phys. (1)

A. Tarekegne, K. Iwaszczuk, M. Zalkovskij, A. C. Strikwerda, and P. U. Jepsen, “Impact ionization in high resistivity silicon induced by an intense terahertz field enhanced by an antenna array,” New J. Phys. 17(4), 043002 (2015).
[Crossref]

Opt. Express (4)

Optica (1)

Phys. Rev. (1)

L. Verlet, “Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules,” Phys. Rev. 159(1), 98–103 (1967).
[Crossref]

Phys. Rev. B (3)

H. Tao, C. Bingham, A. C. Strikwerda, D. V. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

M. C. Hoffmann, J. Hebling, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, “Impact ionization in InSb probed by terahertz pump-terahertz probe spectroscopy,” Phys. Rev. B 79(16), 161201 (2009).
[Crossref]

Y. Nakata, Y. Urade, T. Nakanishi, and M. Kitano, “Plane-wave scattering by self-complementary metasurfaces in terms of electromagnetic duality and Babinet’s principle,” Phys. Rev. B 88(20), 205138 (2013).
[Crossref]

Phys. Rev. Lett. (1)

K. Fan, H. Y. Hwang, M. Liu, A. C. Strikwerda, A. Sternbach, J. Zhang, X. Zhao, X. Zhang, K. A. Nelson, and R. D. Averitt, “Nonlinear terahertz metamaterials via field-enhanced carrier dynamics in GaAs,” Phys. Rev. Lett. 110(21), 217404 (2013).
[Crossref] [PubMed]

Phys. Status Solidi Rapid Res. Lett. (1)

K. Kempa, “Percolation effects in the checkerboard Babinet series of metamaterial structures,” Phys. Status Solidi Rapid Res. Lett. 4(8-9), 218–220 (2010).
[Crossref]

Rep. Prog. Phys. (1)

P. S. Ho and T. Kwok, “Electromigration in metals,” Rep. Prog. Phys. 52(3), 301–348 (1989).
[Crossref]

Rev. Sci. Instrum. (1)

E. Hourdakis, B. J. Simonds, and N. M. Zimmerman, “Submicron gap capacitor for measurement of breakdown voltage in air,” Rev. Sci. Instrum. 77(3), 034702 (2006).
[Crossref]

Ultramicroscopy (1)

R. F. Egerton, R. McLeod, F. Wang, and M. Malac, “Basic questions related to electron-induced sputtering in the TEM,” Ultramicroscopy 110(8), 991–997 (2010).
[Crossref]

Other (3)

R. G. Forbes and J. H. B. Deane, “Reformulation of the standard theory of Fowler–Nordheim tunnelling and cold field electron emission,” Proc. R. Soc. A Math. Phys. Eng. Sci. 463, 2907–2927 (2007).
[Crossref]

Handbook of Chemistry and Physics, 95th Edition,” http://www.hbcpnetbase.com/ .

TOPSIL, http://www.topsil.com/en/silicon-products/silicon-wafer-products/hires TM.aspx.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 SEM images of an antenna gap region before (a) and after (b) exposure to the intense THz radiation. The excess material in (b) is gold, as confirmed by EDX. (c) A larger image that shows the antenna array, as well as a red square identifying the gap between the antenna pair.
Fig. 2
Fig. 2 (a) A subset of the THz-TDS setup. The HR-Si wafers that are inserted/removed from the beam line to enable high field exposure and low field THz-TDS measurement of the same location on a given sample.(b) The spectral content in the THz pulse. (c) The THz pulse in the time domain.
Fig. 3
Fig. 3 A combination of simulated (left column) and experimental (right column) results. (a) Several transmission spectra for varying resistances. (b) The unit cell with the variable resistor clearly identified in the antenna gap. (c) and (d) Broadband comparison for the 5 μm gap sample. (e) and (f) The ΔT/T for the scans in (c) and (d), respectively.
Fig. 4
Fig. 4 (a) The simulated ΔT/T as a function of resistance. (b) The experimental ΔT/T as a function of high field exposure time. The arrows above the plots correspond to the single frequency trend lines shown in Fig. 5.
Fig. 5
Fig. 5 Single frequency trend lines for simulation (a) and experiment at (b) 0.33, (d) 0.6 and (c) 1.0 THz. These lines correspond to vertical slices of the ΔT/T plots, and triangles are located at the top of Fig. 4(a) and 4(b) as a visual aid. The simulation is for the 5 μm gap antenna, but is characteristic of all gap sizes. (b)-(d) show the experimental changes in the samples of various gap size. The arrows in each plot demonstrate how samples with smaller gap sizes experience larger transmission changes in shorter times.
Fig. 6
Fig. 6 Position (a) and kinetic energy (b) of an electron vs time for the calculations from Eq. (3). The incident electric field is 200 kV/cm for all curves, except the one labeled 5 μm @ 140 which is 140 kV/cm. The total cross section (c) for free electrons in N2 and the expected collision time (d) are plotted vs the electron kinetic energy. Since the electrons have 100s of eV of energy during most of their journey, the region of 100 eV – 600 eV is highlighted in (d). The data in (c) is directly from [36] and (d) is calculated from (c).
Fig. 7
Fig. 7 (a) Simulated and (b) experimental transmission spectrum showing the effect of physically connecting the 75 μm checkerboard squares. The small arrow on the x-axes of both (b) and (d) is the low frequency cutoff discussed in the text. (c) SEM images after THz exposure. (d) ΔT/T for the two scans in (b).

Tables (1)

Tables Icon

Table 1 A summary of the electric field enhancements.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

frequency= c 2nL
R= ρLη A
r ¨ = q E ( r ,t) m e

Metrics