Abstract

Applying the direct simulation Monte Carlo (DSMC) method developed for ultracold Bose-Fermi mixture gases research, we study the sympathetic cooling process of 6Li and 133Cs atoms in a crossed optical dipole trap. The obstacles to producing 6Li Fermi degenerate gas via direct sympathetic cooling with 133Cs are also analyzed, by which we find that the side-effect of the gravity is one of the main obstacles. Based on the dynamic nature of 6Li and 133Cs atoms, we suggest a two-stage cooling process with two pairs of crossed beams in microgravity environment. According to our simulations, the temperature of 6Li atoms can be cooled to T = 29.5 pK and T/TF = 0.59 with several thousand atoms, which propose a novel way to get ultracold fermion atoms with quantum degeneracy near pico-Kelvin.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Two-species cold atomic beam

Nathan Lundblad, David C. Aveline, Robert J. Thompson, James M. Kohel, Jaime Ramirez-Serrano, William M. Klipstein, Daphna G. Enzer, Nan Yu, and Lute Maleki
J. Opt. Soc. Am. B 21(1) 3-6 (2004)

High-resolution Cs133 6S–6D, 6S–8S two-photon spectroscopy using an intracavity scheme

You-Huan Chen, Tze-Wei Liu, Chien-Ming Wu, Chien-Chung Lee, Chao-Kuei Lee, and Wang-Yau Cheng
Opt. Lett. 36(1) 76-78 (2011)

Velocity-tunable magneto-optical-trap-based cold Cs atomic beam

He Wang and Walter F. Buell
J. Opt. Soc. Am. B 20(10) 2025-2030 (2003)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Larson, J. C. Bergquist, J. J. Bollinger, W. M. Itano, and D. J. Wineland, “Sympathetic cooling of trapped ions: a laser-cooled two-species nonneutral ion plasma,” Phys. Rev. Lett. 57(1), 70–73 (1986).
    [Crossref] [PubMed]
  2. M. Taglieber, A.-C. Voigt, T. Aoki, T. W. Hänsch, and K. Dieckmann, “Quantum degenerate two-species Fermi-Fermi mixture coexisting with a Bose-Einstein condensate,” Phys. Rev. Lett. 100(1), 010401 (2008).
    [Crossref] [PubMed]
  3. D. S. Durfee and W. Ketterle, “Experimental studies of Bose-Einstein condensation,” Opt. Express 2(8), 299–313 (1998).
    [Crossref] [PubMed]
  4. T. B. Ottenstein, T. Lompe, M. Kohnen, A. N. Wenz, and S. Jochim, “Collisional stability of a three-component degenerate Fermi gas,” Phys. Rev. Lett. 101(20), 203202 (2008).
    [Crossref] [PubMed]
  5. M. Brown-Hayes and R. Onofrio, “Optimal cooling strategies for magnetically trapped atomic Fermi-Bose mixtures,” Phys. Rev. A 70(6), 063614 (2004).
    [Crossref]
  6. H. Fehrmann, M. Baranov, M. Lewenstein, and L. Santos, “Quantum phases of Bose-Fermi mixtures in optical lattices,” Opt. Express 12(1), 55–68 (2004).
    [Crossref] [PubMed]
  7. V. Efimov, “Energy levels arising from resonant two-body forces in a three-body system,” Phys. Lett. B 33(8), 563–564 (1970).
    [Crossref]
  8. E. Braaten and H.-W. Hammer, “Efimov physics in cold atoms,” Ann. Phys. 322(1), 120–163 (2007).
    [Crossref]
  9. S. K. Tung, C. Parker, J. Johansen, C. Chin, Y. Wang, and P. S. Julienne, “Ultracold mixtures of atomic 6Li and 133Cs with tunable interactions,” Phys. Rev. A 87(1), 010702 (2013).
    [Crossref]
  10. I. Ferrier-Barbut, M. Delehaye, S. Laurent, A. T. Grier, M. Pierce, B. S. Rem, F. Chevy, and C. Salomon, “A mixture of Bose and Fermi superfluids,” Science 345(6200), 1035–1038 (2014).
    [Crossref] [PubMed]
  11. M. Repp, R. Pires, J. Ulmanis, R. Heck, E. D. Kuhnle, M. Weidemüller, and E. Tiemann, “Observation of interspecies 6Li-133Cs Feshbach resonances,” Phys. Rev. A 87(1), 010701 (2013).
    [Crossref]
  12. D. J. Han, M. T. DePue, and D. S. Weiss, “Loading and compressing Cs atoms in a very far-off-resonant light trap,” Phys. Rev. A 63(2), 023405 (2001).
    [Crossref]
  13. T. Weber, J. Herbig, M. Mark, H. C. Nägerl, and R. Grimm, “Bose-Einstein condensation of Cesium,” Science 299(5604), 232–235 (2003).
    [Crossref]
  14. D. Guéry-Odelin, J. Söding, P. Desbiolles, and J. Dalibard, “Strong evaporative cooling of a trapped cesium gas,” Opt. Express 2(8), 323–329 (1998).
    [Crossref] [PubMed]
  15. A. H. Hansen, A. Y. Khramov, W. H. Dowd, A. O. Jamison, B. Plotkin-Swing, R. J. Roy, and S. Gupta, “Production of quantum-degenerate mixtures of ytterbium and lithium with controllable interspecies overlap,” Phys. Rev. A 87(1), 013615 (2013).
    [Crossref]
  16. L. Wang, P. Zhang, X.-Z. Chen, and Z.-Y. Ma, “Generating a picokelvin ultracold atomic ensemble in microgravity,” J. Phys. B: At., Mol. Opt. Ph. 46, 195302 (2013).
    [Crossref]
  17. A. E. Leanhardt, T. A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D. E. Pritchard, and W. Ketterle, “Cooling Bose-Einstein condensates below 500 picokelvin,” Science 301(5639), 1513–1515 (2003).
    [Crossref] [PubMed]
  18. G. A. Bird, “Molecular gas dynamics and the direct simulation of gas flows” (Oxford Science Publications, 1998).
  19. R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At., Mol., Opt. Phys. 42, 95–170 (2000).
    [Crossref]
  20. M. Mudrich, S. Kraft, K. Singer, R. Grimm, A. Mosk, and M. Weidemüller, “Sympathetic cooling with two atomic species in an optical trap,” Phys. Rev. Lett 88(25), 253001 (2002).
    [Crossref] [PubMed]
  21. L. J. LeBlanc and J. H. Thywissen, “Species-specific optical lattices,” Phys. Rev. A 75(5), 053612 (2007).
    [Crossref]
  22. V. A. Thomas, N. S. Prasad, and C. A. Mohan Reddy, “Microgravity research platformsła study,” Curr. Sci. 79(3) 336–340 (2000).
  23. M. E. Gehm, “Properties of 6Li”, http://www.physics.ncsu.edu/jet/techdocs/pdf/PropertiesOfLi.pdf
  24. T. Kovachy, J. M. Hogan, A. Sugarbaker, S. M. Dickerson, C. A. Donnelly, C. Overstreet, and M. A. Kasevich, “Matter wave lensing to picokelvin temperatures,” arXiv:1407.6995v1 (2014).

2014 (1)

I. Ferrier-Barbut, M. Delehaye, S. Laurent, A. T. Grier, M. Pierce, B. S. Rem, F. Chevy, and C. Salomon, “A mixture of Bose and Fermi superfluids,” Science 345(6200), 1035–1038 (2014).
[Crossref] [PubMed]

2013 (4)

M. Repp, R. Pires, J. Ulmanis, R. Heck, E. D. Kuhnle, M. Weidemüller, and E. Tiemann, “Observation of interspecies 6Li-133Cs Feshbach resonances,” Phys. Rev. A 87(1), 010701 (2013).
[Crossref]

A. H. Hansen, A. Y. Khramov, W. H. Dowd, A. O. Jamison, B. Plotkin-Swing, R. J. Roy, and S. Gupta, “Production of quantum-degenerate mixtures of ytterbium and lithium with controllable interspecies overlap,” Phys. Rev. A 87(1), 013615 (2013).
[Crossref]

L. Wang, P. Zhang, X.-Z. Chen, and Z.-Y. Ma, “Generating a picokelvin ultracold atomic ensemble in microgravity,” J. Phys. B: At., Mol. Opt. Ph. 46, 195302 (2013).
[Crossref]

S. K. Tung, C. Parker, J. Johansen, C. Chin, Y. Wang, and P. S. Julienne, “Ultracold mixtures of atomic 6Li and 133Cs with tunable interactions,” Phys. Rev. A 87(1), 010702 (2013).
[Crossref]

2008 (2)

M. Taglieber, A.-C. Voigt, T. Aoki, T. W. Hänsch, and K. Dieckmann, “Quantum degenerate two-species Fermi-Fermi mixture coexisting with a Bose-Einstein condensate,” Phys. Rev. Lett. 100(1), 010401 (2008).
[Crossref] [PubMed]

T. B. Ottenstein, T. Lompe, M. Kohnen, A. N. Wenz, and S. Jochim, “Collisional stability of a three-component degenerate Fermi gas,” Phys. Rev. Lett. 101(20), 203202 (2008).
[Crossref] [PubMed]

2007 (2)

E. Braaten and H.-W. Hammer, “Efimov physics in cold atoms,” Ann. Phys. 322(1), 120–163 (2007).
[Crossref]

L. J. LeBlanc and J. H. Thywissen, “Species-specific optical lattices,” Phys. Rev. A 75(5), 053612 (2007).
[Crossref]

2004 (2)

M. Brown-Hayes and R. Onofrio, “Optimal cooling strategies for magnetically trapped atomic Fermi-Bose mixtures,” Phys. Rev. A 70(6), 063614 (2004).
[Crossref]

H. Fehrmann, M. Baranov, M. Lewenstein, and L. Santos, “Quantum phases of Bose-Fermi mixtures in optical lattices,” Opt. Express 12(1), 55–68 (2004).
[Crossref] [PubMed]

2003 (2)

T. Weber, J. Herbig, M. Mark, H. C. Nägerl, and R. Grimm, “Bose-Einstein condensation of Cesium,” Science 299(5604), 232–235 (2003).
[Crossref]

A. E. Leanhardt, T. A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D. E. Pritchard, and W. Ketterle, “Cooling Bose-Einstein condensates below 500 picokelvin,” Science 301(5639), 1513–1515 (2003).
[Crossref] [PubMed]

2002 (1)

M. Mudrich, S. Kraft, K. Singer, R. Grimm, A. Mosk, and M. Weidemüller, “Sympathetic cooling with two atomic species in an optical trap,” Phys. Rev. Lett 88(25), 253001 (2002).
[Crossref] [PubMed]

2001 (1)

D. J. Han, M. T. DePue, and D. S. Weiss, “Loading and compressing Cs atoms in a very far-off-resonant light trap,” Phys. Rev. A 63(2), 023405 (2001).
[Crossref]

2000 (2)

R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At., Mol., Opt. Phys. 42, 95–170 (2000).
[Crossref]

V. A. Thomas, N. S. Prasad, and C. A. Mohan Reddy, “Microgravity research platformsła study,” Curr. Sci. 79(3) 336–340 (2000).

1998 (2)

1986 (1)

D. J. Larson, J. C. Bergquist, J. J. Bollinger, W. M. Itano, and D. J. Wineland, “Sympathetic cooling of trapped ions: a laser-cooled two-species nonneutral ion plasma,” Phys. Rev. Lett. 57(1), 70–73 (1986).
[Crossref] [PubMed]

1970 (1)

V. Efimov, “Energy levels arising from resonant two-body forces in a three-body system,” Phys. Lett. B 33(8), 563–564 (1970).
[Crossref]

Aoki, T.

M. Taglieber, A.-C. Voigt, T. Aoki, T. W. Hänsch, and K. Dieckmann, “Quantum degenerate two-species Fermi-Fermi mixture coexisting with a Bose-Einstein condensate,” Phys. Rev. Lett. 100(1), 010401 (2008).
[Crossref] [PubMed]

Baranov, M.

Bergquist, J. C.

D. J. Larson, J. C. Bergquist, J. J. Bollinger, W. M. Itano, and D. J. Wineland, “Sympathetic cooling of trapped ions: a laser-cooled two-species nonneutral ion plasma,” Phys. Rev. Lett. 57(1), 70–73 (1986).
[Crossref] [PubMed]

Bird, G. A.

G. A. Bird, “Molecular gas dynamics and the direct simulation of gas flows” (Oxford Science Publications, 1998).

Bollinger, J. J.

D. J. Larson, J. C. Bergquist, J. J. Bollinger, W. M. Itano, and D. J. Wineland, “Sympathetic cooling of trapped ions: a laser-cooled two-species nonneutral ion plasma,” Phys. Rev. Lett. 57(1), 70–73 (1986).
[Crossref] [PubMed]

Braaten, E.

E. Braaten and H.-W. Hammer, “Efimov physics in cold atoms,” Ann. Phys. 322(1), 120–163 (2007).
[Crossref]

Brown-Hayes, M.

M. Brown-Hayes and R. Onofrio, “Optimal cooling strategies for magnetically trapped atomic Fermi-Bose mixtures,” Phys. Rev. A 70(6), 063614 (2004).
[Crossref]

Chen, X.-Z.

L. Wang, P. Zhang, X.-Z. Chen, and Z.-Y. Ma, “Generating a picokelvin ultracold atomic ensemble in microgravity,” J. Phys. B: At., Mol. Opt. Ph. 46, 195302 (2013).
[Crossref]

Chevy, F.

I. Ferrier-Barbut, M. Delehaye, S. Laurent, A. T. Grier, M. Pierce, B. S. Rem, F. Chevy, and C. Salomon, “A mixture of Bose and Fermi superfluids,” Science 345(6200), 1035–1038 (2014).
[Crossref] [PubMed]

Chin, C.

S. K. Tung, C. Parker, J. Johansen, C. Chin, Y. Wang, and P. S. Julienne, “Ultracold mixtures of atomic 6Li and 133Cs with tunable interactions,” Phys. Rev. A 87(1), 010702 (2013).
[Crossref]

Dalibard, J.

Delehaye, M.

I. Ferrier-Barbut, M. Delehaye, S. Laurent, A. T. Grier, M. Pierce, B. S. Rem, F. Chevy, and C. Salomon, “A mixture of Bose and Fermi superfluids,” Science 345(6200), 1035–1038 (2014).
[Crossref] [PubMed]

DePue, M. T.

D. J. Han, M. T. DePue, and D. S. Weiss, “Loading and compressing Cs atoms in a very far-off-resonant light trap,” Phys. Rev. A 63(2), 023405 (2001).
[Crossref]

Desbiolles, P.

Dickerson, S. M.

T. Kovachy, J. M. Hogan, A. Sugarbaker, S. M. Dickerson, C. A. Donnelly, C. Overstreet, and M. A. Kasevich, “Matter wave lensing to picokelvin temperatures,” arXiv:1407.6995v1 (2014).

Dieckmann, K.

M. Taglieber, A.-C. Voigt, T. Aoki, T. W. Hänsch, and K. Dieckmann, “Quantum degenerate two-species Fermi-Fermi mixture coexisting with a Bose-Einstein condensate,” Phys. Rev. Lett. 100(1), 010401 (2008).
[Crossref] [PubMed]

Donnelly, C. A.

T. Kovachy, J. M. Hogan, A. Sugarbaker, S. M. Dickerson, C. A. Donnelly, C. Overstreet, and M. A. Kasevich, “Matter wave lensing to picokelvin temperatures,” arXiv:1407.6995v1 (2014).

Dowd, W. H.

A. H. Hansen, A. Y. Khramov, W. H. Dowd, A. O. Jamison, B. Plotkin-Swing, R. J. Roy, and S. Gupta, “Production of quantum-degenerate mixtures of ytterbium and lithium with controllable interspecies overlap,” Phys. Rev. A 87(1), 013615 (2013).
[Crossref]

Durfee, D. S.

Efimov, V.

V. Efimov, “Energy levels arising from resonant two-body forces in a three-body system,” Phys. Lett. B 33(8), 563–564 (1970).
[Crossref]

Fehrmann, H.

Ferrier-Barbut, I.

I. Ferrier-Barbut, M. Delehaye, S. Laurent, A. T. Grier, M. Pierce, B. S. Rem, F. Chevy, and C. Salomon, “A mixture of Bose and Fermi superfluids,” Science 345(6200), 1035–1038 (2014).
[Crossref] [PubMed]

Grier, A. T.

I. Ferrier-Barbut, M. Delehaye, S. Laurent, A. T. Grier, M. Pierce, B. S. Rem, F. Chevy, and C. Salomon, “A mixture of Bose and Fermi superfluids,” Science 345(6200), 1035–1038 (2014).
[Crossref] [PubMed]

Grimm, R.

T. Weber, J. Herbig, M. Mark, H. C. Nägerl, and R. Grimm, “Bose-Einstein condensation of Cesium,” Science 299(5604), 232–235 (2003).
[Crossref]

M. Mudrich, S. Kraft, K. Singer, R. Grimm, A. Mosk, and M. Weidemüller, “Sympathetic cooling with two atomic species in an optical trap,” Phys. Rev. Lett 88(25), 253001 (2002).
[Crossref] [PubMed]

R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At., Mol., Opt. Phys. 42, 95–170 (2000).
[Crossref]

Guéry-Odelin, D.

Gupta, S.

A. H. Hansen, A. Y. Khramov, W. H. Dowd, A. O. Jamison, B. Plotkin-Swing, R. J. Roy, and S. Gupta, “Production of quantum-degenerate mixtures of ytterbium and lithium with controllable interspecies overlap,” Phys. Rev. A 87(1), 013615 (2013).
[Crossref]

Hammer, H.-W.

E. Braaten and H.-W. Hammer, “Efimov physics in cold atoms,” Ann. Phys. 322(1), 120–163 (2007).
[Crossref]

Han, D. J.

D. J. Han, M. T. DePue, and D. S. Weiss, “Loading and compressing Cs atoms in a very far-off-resonant light trap,” Phys. Rev. A 63(2), 023405 (2001).
[Crossref]

Hänsch, T. W.

M. Taglieber, A.-C. Voigt, T. Aoki, T. W. Hänsch, and K. Dieckmann, “Quantum degenerate two-species Fermi-Fermi mixture coexisting with a Bose-Einstein condensate,” Phys. Rev. Lett. 100(1), 010401 (2008).
[Crossref] [PubMed]

Hansen, A. H.

A. H. Hansen, A. Y. Khramov, W. H. Dowd, A. O. Jamison, B. Plotkin-Swing, R. J. Roy, and S. Gupta, “Production of quantum-degenerate mixtures of ytterbium and lithium with controllable interspecies overlap,” Phys. Rev. A 87(1), 013615 (2013).
[Crossref]

Heck, R.

M. Repp, R. Pires, J. Ulmanis, R. Heck, E. D. Kuhnle, M. Weidemüller, and E. Tiemann, “Observation of interspecies 6Li-133Cs Feshbach resonances,” Phys. Rev. A 87(1), 010701 (2013).
[Crossref]

Herbig, J.

T. Weber, J. Herbig, M. Mark, H. C. Nägerl, and R. Grimm, “Bose-Einstein condensation of Cesium,” Science 299(5604), 232–235 (2003).
[Crossref]

Hogan, J. M.

T. Kovachy, J. M. Hogan, A. Sugarbaker, S. M. Dickerson, C. A. Donnelly, C. Overstreet, and M. A. Kasevich, “Matter wave lensing to picokelvin temperatures,” arXiv:1407.6995v1 (2014).

Itano, W. M.

D. J. Larson, J. C. Bergquist, J. J. Bollinger, W. M. Itano, and D. J. Wineland, “Sympathetic cooling of trapped ions: a laser-cooled two-species nonneutral ion plasma,” Phys. Rev. Lett. 57(1), 70–73 (1986).
[Crossref] [PubMed]

Jamison, A. O.

A. H. Hansen, A. Y. Khramov, W. H. Dowd, A. O. Jamison, B. Plotkin-Swing, R. J. Roy, and S. Gupta, “Production of quantum-degenerate mixtures of ytterbium and lithium with controllable interspecies overlap,” Phys. Rev. A 87(1), 013615 (2013).
[Crossref]

Jochim, S.

T. B. Ottenstein, T. Lompe, M. Kohnen, A. N. Wenz, and S. Jochim, “Collisional stability of a three-component degenerate Fermi gas,” Phys. Rev. Lett. 101(20), 203202 (2008).
[Crossref] [PubMed]

Johansen, J.

S. K. Tung, C. Parker, J. Johansen, C. Chin, Y. Wang, and P. S. Julienne, “Ultracold mixtures of atomic 6Li and 133Cs with tunable interactions,” Phys. Rev. A 87(1), 010702 (2013).
[Crossref]

Julienne, P. S.

S. K. Tung, C. Parker, J. Johansen, C. Chin, Y. Wang, and P. S. Julienne, “Ultracold mixtures of atomic 6Li and 133Cs with tunable interactions,” Phys. Rev. A 87(1), 010702 (2013).
[Crossref]

Kasevich, M. A.

T. Kovachy, J. M. Hogan, A. Sugarbaker, S. M. Dickerson, C. A. Donnelly, C. Overstreet, and M. A. Kasevich, “Matter wave lensing to picokelvin temperatures,” arXiv:1407.6995v1 (2014).

Ketterle, W.

A. E. Leanhardt, T. A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D. E. Pritchard, and W. Ketterle, “Cooling Bose-Einstein condensates below 500 picokelvin,” Science 301(5639), 1513–1515 (2003).
[Crossref] [PubMed]

D. S. Durfee and W. Ketterle, “Experimental studies of Bose-Einstein condensation,” Opt. Express 2(8), 299–313 (1998).
[Crossref] [PubMed]

Khramov, A. Y.

A. H. Hansen, A. Y. Khramov, W. H. Dowd, A. O. Jamison, B. Plotkin-Swing, R. J. Roy, and S. Gupta, “Production of quantum-degenerate mixtures of ytterbium and lithium with controllable interspecies overlap,” Phys. Rev. A 87(1), 013615 (2013).
[Crossref]

Kielpinski, D.

A. E. Leanhardt, T. A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D. E. Pritchard, and W. Ketterle, “Cooling Bose-Einstein condensates below 500 picokelvin,” Science 301(5639), 1513–1515 (2003).
[Crossref] [PubMed]

Kohnen, M.

T. B. Ottenstein, T. Lompe, M. Kohnen, A. N. Wenz, and S. Jochim, “Collisional stability of a three-component degenerate Fermi gas,” Phys. Rev. Lett. 101(20), 203202 (2008).
[Crossref] [PubMed]

Kovachy, T.

T. Kovachy, J. M. Hogan, A. Sugarbaker, S. M. Dickerson, C. A. Donnelly, C. Overstreet, and M. A. Kasevich, “Matter wave lensing to picokelvin temperatures,” arXiv:1407.6995v1 (2014).

Kraft, S.

M. Mudrich, S. Kraft, K. Singer, R. Grimm, A. Mosk, and M. Weidemüller, “Sympathetic cooling with two atomic species in an optical trap,” Phys. Rev. Lett 88(25), 253001 (2002).
[Crossref] [PubMed]

Kuhnle, E. D.

M. Repp, R. Pires, J. Ulmanis, R. Heck, E. D. Kuhnle, M. Weidemüller, and E. Tiemann, “Observation of interspecies 6Li-133Cs Feshbach resonances,” Phys. Rev. A 87(1), 010701 (2013).
[Crossref]

Larson, D. J.

D. J. Larson, J. C. Bergquist, J. J. Bollinger, W. M. Itano, and D. J. Wineland, “Sympathetic cooling of trapped ions: a laser-cooled two-species nonneutral ion plasma,” Phys. Rev. Lett. 57(1), 70–73 (1986).
[Crossref] [PubMed]

Laurent, S.

I. Ferrier-Barbut, M. Delehaye, S. Laurent, A. T. Grier, M. Pierce, B. S. Rem, F. Chevy, and C. Salomon, “A mixture of Bose and Fermi superfluids,” Science 345(6200), 1035–1038 (2014).
[Crossref] [PubMed]

Leanhardt, A. E.

A. E. Leanhardt, T. A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D. E. Pritchard, and W. Ketterle, “Cooling Bose-Einstein condensates below 500 picokelvin,” Science 301(5639), 1513–1515 (2003).
[Crossref] [PubMed]

LeBlanc, L. J.

L. J. LeBlanc and J. H. Thywissen, “Species-specific optical lattices,” Phys. Rev. A 75(5), 053612 (2007).
[Crossref]

Lewenstein, M.

Lompe, T.

T. B. Ottenstein, T. Lompe, M. Kohnen, A. N. Wenz, and S. Jochim, “Collisional stability of a three-component degenerate Fermi gas,” Phys. Rev. Lett. 101(20), 203202 (2008).
[Crossref] [PubMed]

Ma, Z.-Y.

L. Wang, P. Zhang, X.-Z. Chen, and Z.-Y. Ma, “Generating a picokelvin ultracold atomic ensemble in microgravity,” J. Phys. B: At., Mol. Opt. Ph. 46, 195302 (2013).
[Crossref]

Mark, M.

T. Weber, J. Herbig, M. Mark, H. C. Nägerl, and R. Grimm, “Bose-Einstein condensation of Cesium,” Science 299(5604), 232–235 (2003).
[Crossref]

Mohan Reddy, C. A.

V. A. Thomas, N. S. Prasad, and C. A. Mohan Reddy, “Microgravity research platformsła study,” Curr. Sci. 79(3) 336–340 (2000).

Mosk, A.

M. Mudrich, S. Kraft, K. Singer, R. Grimm, A. Mosk, and M. Weidemüller, “Sympathetic cooling with two atomic species in an optical trap,” Phys. Rev. Lett 88(25), 253001 (2002).
[Crossref] [PubMed]

Mudrich, M.

M. Mudrich, S. Kraft, K. Singer, R. Grimm, A. Mosk, and M. Weidemüller, “Sympathetic cooling with two atomic species in an optical trap,” Phys. Rev. Lett 88(25), 253001 (2002).
[Crossref] [PubMed]

Nägerl, H. C.

T. Weber, J. Herbig, M. Mark, H. C. Nägerl, and R. Grimm, “Bose-Einstein condensation of Cesium,” Science 299(5604), 232–235 (2003).
[Crossref]

Onofrio, R.

M. Brown-Hayes and R. Onofrio, “Optimal cooling strategies for magnetically trapped atomic Fermi-Bose mixtures,” Phys. Rev. A 70(6), 063614 (2004).
[Crossref]

Ottenstein, T. B.

T. B. Ottenstein, T. Lompe, M. Kohnen, A. N. Wenz, and S. Jochim, “Collisional stability of a three-component degenerate Fermi gas,” Phys. Rev. Lett. 101(20), 203202 (2008).
[Crossref] [PubMed]

Ovchinnikov, Y. B.

R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At., Mol., Opt. Phys. 42, 95–170 (2000).
[Crossref]

Overstreet, C.

T. Kovachy, J. M. Hogan, A. Sugarbaker, S. M. Dickerson, C. A. Donnelly, C. Overstreet, and M. A. Kasevich, “Matter wave lensing to picokelvin temperatures,” arXiv:1407.6995v1 (2014).

Parker, C.

S. K. Tung, C. Parker, J. Johansen, C. Chin, Y. Wang, and P. S. Julienne, “Ultracold mixtures of atomic 6Li and 133Cs with tunable interactions,” Phys. Rev. A 87(1), 010702 (2013).
[Crossref]

Pasquini, T. A.

A. E. Leanhardt, T. A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D. E. Pritchard, and W. Ketterle, “Cooling Bose-Einstein condensates below 500 picokelvin,” Science 301(5639), 1513–1515 (2003).
[Crossref] [PubMed]

Pierce, M.

I. Ferrier-Barbut, M. Delehaye, S. Laurent, A. T. Grier, M. Pierce, B. S. Rem, F. Chevy, and C. Salomon, “A mixture of Bose and Fermi superfluids,” Science 345(6200), 1035–1038 (2014).
[Crossref] [PubMed]

Pires, R.

M. Repp, R. Pires, J. Ulmanis, R. Heck, E. D. Kuhnle, M. Weidemüller, and E. Tiemann, “Observation of interspecies 6Li-133Cs Feshbach resonances,” Phys. Rev. A 87(1), 010701 (2013).
[Crossref]

Plotkin-Swing, B.

A. H. Hansen, A. Y. Khramov, W. H. Dowd, A. O. Jamison, B. Plotkin-Swing, R. J. Roy, and S. Gupta, “Production of quantum-degenerate mixtures of ytterbium and lithium with controllable interspecies overlap,” Phys. Rev. A 87(1), 013615 (2013).
[Crossref]

Prasad, N. S.

V. A. Thomas, N. S. Prasad, and C. A. Mohan Reddy, “Microgravity research platformsła study,” Curr. Sci. 79(3) 336–340 (2000).

Pritchard, D. E.

A. E. Leanhardt, T. A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D. E. Pritchard, and W. Ketterle, “Cooling Bose-Einstein condensates below 500 picokelvin,” Science 301(5639), 1513–1515 (2003).
[Crossref] [PubMed]

Rem, B. S.

I. Ferrier-Barbut, M. Delehaye, S. Laurent, A. T. Grier, M. Pierce, B. S. Rem, F. Chevy, and C. Salomon, “A mixture of Bose and Fermi superfluids,” Science 345(6200), 1035–1038 (2014).
[Crossref] [PubMed]

Repp, M.

M. Repp, R. Pires, J. Ulmanis, R. Heck, E. D. Kuhnle, M. Weidemüller, and E. Tiemann, “Observation of interspecies 6Li-133Cs Feshbach resonances,” Phys. Rev. A 87(1), 010701 (2013).
[Crossref]

Roy, R. J.

A. H. Hansen, A. Y. Khramov, W. H. Dowd, A. O. Jamison, B. Plotkin-Swing, R. J. Roy, and S. Gupta, “Production of quantum-degenerate mixtures of ytterbium and lithium with controllable interspecies overlap,” Phys. Rev. A 87(1), 013615 (2013).
[Crossref]

Saba, M.

A. E. Leanhardt, T. A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D. E. Pritchard, and W. Ketterle, “Cooling Bose-Einstein condensates below 500 picokelvin,” Science 301(5639), 1513–1515 (2003).
[Crossref] [PubMed]

Salomon, C.

I. Ferrier-Barbut, M. Delehaye, S. Laurent, A. T. Grier, M. Pierce, B. S. Rem, F. Chevy, and C. Salomon, “A mixture of Bose and Fermi superfluids,” Science 345(6200), 1035–1038 (2014).
[Crossref] [PubMed]

Santos, L.

Schirotzek, A.

A. E. Leanhardt, T. A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D. E. Pritchard, and W. Ketterle, “Cooling Bose-Einstein condensates below 500 picokelvin,” Science 301(5639), 1513–1515 (2003).
[Crossref] [PubMed]

Shin, Y.

A. E. Leanhardt, T. A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D. E. Pritchard, and W. Ketterle, “Cooling Bose-Einstein condensates below 500 picokelvin,” Science 301(5639), 1513–1515 (2003).
[Crossref] [PubMed]

Singer, K.

M. Mudrich, S. Kraft, K. Singer, R. Grimm, A. Mosk, and M. Weidemüller, “Sympathetic cooling with two atomic species in an optical trap,” Phys. Rev. Lett 88(25), 253001 (2002).
[Crossref] [PubMed]

Söding, J.

Sugarbaker, A.

T. Kovachy, J. M. Hogan, A. Sugarbaker, S. M. Dickerson, C. A. Donnelly, C. Overstreet, and M. A. Kasevich, “Matter wave lensing to picokelvin temperatures,” arXiv:1407.6995v1 (2014).

Taglieber, M.

M. Taglieber, A.-C. Voigt, T. Aoki, T. W. Hänsch, and K. Dieckmann, “Quantum degenerate two-species Fermi-Fermi mixture coexisting with a Bose-Einstein condensate,” Phys. Rev. Lett. 100(1), 010401 (2008).
[Crossref] [PubMed]

Thomas, V. A.

V. A. Thomas, N. S. Prasad, and C. A. Mohan Reddy, “Microgravity research platformsła study,” Curr. Sci. 79(3) 336–340 (2000).

Thywissen, J. H.

L. J. LeBlanc and J. H. Thywissen, “Species-specific optical lattices,” Phys. Rev. A 75(5), 053612 (2007).
[Crossref]

Tiemann, E.

M. Repp, R. Pires, J. Ulmanis, R. Heck, E. D. Kuhnle, M. Weidemüller, and E. Tiemann, “Observation of interspecies 6Li-133Cs Feshbach resonances,” Phys. Rev. A 87(1), 010701 (2013).
[Crossref]

Tung, S. K.

S. K. Tung, C. Parker, J. Johansen, C. Chin, Y. Wang, and P. S. Julienne, “Ultracold mixtures of atomic 6Li and 133Cs with tunable interactions,” Phys. Rev. A 87(1), 010702 (2013).
[Crossref]

Ulmanis, J.

M. Repp, R. Pires, J. Ulmanis, R. Heck, E. D. Kuhnle, M. Weidemüller, and E. Tiemann, “Observation of interspecies 6Li-133Cs Feshbach resonances,” Phys. Rev. A 87(1), 010701 (2013).
[Crossref]

Voigt, A.-C.

M. Taglieber, A.-C. Voigt, T. Aoki, T. W. Hänsch, and K. Dieckmann, “Quantum degenerate two-species Fermi-Fermi mixture coexisting with a Bose-Einstein condensate,” Phys. Rev. Lett. 100(1), 010401 (2008).
[Crossref] [PubMed]

Wang, L.

L. Wang, P. Zhang, X.-Z. Chen, and Z.-Y. Ma, “Generating a picokelvin ultracold atomic ensemble in microgravity,” J. Phys. B: At., Mol. Opt. Ph. 46, 195302 (2013).
[Crossref]

Wang, Y.

S. K. Tung, C. Parker, J. Johansen, C. Chin, Y. Wang, and P. S. Julienne, “Ultracold mixtures of atomic 6Li and 133Cs with tunable interactions,” Phys. Rev. A 87(1), 010702 (2013).
[Crossref]

Weber, T.

T. Weber, J. Herbig, M. Mark, H. C. Nägerl, and R. Grimm, “Bose-Einstein condensation of Cesium,” Science 299(5604), 232–235 (2003).
[Crossref]

Weidemüller, M.

M. Repp, R. Pires, J. Ulmanis, R. Heck, E. D. Kuhnle, M. Weidemüller, and E. Tiemann, “Observation of interspecies 6Li-133Cs Feshbach resonances,” Phys. Rev. A 87(1), 010701 (2013).
[Crossref]

M. Mudrich, S. Kraft, K. Singer, R. Grimm, A. Mosk, and M. Weidemüller, “Sympathetic cooling with two atomic species in an optical trap,” Phys. Rev. Lett 88(25), 253001 (2002).
[Crossref] [PubMed]

R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At., Mol., Opt. Phys. 42, 95–170 (2000).
[Crossref]

Weiss, D. S.

D. J. Han, M. T. DePue, and D. S. Weiss, “Loading and compressing Cs atoms in a very far-off-resonant light trap,” Phys. Rev. A 63(2), 023405 (2001).
[Crossref]

Wenz, A. N.

T. B. Ottenstein, T. Lompe, M. Kohnen, A. N. Wenz, and S. Jochim, “Collisional stability of a three-component degenerate Fermi gas,” Phys. Rev. Lett. 101(20), 203202 (2008).
[Crossref] [PubMed]

Wineland, D. J.

D. J. Larson, J. C. Bergquist, J. J. Bollinger, W. M. Itano, and D. J. Wineland, “Sympathetic cooling of trapped ions: a laser-cooled two-species nonneutral ion plasma,” Phys. Rev. Lett. 57(1), 70–73 (1986).
[Crossref] [PubMed]

Zhang, P.

L. Wang, P. Zhang, X.-Z. Chen, and Z.-Y. Ma, “Generating a picokelvin ultracold atomic ensemble in microgravity,” J. Phys. B: At., Mol. Opt. Ph. 46, 195302 (2013).
[Crossref]

Adv. At., Mol., Opt. Phys. (1)

R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At., Mol., Opt. Phys. 42, 95–170 (2000).
[Crossref]

Ann. Phys. (1)

E. Braaten and H.-W. Hammer, “Efimov physics in cold atoms,” Ann. Phys. 322(1), 120–163 (2007).
[Crossref]

Curr. Sci. (1)

V. A. Thomas, N. S. Prasad, and C. A. Mohan Reddy, “Microgravity research platformsła study,” Curr. Sci. 79(3) 336–340 (2000).

J. Phys. B: At., Mol. Opt. Ph. (1)

L. Wang, P. Zhang, X.-Z. Chen, and Z.-Y. Ma, “Generating a picokelvin ultracold atomic ensemble in microgravity,” J. Phys. B: At., Mol. Opt. Ph. 46, 195302 (2013).
[Crossref]

Opt. Express (3)

Phys. Lett. B (1)

V. Efimov, “Energy levels arising from resonant two-body forces in a three-body system,” Phys. Lett. B 33(8), 563–564 (1970).
[Crossref]

Phys. Rev. A (6)

S. K. Tung, C. Parker, J. Johansen, C. Chin, Y. Wang, and P. S. Julienne, “Ultracold mixtures of atomic 6Li and 133Cs with tunable interactions,” Phys. Rev. A 87(1), 010702 (2013).
[Crossref]

A. H. Hansen, A. Y. Khramov, W. H. Dowd, A. O. Jamison, B. Plotkin-Swing, R. J. Roy, and S. Gupta, “Production of quantum-degenerate mixtures of ytterbium and lithium with controllable interspecies overlap,” Phys. Rev. A 87(1), 013615 (2013).
[Crossref]

M. Repp, R. Pires, J. Ulmanis, R. Heck, E. D. Kuhnle, M. Weidemüller, and E. Tiemann, “Observation of interspecies 6Li-133Cs Feshbach resonances,” Phys. Rev. A 87(1), 010701 (2013).
[Crossref]

D. J. Han, M. T. DePue, and D. S. Weiss, “Loading and compressing Cs atoms in a very far-off-resonant light trap,” Phys. Rev. A 63(2), 023405 (2001).
[Crossref]

M. Brown-Hayes and R. Onofrio, “Optimal cooling strategies for magnetically trapped atomic Fermi-Bose mixtures,” Phys. Rev. A 70(6), 063614 (2004).
[Crossref]

L. J. LeBlanc and J. H. Thywissen, “Species-specific optical lattices,” Phys. Rev. A 75(5), 053612 (2007).
[Crossref]

Phys. Rev. Lett (1)

M. Mudrich, S. Kraft, K. Singer, R. Grimm, A. Mosk, and M. Weidemüller, “Sympathetic cooling with two atomic species in an optical trap,” Phys. Rev. Lett 88(25), 253001 (2002).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

T. B. Ottenstein, T. Lompe, M. Kohnen, A. N. Wenz, and S. Jochim, “Collisional stability of a three-component degenerate Fermi gas,” Phys. Rev. Lett. 101(20), 203202 (2008).
[Crossref] [PubMed]

D. J. Larson, J. C. Bergquist, J. J. Bollinger, W. M. Itano, and D. J. Wineland, “Sympathetic cooling of trapped ions: a laser-cooled two-species nonneutral ion plasma,” Phys. Rev. Lett. 57(1), 70–73 (1986).
[Crossref] [PubMed]

M. Taglieber, A.-C. Voigt, T. Aoki, T. W. Hänsch, and K. Dieckmann, “Quantum degenerate two-species Fermi-Fermi mixture coexisting with a Bose-Einstein condensate,” Phys. Rev. Lett. 100(1), 010401 (2008).
[Crossref] [PubMed]

Science (3)

I. Ferrier-Barbut, M. Delehaye, S. Laurent, A. T. Grier, M. Pierce, B. S. Rem, F. Chevy, and C. Salomon, “A mixture of Bose and Fermi superfluids,” Science 345(6200), 1035–1038 (2014).
[Crossref] [PubMed]

A. E. Leanhardt, T. A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D. E. Pritchard, and W. Ketterle, “Cooling Bose-Einstein condensates below 500 picokelvin,” Science 301(5639), 1513–1515 (2003).
[Crossref] [PubMed]

T. Weber, J. Herbig, M. Mark, H. C. Nägerl, and R. Grimm, “Bose-Einstein condensation of Cesium,” Science 299(5604), 232–235 (2003).
[Crossref]

Other (3)

G. A. Bird, “Molecular gas dynamics and the direct simulation of gas flows” (Oxford Science Publications, 1998).

M. E. Gehm, “Properties of 6Li”, http://www.physics.ncsu.edu/jet/techdocs/pdf/PropertiesOfLi.pdf

T. Kovachy, J. M. Hogan, A. Sugarbaker, S. M. Dickerson, C. A. Donnelly, C. Overstreet, and M. A. Kasevich, “Matter wave lensing to picokelvin temperatures,” arXiv:1407.6995v1 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The simulated evolution of the Li-Cs atoms’ number and temperature (blue curves for the Cs atoms, red curves for the Li atoms). As a comparison, the experimental results by Mudrich et. al are also illustrated as black squares and dots, courtesy of professor Grimm and professor Weidemüller.
Fig. 2
Fig. 2 (a) Relationship between the final degeneracy of 6Li atoms and the initial number of 133Cs atoms. The black blocks, red dots and the blue triangles show that the initial temperature of 133Cs atoms is respectively 10 μK, 5 μK, and 2 μK. (b) Relationship between the final degeneracy of 6Li atoms and the initial temperature of 133Cs atoms. The black blocks, red dots and the blue triangles show that the initial number of 133Cs atoms is respectively 1×106, 2×105, and 1×105.
Fig. 3
Fig. 3 Evolution of the total atom number NLi (black curve above), degeneracy T/TF (red curve) and the temperature of 6Li atoms (blue curve). (a) The sympathetic cooling process of 6Li atoms with gravity(g=9.81 m/s). The lowest degeneracy T/TF is 1.09. (b) The sympathetic cooling process of 6Li atoms in microgravity(10−3g). The lowest degeneracy T/TF is 0.52.
Fig. 4
Fig. 4 The proposed setup of the multi-beam optical dipole trap, which is designed for the two-stage sympathetic cooling. The arrowheads illustrate the process of the two-stage sympathetic cooling. (a) Sympathetic cooling in a tight-confining crossed dipole trap. (b) Overlapping the trap with a wider and weaker one. (c) Adiabatically decompressing the combined trap.
Fig. 5
Fig. 5 The time evolution of atom number NLi (black curve above), degeneracy T/TF (red curve) and the temperature of Li atoms(blue curve). The lowest temperature is 29.5 pK with the degeneracy of T/TF = 0.59.

Tables (2)

Tables Icon

Table 1 Gravitational sag and characteristic resonant lengths in the cooling process.

Tables Icon

Table 2 Gravity acceleration, final temperature and degeneracy of 6Li atoms.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

σ = 8 π a C s 2 1 + k C s 2 a C s 2 ,
σ = 8 π a C s 2 1 + 2 π m C s k B T h ¯ 2 a C s 2 .
U ( x , y , z ) = U 1 e 2 ( x 2 + z 2 ) / w 2 U 2 e 2 ( y 2 + z 2 ) / w 2 ,
U 1 ( 2 ) = 3 π c 2 2 ω 0 3 ( Γ ω 0 ω 1 + Γ ω 0 + ω 1 ) P 1 ( 2 ) π w 2 ,
U U center ( 1 2 x 2 + y 2 + 2 z 2 w 2 ) .
T F = h ¯ ϖ k B ( 6 N ) 1 3 ,
P ( t ) = P 0 × ( 1 + t / τ ) β ,
U d i p ( r ) 3 π c 2 2 ω 0 3 Γ ω 0 ω 1 P π w 2 ,
3 2 k B T = K + U d i p .
3 2 T P k B = U d i p P = 3 π c 2 2 ω 0 3 Γ ω 0 ω 1 1 π w 2 .
T = 4.6 × 10 7 ( K J / s ) P = 4.6 ( pK 10 2 mw ) P .
T = 0.447 × 10 2 ( pK / MHz ) ·   Δ ,

Metrics