Abstract

We experimentally demonstrate a drastic increase in the rate of radiative process of a nanoscale physical system with implementation of the three physical effects: (1) the size effect, (2) plasmon resonance and (3) the optical Tamm state. As an example of a nanoscale physical system, we choose a single nanohole in Au film when the nanohole is embedded in a photonic crystal of a specific type that maintains an optical Tamm state and as a radiative process - a nonlinear photoluminescence. The efficiency of the nonlinear photoluminescence is increased by more than 107 times in compare to a bulk material.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single nanohole and photoluminescence: nanolocalized and wavelength tunable light source

Pavel N. Melentiev, Tatyana V. Konstantinova, Anton E. Afanasiev, Artur A. Kuzin, Andrey S. Baturin, and Victor I. Balykin
Opt. Express 20(17) 19474-19483 (2012)

Giant optical nonlinearity of a single plasmonic nanostructure

Pavel N. Melentiev, Anton E. Afanasiev, Artur A. Kuzin, Andrey S. Baturin, and Victor I. Balykin
Opt. Express 21(12) 13896-13905 (2013)

Electrodynamic calculations of spontaneous emission coupled to metal nanostructures of arbitrary shape: nanoantenna-enhanced fluorescence

Vincenzo Giannini, José A. Sánchez-Gil, Otto L. Muskens, and Jaime Gómez Rivas
J. Opt. Soc. Am. B 26(8) 1569-1577 (2009)

References

  • View by:
  • |
  • |
  • |

  1. G. Pake and E. Purcell, “Line shapes in nuclear paramagnetism,” Phys. Rev. 74, 1184 (1948).
    [Crossref]
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059 (1987).
    [Crossref] [PubMed]
  3. J. P. Wilcoxon, J. E. Martin, F. Parsapour, B. Wiedenman, and D. F. Kelley, “Photoluminescence from nanosize gold clusters,” J. Chem. Phys. 108, 9137 (1998).
    [Crossref]
  4. G. S. Kino, A. Sundaramurthy, P. J. Schuck, D. P. Fromm, and W. E. Moerner, in Surface Plasmon Nanophotonics, edited by M. L. Brongersma and P. G. Kik, eds. (Springer, 2007), p. 125.
    [Crossref]
  5. G. T. Boyd, Y. R. Yu, and Z. H. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B 33, 7923 (1986).
    [Crossref]
  6. M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
    [Crossref]
  7. P. Y. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104 (1978).
    [Crossref]
  8. A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B 74, 045128 (2006).
    [Crossref]
  9. C. R. Rosberg, D. N. Neshev, Y. V. Kartashov, R. A. Vicencio, W. Krolikowski, M. I. Molina, A. Mitchell, V. A. Vysloukh, L. Torner, and Y. S. Kivshar, “Nonlinear Tamm states in periodic photonic structures,” Opt. Photonics News 17, 29 (2006).
  10. M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
    [Crossref]
  11. H. Eckardt, L. Fritsche, and J. Noffke, “Self-consistent relativistic band structure of the noble metals,” J. Phys. F: Met. Phys. 14, 97 (1984).
    [Crossref]
  12. O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lematre, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107, 247402 (2011).
    [Crossref]
  13. S. V. Fomichev, D. F. Zaretsky, D. Bauer, and W. Becker, “Classical molecular-dynamics simulations of laser-irradiated clusters: nonlinear electron dynamics and resonance-enhanced low-order harmonic generation,” Phys. Rev. A 71, 013201 (2005).
    [Crossref]
  14. P. N. Melentiev, T. V. Konstantinova, A. E. Afanasiev, A. A. Kuzin, A. S. Baturin, A. V. Tausenev, A. V. Konyashchenko, and V. I. Balykin, “Single nano-hole as a new effective nonlinear element for third-harmonic generation,” Laser Phys. Lett. 10, 075901 (2013).
    [Crossref]
  15. A. Mooradian, “Photoluminescence of Metals,” Phys. Rev. Lett. 22, 185 (1969).
    [Crossref]
  16. E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70, 205424 (2004).
    [Crossref]
  17. D. Nagesha, G. Laevsky, P. Lampton, R. Banyal, C. Warner, C. DiMarzio, and S. Sridhar, “In vitro imaging of embryonic stem cells using multiphoton luminescence of gold nanoparticles,” Int. J. Nanomed 2, 813 (2007).
  18. N. Durr, T. Larson, D. Smith, B. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7, 941 (2007).
    [Crossref] [PubMed]
  19. A. Gobin, M. Lee, N. Halas, W. James, R. Drezek, and J. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929 (2007).
    [Crossref] [PubMed]
  20. P. N. Melentiev, T. V. Konstantinova, A. E. Afanasiev, A. A. Kuzin, A. S. Baturin, and V. I. Balykin, “Single nanohole and photoluminescence: nanolocalized and wavelength tunable light source,” Opt. Express 20, 19474 (2012).
    [Crossref] [PubMed]
  21. K. Imura, T. Nagahara, and H. Okamoto, “Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B 109, 13214 (2005).
    [Crossref]
  22. P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
    [Crossref]
  23. T. V. Shahbazyan, “Theory of plasmon-enhanced metal photoluminescence,” Nano Lett. 13, 194 (2003).
    [Crossref]
  24. P. N. Melentiev, A. E. Afanasiev, A. A. Kuzin, A. Zablotsky, A. S. Baturin, and V. I. Balykin, “Single nanohole and photonic crystal: wavelength selective enhanced transmission of light,” Opt. Express 19, 22743 (2011).
    [Crossref] [PubMed]
  25. I. V. Treshin, V. V. Klimov, P. N. Melentiev, and V. I. Balykin, “Optical Tamm state and extraordinary light transmission through a nanoaperture,” Phys. Rev. A,  88, 023832 (2013).
    [Crossref]
  26. V. M. Shalaev, C. Douketis, T. Haslett, T. Stuckless, and M. Moskovit, “Two-photon electron emission from smooth and rough metal films in the threshold region,” Phys. Rev. B 53, 11193 (1996).
    [Crossref]
  27. P. N. Melentiev, A. E. Afanasiev, and V. I. Balykin, “Optical Tamm state on a femtosecond time scale,” Phys. Rev. A 88, 053841 (2013).
    [Crossref]
  28. Monocrystalline Au films was supplied from www.phasis.ch

2013 (3)

P. N. Melentiev, T. V. Konstantinova, A. E. Afanasiev, A. A. Kuzin, A. S. Baturin, A. V. Tausenev, A. V. Konyashchenko, and V. I. Balykin, “Single nano-hole as a new effective nonlinear element for third-harmonic generation,” Laser Phys. Lett. 10, 075901 (2013).
[Crossref]

I. V. Treshin, V. V. Klimov, P. N. Melentiev, and V. I. Balykin, “Optical Tamm state and extraordinary light transmission through a nanoaperture,” Phys. Rev. A,  88, 023832 (2013).
[Crossref]

P. N. Melentiev, A. E. Afanasiev, and V. I. Balykin, “Optical Tamm state on a femtosecond time scale,” Phys. Rev. A 88, 053841 (2013).
[Crossref]

2012 (1)

2011 (2)

P. N. Melentiev, A. E. Afanasiev, A. A. Kuzin, A. Zablotsky, A. S. Baturin, and V. I. Balykin, “Single nanohole and photonic crystal: wavelength selective enhanced transmission of light,” Opt. Express 19, 22743 (2011).
[Crossref] [PubMed]

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lematre, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107, 247402 (2011).
[Crossref]

2009 (1)

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
[Crossref]

2007 (4)

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

D. Nagesha, G. Laevsky, P. Lampton, R. Banyal, C. Warner, C. DiMarzio, and S. Sridhar, “In vitro imaging of embryonic stem cells using multiphoton luminescence of gold nanoparticles,” Int. J. Nanomed 2, 813 (2007).

N. Durr, T. Larson, D. Smith, B. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7, 941 (2007).
[Crossref] [PubMed]

A. Gobin, M. Lee, N. Halas, W. James, R. Drezek, and J. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929 (2007).
[Crossref] [PubMed]

2006 (2)

A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B 74, 045128 (2006).
[Crossref]

C. R. Rosberg, D. N. Neshev, Y. V. Kartashov, R. A. Vicencio, W. Krolikowski, M. I. Molina, A. Mitchell, V. A. Vysloukh, L. Torner, and Y. S. Kivshar, “Nonlinear Tamm states in periodic photonic structures,” Opt. Photonics News 17, 29 (2006).

2005 (2)

S. V. Fomichev, D. F. Zaretsky, D. Bauer, and W. Becker, “Classical molecular-dynamics simulations of laser-irradiated clusters: nonlinear electron dynamics and resonance-enhanced low-order harmonic generation,” Phys. Rev. A 71, 013201 (2005).
[Crossref]

K. Imura, T. Nagahara, and H. Okamoto, “Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B 109, 13214 (2005).
[Crossref]

2004 (1)

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70, 205424 (2004).
[Crossref]

2003 (2)

T. V. Shahbazyan, “Theory of plasmon-enhanced metal photoluminescence,” Nano Lett. 13, 194 (2003).
[Crossref]

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
[Crossref]

1998 (1)

J. P. Wilcoxon, J. E. Martin, F. Parsapour, B. Wiedenman, and D. F. Kelley, “Photoluminescence from nanosize gold clusters,” J. Chem. Phys. 108, 9137 (1998).
[Crossref]

1996 (1)

V. M. Shalaev, C. Douketis, T. Haslett, T. Stuckless, and M. Moskovit, “Two-photon electron emission from smooth and rough metal films in the threshold region,” Phys. Rev. B 53, 11193 (1996).
[Crossref]

1987 (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059 (1987).
[Crossref] [PubMed]

1986 (1)

G. T. Boyd, Y. R. Yu, and Z. H. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B 33, 7923 (1986).
[Crossref]

1984 (1)

H. Eckardt, L. Fritsche, and J. Noffke, “Self-consistent relativistic band structure of the noble metals,” J. Phys. F: Met. Phys. 14, 97 (1984).
[Crossref]

1978 (1)

P. Y. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104 (1978).
[Crossref]

1969 (1)

A. Mooradian, “Photoluminescence of Metals,” Phys. Rev. Lett. 22, 185 (1969).
[Crossref]

1948 (1)

G. Pake and E. Purcell, “Line shapes in nuclear paramagnetism,” Phys. Rev. 74, 1184 (1948).
[Crossref]

Abram, R. A.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Afanasiev, A. E.

P. N. Melentiev, T. V. Konstantinova, A. E. Afanasiev, A. A. Kuzin, A. S. Baturin, A. V. Tausenev, A. V. Konyashchenko, and V. I. Balykin, “Single nano-hole as a new effective nonlinear element for third-harmonic generation,” Laser Phys. Lett. 10, 075901 (2013).
[Crossref]

P. N. Melentiev, A. E. Afanasiev, and V. I. Balykin, “Optical Tamm state on a femtosecond time scale,” Phys. Rev. A 88, 053841 (2013).
[Crossref]

P. N. Melentiev, T. V. Konstantinova, A. E. Afanasiev, A. A. Kuzin, A. S. Baturin, and V. I. Balykin, “Single nanohole and photoluminescence: nanolocalized and wavelength tunable light source,” Opt. Express 20, 19474 (2012).
[Crossref] [PubMed]

P. N. Melentiev, A. E. Afanasiev, A. A. Kuzin, A. Zablotsky, A. S. Baturin, and V. I. Balykin, “Single nanohole and photonic crystal: wavelength selective enhanced transmission of light,” Opt. Express 19, 22743 (2011).
[Crossref] [PubMed]

Balykin, V. I.

P. N. Melentiev, A. E. Afanasiev, and V. I. Balykin, “Optical Tamm state on a femtosecond time scale,” Phys. Rev. A 88, 053841 (2013).
[Crossref]

I. V. Treshin, V. V. Klimov, P. N. Melentiev, and V. I. Balykin, “Optical Tamm state and extraordinary light transmission through a nanoaperture,” Phys. Rev. A,  88, 023832 (2013).
[Crossref]

P. N. Melentiev, T. V. Konstantinova, A. E. Afanasiev, A. A. Kuzin, A. S. Baturin, A. V. Tausenev, A. V. Konyashchenko, and V. I. Balykin, “Single nano-hole as a new effective nonlinear element for third-harmonic generation,” Laser Phys. Lett. 10, 075901 (2013).
[Crossref]

P. N. Melentiev, T. V. Konstantinova, A. E. Afanasiev, A. A. Kuzin, A. S. Baturin, and V. I. Balykin, “Single nanohole and photoluminescence: nanolocalized and wavelength tunable light source,” Opt. Express 20, 19474 (2012).
[Crossref] [PubMed]

P. N. Melentiev, A. E. Afanasiev, A. A. Kuzin, A. Zablotsky, A. S. Baturin, and V. I. Balykin, “Single nanohole and photonic crystal: wavelength selective enhanced transmission of light,” Opt. Express 19, 22743 (2011).
[Crossref] [PubMed]

Banyal, R.

D. Nagesha, G. Laevsky, P. Lampton, R. Banyal, C. Warner, C. DiMarzio, and S. Sridhar, “In vitro imaging of embryonic stem cells using multiphoton luminescence of gold nanoparticles,” Int. J. Nanomed 2, 813 (2007).

Baturin, A. S.

Bauer, D.

S. V. Fomichev, D. F. Zaretsky, D. Bauer, and W. Becker, “Classical molecular-dynamics simulations of laser-irradiated clusters: nonlinear electron dynamics and resonance-enhanced low-order harmonic generation,” Phys. Rev. A 71, 013201 (2005).
[Crossref]

Becker, W.

S. V. Fomichev, D. F. Zaretsky, D. Bauer, and W. Becker, “Classical molecular-dynamics simulations of laser-irradiated clusters: nonlinear electron dynamics and resonance-enhanced low-order harmonic generation,” Phys. Rev. A 71, 013201 (2005).
[Crossref]

Bellessa, J.

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lematre, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107, 247402 (2011).
[Crossref]

Ben-Yakar, A.

N. Durr, T. Larson, D. Smith, B. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7, 941 (2007).
[Crossref] [PubMed]

Beversluis, M. R.

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
[Crossref]

Biagioni, P.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
[Crossref]

Bloch, J.

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lematre, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107, 247402 (2011).
[Crossref]

Bouhelier, A.

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
[Crossref]

Boyd, G. T.

G. T. Boyd, Y. R. Yu, and Z. H. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B 33, 7923 (1986).
[Crossref]

Brand, S.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Brida, D.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
[Crossref]

Caruso, F.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70, 205424 (2004).
[Crossref]

Celebrano, M.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
[Crossref]

Cerullo, G.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
[Crossref]

Chamberlain, J. M.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Cho, A. Y.

P. Y. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104 (1978).
[Crossref]

DiMarzio, C.

D. Nagesha, G. Laevsky, P. Lampton, R. Banyal, C. Warner, C. DiMarzio, and S. Sridhar, “In vitro imaging of embryonic stem cells using multiphoton luminescence of gold nanoparticles,” Int. J. Nanomed 2, 813 (2007).

Dorofeenko, A. V.

A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B 74, 045128 (2006).
[Crossref]

Douketis, C.

V. M. Shalaev, C. Douketis, T. Haslett, T. Stuckless, and M. Moskovit, “Two-photon electron emission from smooth and rough metal films in the threshold region,” Phys. Rev. B 53, 11193 (1996).
[Crossref]

Drezek, R.

A. Gobin, M. Lee, N. Halas, W. James, R. Drezek, and J. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929 (2007).
[Crossref] [PubMed]

Dulkeith, E.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70, 205424 (2004).
[Crossref]

Duò, L.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
[Crossref]

Durr, N.

N. Durr, T. Larson, D. Smith, B. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7, 941 (2007).
[Crossref] [PubMed]

Eckardt, H.

H. Eckardt, L. Fritsche, and J. Noffke, “Self-consistent relativistic band structure of the noble metals,” J. Phys. F: Met. Phys. 14, 97 (1984).
[Crossref]

Erokhin, S. G.

A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B 74, 045128 (2006).
[Crossref]

Feldmann, J.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70, 205424 (2004).
[Crossref]

Finazzi, M.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
[Crossref]

Fomichev, S. V.

S. V. Fomichev, D. F. Zaretsky, D. Bauer, and W. Becker, “Classical molecular-dynamics simulations of laser-irradiated clusters: nonlinear electron dynamics and resonance-enhanced low-order harmonic generation,” Phys. Rev. A 71, 013201 (2005).
[Crossref]

Fritsche, L.

H. Eckardt, L. Fritsche, and J. Noffke, “Self-consistent relativistic band structure of the noble metals,” J. Phys. F: Met. Phys. 14, 97 (1984).
[Crossref]

Fromm, D. P.

G. S. Kino, A. Sundaramurthy, P. J. Schuck, D. P. Fromm, and W. E. Moerner, in Surface Plasmon Nanophotonics, edited by M. L. Brongersma and P. G. Kik, eds. (Springer, 2007), p. 125.
[Crossref]

Gauthron, K.

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lematre, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107, 247402 (2011).
[Crossref]

Gazzano, O.

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lematre, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107, 247402 (2011).
[Crossref]

Gittins, D. I.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70, 205424 (2004).
[Crossref]

Gobin, A.

A. Gobin, M. Lee, N. Halas, W. James, R. Drezek, and J. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929 (2007).
[Crossref] [PubMed]

Grancini, G.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
[Crossref]

Granovsky, A. B.

A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B 74, 045128 (2006).
[Crossref]

Halas, N.

A. Gobin, M. Lee, N. Halas, W. James, R. Drezek, and J. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929 (2007).
[Crossref] [PubMed]

Haslett, T.

V. M. Shalaev, C. Douketis, T. Haslett, T. Stuckless, and M. Moskovit, “Two-photon electron emission from smooth and rough metal films in the threshold region,” Phys. Rev. B 53, 11193 (1996).
[Crossref]

Hecht, B.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
[Crossref]

Imura, K.

K. Imura, T. Nagahara, and H. Okamoto, “Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B 109, 13214 (2005).
[Crossref]

Inoue, M.

A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B 74, 045128 (2006).
[Crossref]

Iorsh, I.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

James, W.

A. Gobin, M. Lee, N. Halas, W. James, R. Drezek, and J. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929 (2007).
[Crossref] [PubMed]

Kaliteevski, M.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Kartashov, Y. V.

C. R. Rosberg, D. N. Neshev, Y. V. Kartashov, R. A. Vicencio, W. Krolikowski, M. I. Molina, A. Mitchell, V. A. Vysloukh, L. Torner, and Y. S. Kivshar, “Nonlinear Tamm states in periodic photonic structures,” Opt. Photonics News 17, 29 (2006).

Kavokin, A. V.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Kelley, D. F.

J. P. Wilcoxon, J. E. Martin, F. Parsapour, B. Wiedenman, and D. F. Kelley, “Photoluminescence from nanosize gold clusters,” J. Chem. Phys. 108, 9137 (1998).
[Crossref]

Kino, G. S.

G. S. Kino, A. Sundaramurthy, P. J. Schuck, D. P. Fromm, and W. E. Moerner, in Surface Plasmon Nanophotonics, edited by M. L. Brongersma and P. G. Kik, eds. (Springer, 2007), p. 125.
[Crossref]

Kivshar, Y. S.

C. R. Rosberg, D. N. Neshev, Y. V. Kartashov, R. A. Vicencio, W. Krolikowski, M. I. Molina, A. Mitchell, V. A. Vysloukh, L. Torner, and Y. S. Kivshar, “Nonlinear Tamm states in periodic photonic structures,” Opt. Photonics News 17, 29 (2006).

Klar, T. A.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70, 205424 (2004).
[Crossref]

Klimov, V. V.

I. V. Treshin, V. V. Klimov, P. N. Melentiev, and V. I. Balykin, “Optical Tamm state and extraordinary light transmission through a nanoaperture,” Phys. Rev. A,  88, 023832 (2013).
[Crossref]

Konstantinova, T. V.

P. N. Melentiev, T. V. Konstantinova, A. E. Afanasiev, A. A. Kuzin, A. S. Baturin, A. V. Tausenev, A. V. Konyashchenko, and V. I. Balykin, “Single nano-hole as a new effective nonlinear element for third-harmonic generation,” Laser Phys. Lett. 10, 075901 (2013).
[Crossref]

P. N. Melentiev, T. V. Konstantinova, A. E. Afanasiev, A. A. Kuzin, A. S. Baturin, and V. I. Balykin, “Single nanohole and photoluminescence: nanolocalized and wavelength tunable light source,” Opt. Express 20, 19474 (2012).
[Crossref] [PubMed]

Konyashchenko, A. V.

P. N. Melentiev, T. V. Konstantinova, A. E. Afanasiev, A. A. Kuzin, A. S. Baturin, A. V. Tausenev, A. V. Konyashchenko, and V. I. Balykin, “Single nano-hole as a new effective nonlinear element for third-harmonic generation,” Laser Phys. Lett. 10, 075901 (2013).
[Crossref]

Korgel, B.

N. Durr, T. Larson, D. Smith, B. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7, 941 (2007).
[Crossref] [PubMed]

Krolikowski, W.

C. R. Rosberg, D. N. Neshev, Y. V. Kartashov, R. A. Vicencio, W. Krolikowski, M. I. Molina, A. Mitchell, V. A. Vysloukh, L. Torner, and Y. S. Kivshar, “Nonlinear Tamm states in periodic photonic structures,” Opt. Photonics News 17, 29 (2006).

Kuzin, A. A.

Laevsky, G.

D. Nagesha, G. Laevsky, P. Lampton, R. Banyal, C. Warner, C. DiMarzio, and S. Sridhar, “In vitro imaging of embryonic stem cells using multiphoton luminescence of gold nanoparticles,” Int. J. Nanomed 2, 813 (2007).

Lampton, P.

D. Nagesha, G. Laevsky, P. Lampton, R. Banyal, C. Warner, C. DiMarzio, and S. Sridhar, “In vitro imaging of embryonic stem cells using multiphoton luminescence of gold nanoparticles,” Int. J. Nanomed 2, 813 (2007).

Larson, T.

N. Durr, T. Larson, D. Smith, B. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7, 941 (2007).
[Crossref] [PubMed]

Lee, M.

A. Gobin, M. Lee, N. Halas, W. James, R. Drezek, and J. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929 (2007).
[Crossref] [PubMed]

Lematre, A.

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lematre, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107, 247402 (2011).
[Crossref]

Lisyansky, A. A.

A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B 74, 045128 (2006).
[Crossref]

Martin, J. E.

J. P. Wilcoxon, J. E. Martin, F. Parsapour, B. Wiedenman, and D. F. Kelley, “Photoluminescence from nanosize gold clusters,” J. Chem. Phys. 108, 9137 (1998).
[Crossref]

Mátéfi-Tempfli, M.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
[Crossref]

Mátéfi-Tempfli, S.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
[Crossref]

Mayya, K. S.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70, 205424 (2004).
[Crossref]

Melentiev, P. N.

I. V. Treshin, V. V. Klimov, P. N. Melentiev, and V. I. Balykin, “Optical Tamm state and extraordinary light transmission through a nanoaperture,” Phys. Rev. A,  88, 023832 (2013).
[Crossref]

P. N. Melentiev, A. E. Afanasiev, and V. I. Balykin, “Optical Tamm state on a femtosecond time scale,” Phys. Rev. A 88, 053841 (2013).
[Crossref]

P. N. Melentiev, T. V. Konstantinova, A. E. Afanasiev, A. A. Kuzin, A. S. Baturin, A. V. Tausenev, A. V. Konyashchenko, and V. I. Balykin, “Single nano-hole as a new effective nonlinear element for third-harmonic generation,” Laser Phys. Lett. 10, 075901 (2013).
[Crossref]

P. N. Melentiev, T. V. Konstantinova, A. E. Afanasiev, A. A. Kuzin, A. S. Baturin, and V. I. Balykin, “Single nanohole and photoluminescence: nanolocalized and wavelength tunable light source,” Opt. Express 20, 19474 (2012).
[Crossref] [PubMed]

P. N. Melentiev, A. E. Afanasiev, A. A. Kuzin, A. Zablotsky, A. S. Baturin, and V. I. Balykin, “Single nanohole and photonic crystal: wavelength selective enhanced transmission of light,” Opt. Express 19, 22743 (2011).
[Crossref] [PubMed]

Merzlikin, A. M.

A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B 74, 045128 (2006).
[Crossref]

Michaelis de Vasconcellos, S.

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lematre, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107, 247402 (2011).
[Crossref]

Mitchell, A.

C. R. Rosberg, D. N. Neshev, Y. V. Kartashov, R. A. Vicencio, W. Krolikowski, M. I. Molina, A. Mitchell, V. A. Vysloukh, L. Torner, and Y. S. Kivshar, “Nonlinear Tamm states in periodic photonic structures,” Opt. Photonics News 17, 29 (2006).

Moerner, W. E.

G. S. Kino, A. Sundaramurthy, P. J. Schuck, D. P. Fromm, and W. E. Moerner, in Surface Plasmon Nanophotonics, edited by M. L. Brongersma and P. G. Kik, eds. (Springer, 2007), p. 125.
[Crossref]

Molina, M. I.

C. R. Rosberg, D. N. Neshev, Y. V. Kartashov, R. A. Vicencio, W. Krolikowski, M. I. Molina, A. Mitchell, V. A. Vysloukh, L. Torner, and Y. S. Kivshar, “Nonlinear Tamm states in periodic photonic structures,” Opt. Photonics News 17, 29 (2006).

Mooradian, A.

A. Mooradian, “Photoluminescence of Metals,” Phys. Rev. Lett. 22, 185 (1969).
[Crossref]

Moskovit, M.

V. M. Shalaev, C. Douketis, T. Haslett, T. Stuckless, and M. Moskovit, “Two-photon electron emission from smooth and rough metal films in the threshold region,” Phys. Rev. B 53, 11193 (1996).
[Crossref]

Nagahara, T.

K. Imura, T. Nagahara, and H. Okamoto, “Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B 109, 13214 (2005).
[Crossref]

Nagesha, D.

D. Nagesha, G. Laevsky, P. Lampton, R. Banyal, C. Warner, C. DiMarzio, and S. Sridhar, “In vitro imaging of embryonic stem cells using multiphoton luminescence of gold nanoparticles,” Int. J. Nanomed 2, 813 (2007).

Neshev, D. N.

C. R. Rosberg, D. N. Neshev, Y. V. Kartashov, R. A. Vicencio, W. Krolikowski, M. I. Molina, A. Mitchell, V. A. Vysloukh, L. Torner, and Y. S. Kivshar, “Nonlinear Tamm states in periodic photonic structures,” Opt. Photonics News 17, 29 (2006).

Niedereichholz, T.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70, 205424 (2004).
[Crossref]

Noffke, J.

H. Eckardt, L. Fritsche, and J. Noffke, “Self-consistent relativistic band structure of the noble metals,” J. Phys. F: Met. Phys. 14, 97 (1984).
[Crossref]

Novotny, L.

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
[Crossref]

Okamoto, H.

K. Imura, T. Nagahara, and H. Okamoto, “Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B 109, 13214 (2005).
[Crossref]

Pake, G.

G. Pake and E. Purcell, “Line shapes in nuclear paramagnetism,” Phys. Rev. 74, 1184 (1948).
[Crossref]

Parsapour, F.

J. P. Wilcoxon, J. E. Martin, F. Parsapour, B. Wiedenman, and D. F. Kelley, “Photoluminescence from nanosize gold clusters,” J. Chem. Phys. 108, 9137 (1998).
[Crossref]

Purcell, E.

G. Pake and E. Purcell, “Line shapes in nuclear paramagnetism,” Phys. Rev. 74, 1184 (1948).
[Crossref]

Rosberg, C. R.

C. R. Rosberg, D. N. Neshev, Y. V. Kartashov, R. A. Vicencio, W. Krolikowski, M. I. Molina, A. Mitchell, V. A. Vysloukh, L. Torner, and Y. S. Kivshar, “Nonlinear Tamm states in periodic photonic structures,” Opt. Photonics News 17, 29 (2006).

Savoini, M.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
[Crossref]

Schuck, P. J.

G. S. Kino, A. Sundaramurthy, P. J. Schuck, D. P. Fromm, and W. E. Moerner, in Surface Plasmon Nanophotonics, edited by M. L. Brongersma and P. G. Kik, eds. (Springer, 2007), p. 125.
[Crossref]

Senellart, P.

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lematre, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107, 247402 (2011).
[Crossref]

Shahbazyan, T. V.

T. V. Shahbazyan, “Theory of plasmon-enhanced metal photoluminescence,” Nano Lett. 13, 194 (2003).
[Crossref]

Shalaev, V. M.

V. M. Shalaev, C. Douketis, T. Haslett, T. Stuckless, and M. Moskovit, “Two-photon electron emission from smooth and rough metal films in the threshold region,” Phys. Rev. B 53, 11193 (1996).
[Crossref]

Shelykh, I. A.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Shen, Z. H.

G. T. Boyd, Y. R. Yu, and Z. H. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B 33, 7923 (1986).
[Crossref]

Smith, D.

N. Durr, T. Larson, D. Smith, B. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7, 941 (2007).
[Crossref] [PubMed]

Sokolov, K.

N. Durr, T. Larson, D. Smith, B. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7, 941 (2007).
[Crossref] [PubMed]

Sridhar, S.

D. Nagesha, G. Laevsky, P. Lampton, R. Banyal, C. Warner, C. DiMarzio, and S. Sridhar, “In vitro imaging of embryonic stem cells using multiphoton luminescence of gold nanoparticles,” Int. J. Nanomed 2, 813 (2007).

Stuckless, T.

V. M. Shalaev, C. Douketis, T. Haslett, T. Stuckless, and M. Moskovit, “Two-photon electron emission from smooth and rough metal films in the threshold region,” Phys. Rev. B 53, 11193 (1996).
[Crossref]

Sundaramurthy, A.

G. S. Kino, A. Sundaramurthy, P. J. Schuck, D. P. Fromm, and W. E. Moerner, in Surface Plasmon Nanophotonics, edited by M. L. Brongersma and P. G. Kik, eds. (Springer, 2007), p. 125.
[Crossref]

Symonds, C.

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lematre, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107, 247402 (2011).
[Crossref]

Tausenev, A. V.

P. N. Melentiev, T. V. Konstantinova, A. E. Afanasiev, A. A. Kuzin, A. S. Baturin, A. V. Tausenev, A. V. Konyashchenko, and V. I. Balykin, “Single nano-hole as a new effective nonlinear element for third-harmonic generation,” Laser Phys. Lett. 10, 075901 (2013).
[Crossref]

Torner, L.

C. R. Rosberg, D. N. Neshev, Y. V. Kartashov, R. A. Vicencio, W. Krolikowski, M. I. Molina, A. Mitchell, V. A. Vysloukh, L. Torner, and Y. S. Kivshar, “Nonlinear Tamm states in periodic photonic structures,” Opt. Photonics News 17, 29 (2006).

Treshin, I. V.

I. V. Treshin, V. V. Klimov, P. N. Melentiev, and V. I. Balykin, “Optical Tamm state and extraordinary light transmission through a nanoaperture,” Phys. Rev. A,  88, 023832 (2013).
[Crossref]

Vicencio, R. A.

C. R. Rosberg, D. N. Neshev, Y. V. Kartashov, R. A. Vicencio, W. Krolikowski, M. I. Molina, A. Mitchell, V. A. Vysloukh, L. Torner, and Y. S. Kivshar, “Nonlinear Tamm states in periodic photonic structures,” Opt. Photonics News 17, 29 (2006).

Vinogradov, A. P.

A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B 74, 045128 (2006).
[Crossref]

Voisin, P.

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lematre, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107, 247402 (2011).
[Crossref]

von Plessen, G.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70, 205424 (2004).
[Crossref]

Vysloukh, V. A.

C. R. Rosberg, D. N. Neshev, Y. V. Kartashov, R. A. Vicencio, W. Krolikowski, M. I. Molina, A. Mitchell, V. A. Vysloukh, L. Torner, and Y. S. Kivshar, “Nonlinear Tamm states in periodic photonic structures,” Opt. Photonics News 17, 29 (2006).

Warner, C.

D. Nagesha, G. Laevsky, P. Lampton, R. Banyal, C. Warner, C. DiMarzio, and S. Sridhar, “In vitro imaging of embryonic stem cells using multiphoton luminescence of gold nanoparticles,” Int. J. Nanomed 2, 813 (2007).

West, J.

A. Gobin, M. Lee, N. Halas, W. James, R. Drezek, and J. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929 (2007).
[Crossref] [PubMed]

Wiedenman, B.

J. P. Wilcoxon, J. E. Martin, F. Parsapour, B. Wiedenman, and D. F. Kelley, “Photoluminescence from nanosize gold clusters,” J. Chem. Phys. 108, 9137 (1998).
[Crossref]

Wilcoxon, J. P.

J. P. Wilcoxon, J. E. Martin, F. Parsapour, B. Wiedenman, and D. F. Kelley, “Photoluminescence from nanosize gold clusters,” J. Chem. Phys. 108, 9137 (1998).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059 (1987).
[Crossref] [PubMed]

Yariv, A.

P. Y. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104 (1978).
[Crossref]

Yeh, P. Y.

P. Y. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104 (1978).
[Crossref]

Yu, Y. R.

G. T. Boyd, Y. R. Yu, and Z. H. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B 33, 7923 (1986).
[Crossref]

Zablotsky, A.

Zaretsky, D. F.

S. V. Fomichev, D. F. Zaretsky, D. Bauer, and W. Becker, “Classical molecular-dynamics simulations of laser-irradiated clusters: nonlinear electron dynamics and resonance-enhanced low-order harmonic generation,” Phys. Rev. A 71, 013201 (2005).
[Crossref]

Appl. Phys. Lett. (1)

P. Y. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104 (1978).
[Crossref]

Int. J. Nanomed (1)

D. Nagesha, G. Laevsky, P. Lampton, R. Banyal, C. Warner, C. DiMarzio, and S. Sridhar, “In vitro imaging of embryonic stem cells using multiphoton luminescence of gold nanoparticles,” Int. J. Nanomed 2, 813 (2007).

J. Chem. Phys. (1)

J. P. Wilcoxon, J. E. Martin, F. Parsapour, B. Wiedenman, and D. F. Kelley, “Photoluminescence from nanosize gold clusters,” J. Chem. Phys. 108, 9137 (1998).
[Crossref]

J. Phys. Chem. B (1)

K. Imura, T. Nagahara, and H. Okamoto, “Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B 109, 13214 (2005).
[Crossref]

J. Phys. F: Met. Phys. (1)

H. Eckardt, L. Fritsche, and J. Noffke, “Self-consistent relativistic band structure of the noble metals,” J. Phys. F: Met. Phys. 14, 97 (1984).
[Crossref]

Laser Phys. Lett. (1)

P. N. Melentiev, T. V. Konstantinova, A. E. Afanasiev, A. A. Kuzin, A. S. Baturin, A. V. Tausenev, A. V. Konyashchenko, and V. I. Balykin, “Single nano-hole as a new effective nonlinear element for third-harmonic generation,” Laser Phys. Lett. 10, 075901 (2013).
[Crossref]

Nano Lett. (3)

N. Durr, T. Larson, D. Smith, B. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7, 941 (2007).
[Crossref] [PubMed]

A. Gobin, M. Lee, N. Halas, W. James, R. Drezek, and J. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929 (2007).
[Crossref] [PubMed]

T. V. Shahbazyan, “Theory of plasmon-enhanced metal photoluminescence,” Nano Lett. 13, 194 (2003).
[Crossref]

Opt. Express (2)

Opt. Photonics News (1)

C. R. Rosberg, D. N. Neshev, Y. V. Kartashov, R. A. Vicencio, W. Krolikowski, M. I. Molina, A. Mitchell, V. A. Vysloukh, L. Torner, and Y. S. Kivshar, “Nonlinear Tamm states in periodic photonic structures,” Opt. Photonics News 17, 29 (2006).

Phys. Rev. (1)

G. Pake and E. Purcell, “Line shapes in nuclear paramagnetism,” Phys. Rev. 74, 1184 (1948).
[Crossref]

Phys. Rev. A (3)

S. V. Fomichev, D. F. Zaretsky, D. Bauer, and W. Becker, “Classical molecular-dynamics simulations of laser-irradiated clusters: nonlinear electron dynamics and resonance-enhanced low-order harmonic generation,” Phys. Rev. A 71, 013201 (2005).
[Crossref]

I. V. Treshin, V. V. Klimov, P. N. Melentiev, and V. I. Balykin, “Optical Tamm state and extraordinary light transmission through a nanoaperture,” Phys. Rev. A,  88, 023832 (2013).
[Crossref]

P. N. Melentiev, A. E. Afanasiev, and V. I. Balykin, “Optical Tamm state on a femtosecond time scale,” Phys. Rev. A 88, 053841 (2013).
[Crossref]

Phys. Rev. B (7)

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
[Crossref]

V. M. Shalaev, C. Douketis, T. Haslett, T. Stuckless, and M. Moskovit, “Two-photon electron emission from smooth and rough metal films in the threshold region,” Phys. Rev. B 53, 11193 (1996).
[Crossref]

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70, 205424 (2004).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B 74, 045128 (2006).
[Crossref]

G. T. Boyd, Y. R. Yu, and Z. H. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B 33, 7923 (1986).
[Crossref]

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
[Crossref]

Phys. Rev. Lett. (3)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059 (1987).
[Crossref] [PubMed]

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lematre, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107, 247402 (2011).
[Crossref]

A. Mooradian, “Photoluminescence of Metals,” Phys. Rev. Lett. 22, 185 (1969).
[Crossref]

Other (2)

G. S. Kino, A. Sundaramurthy, P. J. Schuck, D. P. Fromm, and W. E. Moerner, in Surface Plasmon Nanophotonics, edited by M. L. Brongersma and P. G. Kik, eds. (Springer, 2007), p. 125.
[Crossref]

Monocrystalline Au films was supplied from www.phasis.ch

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the band structure of Au near the L symmetry point of the first Brillouin zone [11]. Two photons excitation leads to the appearance of a hole in the d band. After nonradiative relaxation of the hole from the d band and electron from the sp band, an electron-hole recombination with spontaneous radiation of a photon (PL) can occur.
Fig. 2
Fig. 2 (a) Schematic representation of the object of study, ”PC-metal nanofilm”, (b) computer simulation by the FDTD method of the spatial distribution of the electromagnetic field of the OTS excited at its resonance wavelength λ = 780 nm, and (c) its cross section.
Fig. 3
Fig. 3 The efficiency of 2PPL emission measured from nanoholes of different diameters made in 200 nm thick Au film on a quartz substrate.
Fig. 4
Fig. 4 (a) Setup for microscopic imaging and transmission spectroscopy: (1) 10x/0.25 objective that focuses excitation radiation, (2) 2D piezo stage with feedback sensors, (3) 40x/0.65 PL - collecting objective, (4) interference filter to cut off the excitation radiation, and (5) flipping mirror. (b) SEM image of a nanohole array made in an Au layer of a PC. An enlarged image of one nanohole is shown in the inset.
Fig. 5
Fig. 5 Power dependence of the multiphoton PL emission measured from a single nanohole in Au nanofilm. The inset (a) presents: (i) the PL spectrum from the nanohole (black line); (ii) excitation laser (gray line), and (iii) transmission spectrum of nanohole (red line). The inset (b) presents measurements of spectral transmittance of laser light (black curve) as well as 2PPL signal (blue curve) from a single nanohole in ”PC-metal nanofilm”.
Fig. 6
Fig. 6 2PPL from a nanofilm and a single nanohole at identical parameters of laser irradiation (λ = 780 nm, P = 1 mW): (a) 2PPL from a nanofilm; (b) 2PPL from a nanohole in a metal film (black curve) and 2PPL from a nanohole in a ”PC-metal nanofilm” (gray curve); (c) 2PPL from a nanohole in a ”PC-metal nanofilm” in full scale. The insets show the schemes of excitation of nanoholes by the laser radiation and corresponding two - dimensional images.

Metrics