Abstract

We present a method to mitigate the chromatic dispersion (CD)-induced power fading effect (PFE) in high-speed and short-reach carrier-less amplitude and phase (CAP) systems using the degenerate four-wave mixing (DFWM) effect and a decision feedback equalizer (DFE). Theoretical and numerical investigations reveal that DFWM components produced by the interaction between the main carrier and the signal sideband help to mitigate PFE in direct detection systems. By optimizing the launch power, a maximum reach of 60 km in single mode fiber (SMF-e + ) at 1530nm is experimentally demonstrated for a 40 Gbit/s CAP32 system. In addition, we study the performance of a decision feedback equalizer (DFE) and a traditional linear equalizer (LE) in a channel with non-flat in-band frequency response. The superior PFE tolerance of DFE is experimentally validated, and thereby, the maximum reach is extended to 80 km. To the best of our knowledge, this is the twice the longest transmission distance reported so far for a single-carrier 40 Gbit/s CAP system around 1550 nm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
C-band 56-Gb/s PAM4 transmission over 80-km SSMF with electrical equalization at receiver

Xizi Tang, Shuangyue Liu, Zhongliang Sun, Han Cui, Xuekai Xu, Jia Qi, Mengqi Guo, Yueming Lu, and Yaojun Qiao
Opt. Express 27(18) 25708-25717 (2019)

Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s Short Reach Optical Transmission Systems

Kangping Zhong, Xian Zhou, Tao Gui, Li Tao, Yuliang Gao, Wei Chen, Jiangwei Man, Li Zeng, Alan Pak Tao Lau, and Chao Lu
Opt. Express 23(2) 1176-1189 (2015)

Experimental demonstration of 24-Gb/s CAP-64QAM radio-over-fiber system over 40-GHz mm-wave fiber-wireless transmission

Junwen Zhang, Jianjun Yu, Nan Chi, Fan Li, and Xinying Li
Opt. Express 21(22) 26888-26895 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. L. Wei, J. D. Ingham, D. G. Cunningham, R. V. Penty, and I. H. White, “Performance and power dissipation comparisons between 28 Gb/s NRZ, PAM, CAP and optical OFDM systems for data communication applications,” J. Lightwave Technol. 30(20), 3273–3280 (2012).
    [Crossref]
  2. A. Ghiasi and B. Welch, IEEE 802.3bm Fiber Optic Task Force, Sept. 2012.
  3. T. Gui, C. Li, Q. Yang, X. Xiao, L. Meng, C. Li, X. Yi, C. Jin, and Z. Li, “Auto bias control technique for optical OFDM transmitter with bias dithering,” Opt. Express 21(5), 5833–5841 (2013).
    [Crossref] [PubMed]
  4. Y. Bao, Z. Li, J. Li, X. Feng, B. O. Guan, and G. Li, “Nonlinearity mitigation for high-speed optical OFDM transmitters using digital pre-distortion,” Opt. Express 21(6), 7354–7361 (2013).
    [Crossref] [PubMed]
  5. J. D. Ingham, R. V. Penty, and I. H. White, “40 Gb/s carrierless amplitude and phase modulation for low-cost optical data communication links,” in Proc. Opt. Fiber Commun. (OFC), Los Angeles, CA, Mar. 2011, Paper OThZ3.
  6. L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “Experimental demonstration of 10 Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express 21(5), 6459–6465 (2013).
    [Crossref] [PubMed]
  7. R. Rodes, M. Wieckowski, T. T. Pham, J. B. Jensen, J. Turkiewicz, J. Siuzdak, and I. T. Monroy, “Carrierless amplitude phase modulation of VCSEL with 4 bit/s/Hz spectral efficiency for use in WDM-PON,” Opt. Express 19(27), 26551–26556 (2011).
    [Crossref] [PubMed]
  8. L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
    [Crossref]
  9. L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40 Gb/s CAP32 system with DD-LMS equalizer for short reach optical transmissions,” IEEE Photon. Technol. Lett. 25(23), 2346–2349 (2013).
    [Crossref]
  10. J. Zhang, J. Yu, F. Li, N. Chi, Z. Dong, and X. Li, “11 × 5 × 9.3Gb/s WDM-CAP-PON based on optical single-side band multi-level multi-band carrier-less amplitude and phase modulation with direct detection,” Opt. Express 21(16), 18842–18848 (2013).
    [PubMed]
  11. M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, and I. T. Monroy, “Towards 400GBASE 4-lane solution using direct detection of multiCAP signal in 14 GHz bandwidth per lane,” in Proc. Opt. Fiber Commun. (OFC), Anaheim, CA, Mar. 2013, Paper PDP5C.10.
  12. J. Wei, Q. Cheng, D. G. Cunningham, R. V. Penty, and I. H. White, “100-Gb/s hybrid multiband CAP/QAM signal transmission over a single wavelength,” Opt. Express 33(2), 415–423 (2015).
  13. H. Kim, “EML-based optical single sideband transmitter,” IEEE Photon. Technol. Lett. 20(4), 243–245 (2008).
    [Crossref]
  14. A. S. Karar, J. C. Cartledge, J. Harley, and K. Roberts, “Electronic pre-compensation for a 10.7 Gb/s system employing a directly modulated laser,” J. Lightwave Technol. 29(13), 2069–2076 (2011).
    [Crossref]
  15. J. L. Wei, J. D. Ingham, Q. Cheng, D. G. Cunningham, R. V. Penty, and I. H. White, “Experimental demonstration of optical data links using a hybrid CAP/QAM modulation scheme,” Opt. Lett. 39(6), 1402–1405 (2014).
    [Crossref] [PubMed]
  16. R. Zlatanovici, A. Manolescu, L. Kabulepa, and M. Glesner, “Decision feedback equalizers for carrierless amplitude/phase modulation receivers,” in Proc. Semicond. Conf., Sinaia, Romania, 1, 127–130 (1999).
    [Crossref]
  17. ITU, Rec. G.975.1: Forward error correction for high bit-rate DWDM submarine systems (2004).
  18. D. J. F. Barros and J. M. Kahn, “Comparison of orthogonal frequency-division multiplexing and on-off keying in amplified direct-detection single-mode fiber systems,” J. Lightwave Technol. 28(12), 1811–1820 (2010).
    [Crossref]
  19. K. Inoue, “Phase-mismatching characteristic of four-wave mixing in fiber lines with multistage optical amplifiers,” Opt. Lett. 17(11), 801–803 (1992).
    [Crossref] [PubMed]
  20. G. P. Arawal, Nonlinear Fiber Optics (Elsevier, 2013), 5th ed.
  21. J. He, A. Li, X. Chen, and W. Shieh, “Fiber nonlinearity impact on direct-detection block-wise phase switched systems,” J. Lightwave Technol. 32(10), 1872–1876 (2014).
    [Crossref]
  22. J. M. Buset, Z. A. El-Sahn, and D. V. Plant, “Experimental demonstration of a 10 Gb/s subcarrier multiplexed WDM PON,” IEEE Photon. Technol. Lett. 25(15), 1435–1438 (2013).
    [Crossref]
  23. K. Kikuchi, “Clock recovering characteristics of adaptive finite-impulse-response filters in digital coherent optical receivers,” Opt. Express 19(6), 5611–5619 (2011).
    [Crossref] [PubMed]

2015 (1)

J. Wei, Q. Cheng, D. G. Cunningham, R. V. Penty, and I. H. White, “100-Gb/s hybrid multiband CAP/QAM signal transmission over a single wavelength,” Opt. Express 33(2), 415–423 (2015).

2014 (2)

2013 (7)

J. M. Buset, Z. A. El-Sahn, and D. V. Plant, “Experimental demonstration of a 10 Gb/s subcarrier multiplexed WDM PON,” IEEE Photon. Technol. Lett. 25(15), 1435–1438 (2013).
[Crossref]

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40 Gb/s CAP32 system with DD-LMS equalizer for short reach optical transmissions,” IEEE Photon. Technol. Lett. 25(23), 2346–2349 (2013).
[Crossref]

J. Zhang, J. Yu, F. Li, N. Chi, Z. Dong, and X. Li, “11 × 5 × 9.3Gb/s WDM-CAP-PON based on optical single-side band multi-level multi-band carrier-less amplitude and phase modulation with direct detection,” Opt. Express 21(16), 18842–18848 (2013).
[PubMed]

T. Gui, C. Li, Q. Yang, X. Xiao, L. Meng, C. Li, X. Yi, C. Jin, and Z. Li, “Auto bias control technique for optical OFDM transmitter with bias dithering,” Opt. Express 21(5), 5833–5841 (2013).
[Crossref] [PubMed]

Y. Bao, Z. Li, J. Li, X. Feng, B. O. Guan, and G. Li, “Nonlinearity mitigation for high-speed optical OFDM transmitters using digital pre-distortion,” Opt. Express 21(6), 7354–7361 (2013).
[Crossref] [PubMed]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “Experimental demonstration of 10 Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express 21(5), 6459–6465 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (3)

2010 (1)

2008 (1)

H. Kim, “EML-based optical single sideband transmitter,” IEEE Photon. Technol. Lett. 20(4), 243–245 (2008).
[Crossref]

1992 (1)

Bao, Y.

Barros, D. J. F.

Buset, J. M.

J. M. Buset, Z. A. El-Sahn, and D. V. Plant, “Experimental demonstration of a 10 Gb/s subcarrier multiplexed WDM PON,” IEEE Photon. Technol. Lett. 25(15), 1435–1438 (2013).
[Crossref]

Cartledge, J. C.

Chen, X.

Cheng, Q.

J. Wei, Q. Cheng, D. G. Cunningham, R. V. Penty, and I. H. White, “100-Gb/s hybrid multiband CAP/QAM signal transmission over a single wavelength,” Opt. Express 33(2), 415–423 (2015).

J. L. Wei, J. D. Ingham, Q. Cheng, D. G. Cunningham, R. V. Penty, and I. H. White, “Experimental demonstration of optical data links using a hybrid CAP/QAM modulation scheme,” Opt. Lett. 39(6), 1402–1405 (2014).
[Crossref] [PubMed]

Chi, N.

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “Experimental demonstration of 10 Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express 21(5), 6459–6465 (2013).
[Crossref] [PubMed]

J. Zhang, J. Yu, F. Li, N. Chi, Z. Dong, and X. Li, “11 × 5 × 9.3Gb/s WDM-CAP-PON based on optical single-side band multi-level multi-band carrier-less amplitude and phase modulation with direct detection,” Opt. Express 21(16), 18842–18848 (2013).
[PubMed]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40 Gb/s CAP32 system with DD-LMS equalizer for short reach optical transmissions,” IEEE Photon. Technol. Lett. 25(23), 2346–2349 (2013).
[Crossref]

Cunningham, D. G.

Dong, Z.

El-Sahn, Z. A.

J. M. Buset, Z. A. El-Sahn, and D. V. Plant, “Experimental demonstration of a 10 Gb/s subcarrier multiplexed WDM PON,” IEEE Photon. Technol. Lett. 25(15), 1435–1438 (2013).
[Crossref]

Feng, X.

Gao, Y.

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40 Gb/s CAP32 system with DD-LMS equalizer for short reach optical transmissions,” IEEE Photon. Technol. Lett. 25(23), 2346–2349 (2013).
[Crossref]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “Experimental demonstration of 10 Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express 21(5), 6459–6465 (2013).
[Crossref] [PubMed]

Glesner, M.

R. Zlatanovici, A. Manolescu, L. Kabulepa, and M. Glesner, “Decision feedback equalizers for carrierless amplitude/phase modulation receivers,” in Proc. Semicond. Conf., Sinaia, Romania, 1, 127–130 (1999).
[Crossref]

Guan, B. O.

Gui, T.

Harley, J.

He, J.

Ingham, J. D.

Inoue, K.

Jensen, J. B.

Ji, Y.

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

Jin, C.

Kabulepa, L.

R. Zlatanovici, A. Manolescu, L. Kabulepa, and M. Glesner, “Decision feedback equalizers for carrierless amplitude/phase modulation receivers,” in Proc. Semicond. Conf., Sinaia, Romania, 1, 127–130 (1999).
[Crossref]

Kahn, J. M.

Karar, A. S.

Kikuchi, K.

Kim, H.

H. Kim, “EML-based optical single sideband transmitter,” IEEE Photon. Technol. Lett. 20(4), 243–245 (2008).
[Crossref]

Lau, A. P. T.

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “Experimental demonstration of 10 Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express 21(5), 6459–6465 (2013).
[Crossref] [PubMed]

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40 Gb/s CAP32 system with DD-LMS equalizer for short reach optical transmissions,” IEEE Photon. Technol. Lett. 25(23), 2346–2349 (2013).
[Crossref]

Li, A.

Li, C.

Li, F.

Li, G.

Li, J.

Li, X.

Li, Z.

Liu, J.

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

Lu, C.

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “Experimental demonstration of 10 Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express 21(5), 6459–6465 (2013).
[Crossref] [PubMed]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40 Gb/s CAP32 system with DD-LMS equalizer for short reach optical transmissions,” IEEE Photon. Technol. Lett. 25(23), 2346–2349 (2013).
[Crossref]

Manolescu, A.

R. Zlatanovici, A. Manolescu, L. Kabulepa, and M. Glesner, “Decision feedback equalizers for carrierless amplitude/phase modulation receivers,” in Proc. Semicond. Conf., Sinaia, Romania, 1, 127–130 (1999).
[Crossref]

Meng, L.

Monroy, I. T.

Penty, R. V.

Pham, T. T.

Plant, D. V.

J. M. Buset, Z. A. El-Sahn, and D. V. Plant, “Experimental demonstration of a 10 Gb/s subcarrier multiplexed WDM PON,” IEEE Photon. Technol. Lett. 25(15), 1435–1438 (2013).
[Crossref]

Roberts, K.

Rodes, R.

Shieh, W.

Siuzdak, J.

Tao, L.

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “Experimental demonstration of 10 Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express 21(5), 6459–6465 (2013).
[Crossref] [PubMed]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40 Gb/s CAP32 system with DD-LMS equalizer for short reach optical transmissions,” IEEE Photon. Technol. Lett. 25(23), 2346–2349 (2013).
[Crossref]

Turkiewicz, J.

Wang, Y.

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “Experimental demonstration of 10 Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express 21(5), 6459–6465 (2013).
[Crossref] [PubMed]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40 Gb/s CAP32 system with DD-LMS equalizer for short reach optical transmissions,” IEEE Photon. Technol. Lett. 25(23), 2346–2349 (2013).
[Crossref]

Wei, J.

J. Wei, Q. Cheng, D. G. Cunningham, R. V. Penty, and I. H. White, “100-Gb/s hybrid multiband CAP/QAM signal transmission over a single wavelength,” Opt. Express 33(2), 415–423 (2015).

Wei, J. L.

White, I. H.

Wieckowski, M.

Xiao, X.

Yang, Q.

Yi, X.

Yu, J.

Zhang, J.

Zlatanovici, R.

R. Zlatanovici, A. Manolescu, L. Kabulepa, and M. Glesner, “Decision feedback equalizers for carrierless amplitude/phase modulation receivers,” in Proc. Semicond. Conf., Sinaia, Romania, 1, 127–130 (1999).
[Crossref]

IEEE Netw. (1)

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (3)

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40 Gb/s CAP32 system with DD-LMS equalizer for short reach optical transmissions,” IEEE Photon. Technol. Lett. 25(23), 2346–2349 (2013).
[Crossref]

H. Kim, “EML-based optical single sideband transmitter,” IEEE Photon. Technol. Lett. 20(4), 243–245 (2008).
[Crossref]

J. M. Buset, Z. A. El-Sahn, and D. V. Plant, “Experimental demonstration of a 10 Gb/s subcarrier multiplexed WDM PON,” IEEE Photon. Technol. Lett. 25(15), 1435–1438 (2013).
[Crossref]

J. Lightwave Technol. (4)

Opt. Express (7)

J. Wei, Q. Cheng, D. G. Cunningham, R. V. Penty, and I. H. White, “100-Gb/s hybrid multiband CAP/QAM signal transmission over a single wavelength,” Opt. Express 33(2), 415–423 (2015).

R. Rodes, M. Wieckowski, T. T. Pham, J. B. Jensen, J. Turkiewicz, J. Siuzdak, and I. T. Monroy, “Carrierless amplitude phase modulation of VCSEL with 4 bit/s/Hz spectral efficiency for use in WDM-PON,” Opt. Express 19(27), 26551–26556 (2011).
[Crossref] [PubMed]

T. Gui, C. Li, Q. Yang, X. Xiao, L. Meng, C. Li, X. Yi, C. Jin, and Z. Li, “Auto bias control technique for optical OFDM transmitter with bias dithering,” Opt. Express 21(5), 5833–5841 (2013).
[Crossref] [PubMed]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “Experimental demonstration of 10 Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express 21(5), 6459–6465 (2013).
[Crossref] [PubMed]

Y. Bao, Z. Li, J. Li, X. Feng, B. O. Guan, and G. Li, “Nonlinearity mitigation for high-speed optical OFDM transmitters using digital pre-distortion,” Opt. Express 21(6), 7354–7361 (2013).
[Crossref] [PubMed]

J. Zhang, J. Yu, F. Li, N. Chi, Z. Dong, and X. Li, “11 × 5 × 9.3Gb/s WDM-CAP-PON based on optical single-side band multi-level multi-band carrier-less amplitude and phase modulation with direct detection,” Opt. Express 21(16), 18842–18848 (2013).
[PubMed]

K. Kikuchi, “Clock recovering characteristics of adaptive finite-impulse-response filters in digital coherent optical receivers,” Opt. Express 19(6), 5611–5619 (2011).
[Crossref] [PubMed]

Opt. Lett. (2)

Other (6)

R. Zlatanovici, A. Manolescu, L. Kabulepa, and M. Glesner, “Decision feedback equalizers for carrierless amplitude/phase modulation receivers,” in Proc. Semicond. Conf., Sinaia, Romania, 1, 127–130 (1999).
[Crossref]

ITU, Rec. G.975.1: Forward error correction for high bit-rate DWDM submarine systems (2004).

G. P. Arawal, Nonlinear Fiber Optics (Elsevier, 2013), 5th ed.

M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, and I. T. Monroy, “Towards 400GBASE 4-lane solution using direct detection of multiCAP signal in 14 GHz bandwidth per lane,” in Proc. Opt. Fiber Commun. (OFC), Anaheim, CA, Mar. 2013, Paper PDP5C.10.

A. Ghiasi and B. Welch, IEEE 802.3bm Fiber Optic Task Force, Sept. 2012.

J. D. Ingham, R. V. Penty, and I. H. White, “40 Gb/s carrierless amplitude and phase modulation for low-cost optical data communication links,” in Proc. Opt. Fiber Commun. (OFC), Los Angeles, CA, Mar. 2011, Paper OThZ3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic structure of CAP modulation and demodulation.
Fig. 2
Fig. 2 RF spectrum of received 40 Gbit/s CAP32 signals with different transmission distances. Solid lines are the RF spectrum. Dashed lines represent the analytical transfer function obtained in Eq. (12). L denotes the fiber length.
Fig. 3
Fig. 3 Optical power spectrum at Tx and phase shift after 80 km SMF transmission for a 40 Gbit/s CAP32 signal with various launch powers. Fiber nonlinearity effects are turned off in the linear transmission case. The LP is launch power.
Fig. 4
Fig. 4 RF spectrum of received 40 Gbit/s CAP32 signals with different launch powers.
Fig. 5
Fig. 5 Schematic of the 40 Gbit/s CAP32 experiment setup. DAC: digital-to-analog converter; VOA: variable optical attenuator; SMF: single mode fiber; T-T BPF: tunable bandwidth and tunable central wavelength bandpass filter; PD: photo detector; Rx: receiver; BER: bit error rate.
Fig. 6
Fig. 6 Schematic diagram of decision feedback equalizer. For linear equalization, only the forward equalizer C(z) is used while both forward equalizer C(z) and feedback equalizer F(z) are enabled for decision feedback equalization. y(n): input signal; C(z): transfer function of forward equalizer; F(z): transfer function of feedback equalizer; d(n): transmitted symbol; d ^ (n) : data decision; e(n): error signal.
Fig. 7
Fig. 7 (a) Launch power versus BER (b) RF power spectrum after 40 km SMF transmission. LE: linear equalizer; DFE: decision feedback equalizer.
Fig. 8
Fig. 8 (a) Launch power versus BER (b) RF power spectrum after 60 km SMF transmission. LE: linear equalizer; DFE: decision feedback equalizer.
Fig. 9
Fig. 9 (a) Launch power versus BER (b) RF power spectrum after 80 km SMF transmission. LE: linear equalizer; DFE: decision feedback equalizer.
Fig. 10
Fig. 10 BER versus the received signal power for (a) 40 km, (b) 60 km and (c) 80 km SMF transmissions. LE: linear equalizer; DFE: decision feedback equalizer.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

g I (t)=f(t)sin(2π f c t)
g Q (t)=f(t)cos(2π f c t),
s(t)= n= [ a n g I (tnT) b n g Q (tnT) ] ,
r I (t)=r(t) g I (t)
r Q (t)=r(t) g Q (t).
H( f )= e jπD λ 2 c L f 2 ,
E(t)= A+s(t) h(t),
r(t)= | A+s(t) h(t) | 2 .
r(t)=[ ( A + s(t) 2 A s 2 (t) 8 A 3/2 +... )h(t) ] [ ( A + s(t) 2 A s 2 (t) 8 A 3/2 +... )h(t) ] * .
r(t)=A+ s(t)h(t) 2 + s*(t)h*(t) 2 s 2 (t)h(t) 8A ( s*(t) ) 2 h*(t) 8A +...,
r(t)A+s(t) h(t)+ h * (t) 2 =A+s(t) h eq (t),
H eq (f)= e jπD λ 2 c L f 2 + e jπD λ 2 c L f 2 2 =cos( πD λ 2 c L f 2 ).
i E(z,t) z +i α 2 E 1 2 β 2 2 E t 2 +γ | E | 2 E=0,
E FWM,g =iγ E p E q E r * exp[ ( α+iΔβ )z ]1 iΔβα ,
E FWM (f)=iγ E 2 (0) E * (f) exp[ ( α+iΔβ )z ]1 iΔβα ,
E total (f)=E(f)+ E FWM (f) ={ 1+iγ E 2 (0) exp[ ( α+iΔβ )z ]1 iΔβα }E(f).
Δφ(f)=arg( E out (f) / E in (f) ),

Metrics