Abstract

Real-time measurement of the absolute frequency of continuous-wave terahertz (CW-THz) radiation is required for characterization and frequency calibration of practical CW-THz sources. We proposed a method for real-time monitoring of the absolute frequency of CW-THz radiation involving temporally parallel, i.e., simultaneous, measurement of two pairs of beat frequencies and laser repetition frequencies based on dual THz combs of photocarriers (PC-THz combs) with different frequency spacings. To demonstrate the method, THz-comb-referenced spectrum analyzers were constructed with a dual configuration based on dual femtosecond lasers. Regardless of the presence or absence of frequency control in the PC-THz combs, a frequency precision of 10−11 was achieved at a measurement rate of 100 Hz. Furthermore, large fluctuation of the CW-THz frequencies, crossing several modes of the PC-THz combs, was correctly monitored in real time. The proposed method will be a powerful tool for the research and development of practical CW-THz sources, and other applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Real-time monitoring of continuous-wave terahertz radiation using a fiber-based, terahertz-comb-referenced spectrum analyzer

Takeshi Yasui, Ryotaro Nakamura, Kohji Kawamoto, Atsushi Ihara, Yoshihide Fujimoto, Shuko Yokoyama, Hajime Inaba, Kaoru Minoshima, Tadao Nagatsuma, and Tsutomu Araki
Opt. Express 17(19) 17034-17043 (2009)

Terahertz spectrum analyzer based on a terahertz frequency comb

Shuko Yokoyama, Ryotaro Nakamura, Masaki Nose, Tsutomu Araki, and Takeshi Yasui
Opt. Express 16(17) 13052-13061 (2008)

References

  • View by:
  • |
  • |
  • |

  1. T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
    [Crossref]
  2. T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
    [Crossref]
  3. H. Füser and M. Bieler, “Terahertz frequency combs,” J. Infrared Millim. Terahertz Waves 35(8), 585–609 (2014).
    [Crossref]
  4. S. Yokoyama, R. Nakamura, M. Nose, T. Araki, and T. Yasui, “Terahertz spectrum analyzer based on a terahertz frequency comb,” Opt. Express 16(17), 13052–13061 (2008).
    [Crossref] [PubMed]
  5. T. Yasui, R. Nakamura, K. Kawamoto, A. Ihara, Y. Fujimoto, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Real-time monitoring of continuous-wave terahertz radiation using a fiber-based, terahertz-comb-referenced spectrum analyzer,” Opt. Express 17(19), 17034–17043 (2009).
    [Crossref] [PubMed]
  6. H. Füser, R. Judaschke, and M. Bieler, “High-precision frequency measurements in the THz spectral region using an unstabilized femtosecond laser,” Appl. Phys. Lett. 99(12), 121111 (2011).
    [Crossref]
  7. H. Ito, S. Nagano, M. Kumagai, M. Kajita, and Y. Hanado, “Terahertz frequency counter with a fractional frequency uncertainty at the 10−17 level,” Appl. Phys. Express 6(10), 102202 (2013).
    [Crossref]
  8. T. Yasui, M. Nose, A. Ihara, K. Kawamoto, S. Yokoyama, H. Inaba, K. Minoshima, and T. Araki, “Fiber-based, hybrid terahertz spectrometer using dual fiber combs,” Opt. Lett. 35(10), 1689–1691 (2010).
    [Crossref] [PubMed]
  9. Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, Y. Takahashi, M. Yoshimura, Y. Mori, T. Araki, and T. Yasui, “Terahertz comb spectroscopy traceable to microwave frequency standard,” IEEE Trans. THz Sci. Technol. 3, 322–330 (2013).
  10. Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci Rep 4, 3816 (2014).
    [Crossref] [PubMed]
  11. P. Gaal, M. B. Raschke, K. Reimann, and M. Woerner, “Measuring optical frequencies in the 0–40 THz range with non-synchronized electro–optic sampling,” Nat. Photonics 1(10), 577–580 (2007).
    [Crossref]
  12. M. Ravaro, S. Barbieri, G. Santarelli, V. Jagtap, C. Manquest, C. Sirtori, S. P. Khanna, and E. H. Linfield, “Measurement of the intrinsic linewidth of terahertz quantum cascade lasers using a near-infrared frequency comb,” Opt. Express 20(23), 25654–25661 (2012).
    [PubMed]
  13. D.-S. Yee, Y. Jang, Y. Kim, and D.-C. Seo, “Terahertz spectrum analyzer based on frequency and power measurement,” Opt. Lett. 35(15), 2532–2534 (2010).
    [Crossref] [PubMed]
  14. T. Yasui, M. Fujio, S. Yokoyama, and T. Araki, “Phase-slope and phase measurements of tunable CW-THz radiation with terahertz comb for wide-dynamic-range, high-resolution, distance measurement of optically rough object,” Opt. Express 22(14), 17349–17359 (2014).
    [Crossref] [PubMed]
  15. M. Ravaro, C. Manquest, C. Sirtori, S. Barbieri, G. Santarelli, K. Blary, J.-F. Lampin, S. P. Khanna, and E. H. Linfield, “Phase-locking of a 2.5 THz quantum cascade laser to a frequency comb using a GaAs photomixer,” Opt. Lett. 36(20), 3969–3971 (2011).
    [Crossref] [PubMed]
  16. S. Nagano, H. Ito, M. Kumagai, M. Kajita, and Y. Hanado, “Microwave synthesis from a continuous-wave terahertz oscillator using a photocarrier terahertz frequency comb,” Opt. Lett. 38(12), 2137–2139 (2013).
    [Crossref] [PubMed]
  17. B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
    [Crossref]
  18. T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser, Photon. Rev. 3(1-2), 123–137 (2009).
    [Crossref]
  19. M. Asada, S. Suzuki, and N. Kishimoto, “Resonant tunneling diodes for sub-terahertz and terahertz oscillators,” Jpn. J. Appl. Phys. 47(6), 4375–4384 (2008).
    [Crossref]
  20. X. Zhao, Z. Zheng, L. Liu, Q. Wang, H. Chen, and J. Liu, “Fast, long-scan-range pump-probe measurement based on asynchronous sampling using a dual-wavelength mode-locked fiber laser,” Opt. Express 20(23), 25584–25589 (2012).
    [Crossref] [PubMed]

2014 (3)

H. Füser and M. Bieler, “Terahertz frequency combs,” J. Infrared Millim. Terahertz Waves 35(8), 585–609 (2014).
[Crossref]

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci Rep 4, 3816 (2014).
[Crossref] [PubMed]

T. Yasui, M. Fujio, S. Yokoyama, and T. Araki, “Phase-slope and phase measurements of tunable CW-THz radiation with terahertz comb for wide-dynamic-range, high-resolution, distance measurement of optically rough object,” Opt. Express 22(14), 17349–17359 (2014).
[Crossref] [PubMed]

2013 (3)

S. Nagano, H. Ito, M. Kumagai, M. Kajita, and Y. Hanado, “Microwave synthesis from a continuous-wave terahertz oscillator using a photocarrier terahertz frequency comb,” Opt. Lett. 38(12), 2137–2139 (2013).
[Crossref] [PubMed]

H. Ito, S. Nagano, M. Kumagai, M. Kajita, and Y. Hanado, “Terahertz frequency counter with a fractional frequency uncertainty at the 10−17 level,” Appl. Phys. Express 6(10), 102202 (2013).
[Crossref]

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, Y. Takahashi, M. Yoshimura, Y. Mori, T. Araki, and T. Yasui, “Terahertz comb spectroscopy traceable to microwave frequency standard,” IEEE Trans. THz Sci. Technol. 3, 322–330 (2013).

2012 (2)

2011 (3)

M. Ravaro, C. Manquest, C. Sirtori, S. Barbieri, G. Santarelli, K. Blary, J.-F. Lampin, S. P. Khanna, and E. H. Linfield, “Phase-locking of a 2.5 THz quantum cascade laser to a frequency comb using a GaAs photomixer,” Opt. Lett. 36(20), 3969–3971 (2011).
[Crossref] [PubMed]

H. Füser, R. Judaschke, and M. Bieler, “High-precision frequency measurements in the THz spectral region using an unstabilized femtosecond laser,” Appl. Phys. Lett. 99(12), 121111 (2011).
[Crossref]

T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
[Crossref]

2010 (2)

2009 (2)

2008 (2)

M. Asada, S. Suzuki, and N. Kishimoto, “Resonant tunneling diodes for sub-terahertz and terahertz oscillators,” Jpn. J. Appl. Phys. 47(6), 4375–4384 (2008).
[Crossref]

S. Yokoyama, R. Nakamura, M. Nose, T. Araki, and T. Yasui, “Terahertz spectrum analyzer based on a terahertz frequency comb,” Opt. Express 16(17), 13052–13061 (2008).
[Crossref] [PubMed]

2007 (2)

P. Gaal, M. B. Raschke, K. Reimann, and M. Woerner, “Measuring optical frequencies in the 0–40 THz range with non-synchronized electro–optic sampling,” Nat. Photonics 1(10), 577–580 (2007).
[Crossref]

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
[Crossref]

2006 (1)

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[Crossref]

Araki, T.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci Rep 4, 3816 (2014).
[Crossref] [PubMed]

T. Yasui, M. Fujio, S. Yokoyama, and T. Araki, “Phase-slope and phase measurements of tunable CW-THz radiation with terahertz comb for wide-dynamic-range, high-resolution, distance measurement of optically rough object,” Opt. Express 22(14), 17349–17359 (2014).
[Crossref] [PubMed]

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, Y. Takahashi, M. Yoshimura, Y. Mori, T. Araki, and T. Yasui, “Terahertz comb spectroscopy traceable to microwave frequency standard,” IEEE Trans. THz Sci. Technol. 3, 322–330 (2013).

T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
[Crossref]

T. Yasui, M. Nose, A. Ihara, K. Kawamoto, S. Yokoyama, H. Inaba, K. Minoshima, and T. Araki, “Fiber-based, hybrid terahertz spectrometer using dual fiber combs,” Opt. Lett. 35(10), 1689–1691 (2010).
[Crossref] [PubMed]

T. Yasui, R. Nakamura, K. Kawamoto, A. Ihara, Y. Fujimoto, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Real-time monitoring of continuous-wave terahertz radiation using a fiber-based, terahertz-comb-referenced spectrum analyzer,” Opt. Express 17(19), 17034–17043 (2009).
[Crossref] [PubMed]

S. Yokoyama, R. Nakamura, M. Nose, T. Araki, and T. Yasui, “Terahertz spectrum analyzer based on a terahertz frequency comb,” Opt. Express 16(17), 13052–13061 (2008).
[Crossref] [PubMed]

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[Crossref]

Asada, M.

M. Asada, S. Suzuki, and N. Kishimoto, “Resonant tunneling diodes for sub-terahertz and terahertz oscillators,” Jpn. J. Appl. Phys. 47(6), 4375–4384 (2008).
[Crossref]

Barbieri, S.

Bieler, M.

H. Füser and M. Bieler, “Terahertz frequency combs,” J. Infrared Millim. Terahertz Waves 35(8), 585–609 (2014).
[Crossref]

H. Füser, R. Judaschke, and M. Bieler, “High-precision frequency measurements in the THz spectral region using an unstabilized femtosecond laser,” Appl. Phys. Lett. 99(12), 121111 (2011).
[Crossref]

Blary, K.

Chen, H.

Fujimoto, Y.

Fujio, M.

Füser, H.

H. Füser and M. Bieler, “Terahertz frequency combs,” J. Infrared Millim. Terahertz Waves 35(8), 585–609 (2014).
[Crossref]

H. Füser, R. Judaschke, and M. Bieler, “High-precision frequency measurements in the THz spectral region using an unstabilized femtosecond laser,” Appl. Phys. Lett. 99(12), 121111 (2011).
[Crossref]

Gaal, P.

P. Gaal, M. B. Raschke, K. Reimann, and M. Woerner, “Measuring optical frequencies in the 0–40 THz range with non-synchronized electro–optic sampling,” Nat. Photonics 1(10), 577–580 (2007).
[Crossref]

Hanado, Y.

H. Ito, S. Nagano, M. Kumagai, M. Kajita, and Y. Hanado, “Terahertz frequency counter with a fractional frequency uncertainty at the 10−17 level,” Appl. Phys. Express 6(10), 102202 (2013).
[Crossref]

S. Nagano, H. Ito, M. Kumagai, M. Kajita, and Y. Hanado, “Microwave synthesis from a continuous-wave terahertz oscillator using a photocarrier terahertz frequency comb,” Opt. Lett. 38(12), 2137–2139 (2013).
[Crossref] [PubMed]

Hindle, F.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci Rep 4, 3816 (2014).
[Crossref] [PubMed]

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, Y. Takahashi, M. Yoshimura, Y. Mori, T. Araki, and T. Yasui, “Terahertz comb spectroscopy traceable to microwave frequency standard,” IEEE Trans. THz Sci. Technol. 3, 322–330 (2013).

Hsieh, Y.-D.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci Rep 4, 3816 (2014).
[Crossref] [PubMed]

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, Y. Takahashi, M. Yoshimura, Y. Mori, T. Araki, and T. Yasui, “Terahertz comb spectroscopy traceable to microwave frequency standard,” IEEE Trans. THz Sci. Technol. 3, 322–330 (2013).

Ihara, A.

Inaba, H.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci Rep 4, 3816 (2014).
[Crossref] [PubMed]

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, Y. Takahashi, M. Yoshimura, Y. Mori, T. Araki, and T. Yasui, “Terahertz comb spectroscopy traceable to microwave frequency standard,” IEEE Trans. THz Sci. Technol. 3, 322–330 (2013).

T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
[Crossref]

T. Yasui, M. Nose, A. Ihara, K. Kawamoto, S. Yokoyama, H. Inaba, K. Minoshima, and T. Araki, “Fiber-based, hybrid terahertz spectrometer using dual fiber combs,” Opt. Lett. 35(10), 1689–1691 (2010).
[Crossref] [PubMed]

T. Yasui, R. Nakamura, K. Kawamoto, A. Ihara, Y. Fujimoto, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Real-time monitoring of continuous-wave terahertz radiation using a fiber-based, terahertz-comb-referenced spectrum analyzer,” Opt. Express 17(19), 17034–17043 (2009).
[Crossref] [PubMed]

Ishibashi, T.

T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser, Photon. Rev. 3(1-2), 123–137 (2009).
[Crossref]

Ito, H.

H. Ito, S. Nagano, M. Kumagai, M. Kajita, and Y. Hanado, “Terahertz frequency counter with a fractional frequency uncertainty at the 10−17 level,” Appl. Phys. Express 6(10), 102202 (2013).
[Crossref]

S. Nagano, H. Ito, M. Kumagai, M. Kajita, and Y. Hanado, “Microwave synthesis from a continuous-wave terahertz oscillator using a photocarrier terahertz frequency comb,” Opt. Lett. 38(12), 2137–2139 (2013).
[Crossref] [PubMed]

T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser, Photon. Rev. 3(1-2), 123–137 (2009).
[Crossref]

Iyonaga, Y.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci Rep 4, 3816 (2014).
[Crossref] [PubMed]

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, Y. Takahashi, M. Yoshimura, Y. Mori, T. Araki, and T. Yasui, “Terahertz comb spectroscopy traceable to microwave frequency standard,” IEEE Trans. THz Sci. Technol. 3, 322–330 (2013).

Jagtap, V.

Jang, Y.

Judaschke, R.

H. Füser, R. Judaschke, and M. Bieler, “High-precision frequency measurements in the THz spectral region using an unstabilized femtosecond laser,” Appl. Phys. Lett. 99(12), 121111 (2011).
[Crossref]

Kabetani, Y.

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[Crossref]

Kajita, M.

H. Ito, S. Nagano, M. Kumagai, M. Kajita, and Y. Hanado, “Terahertz frequency counter with a fractional frequency uncertainty at the 10−17 level,” Appl. Phys. Express 6(10), 102202 (2013).
[Crossref]

S. Nagano, H. Ito, M. Kumagai, M. Kajita, and Y. Hanado, “Microwave synthesis from a continuous-wave terahertz oscillator using a photocarrier terahertz frequency comb,” Opt. Lett. 38(12), 2137–2139 (2013).
[Crossref] [PubMed]

Kawamoto, K.

Khanna, S. P.

Kim, Y.

Kishimoto, N.

M. Asada, S. Suzuki, and N. Kishimoto, “Resonant tunneling diodes for sub-terahertz and terahertz oscillators,” Jpn. J. Appl. Phys. 47(6), 4375–4384 (2008).
[Crossref]

Kumagai, M.

H. Ito, S. Nagano, M. Kumagai, M. Kajita, and Y. Hanado, “Terahertz frequency counter with a fractional frequency uncertainty at the 10−17 level,” Appl. Phys. Express 6(10), 102202 (2013).
[Crossref]

S. Nagano, H. Ito, M. Kumagai, M. Kajita, and Y. Hanado, “Microwave synthesis from a continuous-wave terahertz oscillator using a photocarrier terahertz frequency comb,” Opt. Lett. 38(12), 2137–2139 (2013).
[Crossref] [PubMed]

Lampin, J.-F.

Linfield, E. H.

Liu, J.

Liu, L.

Manquest, C.

Minoshima, K.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci Rep 4, 3816 (2014).
[Crossref] [PubMed]

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, Y. Takahashi, M. Yoshimura, Y. Mori, T. Araki, and T. Yasui, “Terahertz comb spectroscopy traceable to microwave frequency standard,” IEEE Trans. THz Sci. Technol. 3, 322–330 (2013).

T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
[Crossref]

T. Yasui, M. Nose, A. Ihara, K. Kawamoto, S. Yokoyama, H. Inaba, K. Minoshima, and T. Araki, “Fiber-based, hybrid terahertz spectrometer using dual fiber combs,” Opt. Lett. 35(10), 1689–1691 (2010).
[Crossref] [PubMed]

T. Yasui, R. Nakamura, K. Kawamoto, A. Ihara, Y. Fujimoto, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Real-time monitoring of continuous-wave terahertz radiation using a fiber-based, terahertz-comb-referenced spectrum analyzer,” Opt. Express 17(19), 17034–17043 (2009).
[Crossref] [PubMed]

Mori, Y.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, Y. Takahashi, M. Yoshimura, Y. Mori, T. Araki, and T. Yasui, “Terahertz comb spectroscopy traceable to microwave frequency standard,” IEEE Trans. THz Sci. Technol. 3, 322–330 (2013).

Nagano, S.

H. Ito, S. Nagano, M. Kumagai, M. Kajita, and Y. Hanado, “Terahertz frequency counter with a fractional frequency uncertainty at the 10−17 level,” Appl. Phys. Express 6(10), 102202 (2013).
[Crossref]

S. Nagano, H. Ito, M. Kumagai, M. Kajita, and Y. Hanado, “Microwave synthesis from a continuous-wave terahertz oscillator using a photocarrier terahertz frequency comb,” Opt. Lett. 38(12), 2137–2139 (2013).
[Crossref] [PubMed]

Nagatsuma, T.

T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
[Crossref]

T. Yasui, R. Nakamura, K. Kawamoto, A. Ihara, Y. Fujimoto, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Real-time monitoring of continuous-wave terahertz radiation using a fiber-based, terahertz-comb-referenced spectrum analyzer,” Opt. Express 17(19), 17034–17043 (2009).
[Crossref] [PubMed]

T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser, Photon. Rev. 3(1-2), 123–137 (2009).
[Crossref]

Nakamura, R.

Nose, M.

Raschke, M. B.

P. Gaal, M. B. Raschke, K. Reimann, and M. Woerner, “Measuring optical frequencies in the 0–40 THz range with non-synchronized electro–optic sampling,” Nat. Photonics 1(10), 577–580 (2007).
[Crossref]

Ravaro, M.

Reimann, K.

P. Gaal, M. B. Raschke, K. Reimann, and M. Woerner, “Measuring optical frequencies in the 0–40 THz range with non-synchronized electro–optic sampling,” Nat. Photonics 1(10), 577–580 (2007).
[Crossref]

Sakaguchi, Y.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci Rep 4, 3816 (2014).
[Crossref] [PubMed]

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, Y. Takahashi, M. Yoshimura, Y. Mori, T. Araki, and T. Yasui, “Terahertz comb spectroscopy traceable to microwave frequency standard,” IEEE Trans. THz Sci. Technol. 3, 322–330 (2013).

Saneyoshi, E.

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[Crossref]

Santarelli, G.

Seo, D.-C.

Sirtori, C.

Suzuki, S.

M. Asada, S. Suzuki, and N. Kishimoto, “Resonant tunneling diodes for sub-terahertz and terahertz oscillators,” Jpn. J. Appl. Phys. 47(6), 4375–4384 (2008).
[Crossref]

Takahashi, Y.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, Y. Takahashi, M. Yoshimura, Y. Mori, T. Araki, and T. Yasui, “Terahertz comb spectroscopy traceable to microwave frequency standard,” IEEE Trans. THz Sci. Technol. 3, 322–330 (2013).

Wang, Q.

Williams, B. S.

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
[Crossref]

Woerner, M.

P. Gaal, M. B. Raschke, K. Reimann, and M. Woerner, “Measuring optical frequencies in the 0–40 THz range with non-synchronized electro–optic sampling,” Nat. Photonics 1(10), 577–580 (2007).
[Crossref]

Yasui, T.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci Rep 4, 3816 (2014).
[Crossref] [PubMed]

T. Yasui, M. Fujio, S. Yokoyama, and T. Araki, “Phase-slope and phase measurements of tunable CW-THz radiation with terahertz comb for wide-dynamic-range, high-resolution, distance measurement of optically rough object,” Opt. Express 22(14), 17349–17359 (2014).
[Crossref] [PubMed]

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, Y. Takahashi, M. Yoshimura, Y. Mori, T. Araki, and T. Yasui, “Terahertz comb spectroscopy traceable to microwave frequency standard,” IEEE Trans. THz Sci. Technol. 3, 322–330 (2013).

T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
[Crossref]

T. Yasui, M. Nose, A. Ihara, K. Kawamoto, S. Yokoyama, H. Inaba, K. Minoshima, and T. Araki, “Fiber-based, hybrid terahertz spectrometer using dual fiber combs,” Opt. Lett. 35(10), 1689–1691 (2010).
[Crossref] [PubMed]

T. Yasui, R. Nakamura, K. Kawamoto, A. Ihara, Y. Fujimoto, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Real-time monitoring of continuous-wave terahertz radiation using a fiber-based, terahertz-comb-referenced spectrum analyzer,” Opt. Express 17(19), 17034–17043 (2009).
[Crossref] [PubMed]

S. Yokoyama, R. Nakamura, M. Nose, T. Araki, and T. Yasui, “Terahertz spectrum analyzer based on a terahertz frequency comb,” Opt. Express 16(17), 13052–13061 (2008).
[Crossref] [PubMed]

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[Crossref]

Yee, D.-S.

Yokoyama, S.

T. Yasui, M. Fujio, S. Yokoyama, and T. Araki, “Phase-slope and phase measurements of tunable CW-THz radiation with terahertz comb for wide-dynamic-range, high-resolution, distance measurement of optically rough object,” Opt. Express 22(14), 17349–17359 (2014).
[Crossref] [PubMed]

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci Rep 4, 3816 (2014).
[Crossref] [PubMed]

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, Y. Takahashi, M. Yoshimura, Y. Mori, T. Araki, and T. Yasui, “Terahertz comb spectroscopy traceable to microwave frequency standard,” IEEE Trans. THz Sci. Technol. 3, 322–330 (2013).

T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
[Crossref]

T. Yasui, M. Nose, A. Ihara, K. Kawamoto, S. Yokoyama, H. Inaba, K. Minoshima, and T. Araki, “Fiber-based, hybrid terahertz spectrometer using dual fiber combs,” Opt. Lett. 35(10), 1689–1691 (2010).
[Crossref] [PubMed]

T. Yasui, R. Nakamura, K. Kawamoto, A. Ihara, Y. Fujimoto, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Real-time monitoring of continuous-wave terahertz radiation using a fiber-based, terahertz-comb-referenced spectrum analyzer,” Opt. Express 17(19), 17034–17043 (2009).
[Crossref] [PubMed]

S. Yokoyama, R. Nakamura, M. Nose, T. Araki, and T. Yasui, “Terahertz spectrum analyzer based on a terahertz frequency comb,” Opt. Express 16(17), 13052–13061 (2008).
[Crossref] [PubMed]

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[Crossref]

Yoshimura, M.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, Y. Takahashi, M. Yoshimura, Y. Mori, T. Araki, and T. Yasui, “Terahertz comb spectroscopy traceable to microwave frequency standard,” IEEE Trans. THz Sci. Technol. 3, 322–330 (2013).

Zhao, X.

Zheng, Z.

Appl. Phys. Express (1)

H. Ito, S. Nagano, M. Kumagai, M. Kajita, and Y. Hanado, “Terahertz frequency counter with a fractional frequency uncertainty at the 10−17 level,” Appl. Phys. Express 6(10), 102202 (2013).
[Crossref]

Appl. Phys. Lett. (2)

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[Crossref]

H. Füser, R. Judaschke, and M. Bieler, “High-precision frequency measurements in the THz spectral region using an unstabilized femtosecond laser,” Appl. Phys. Lett. 99(12), 121111 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
[Crossref]

IEEE Trans. THz Sci. Technol. (1)

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, Y. Takahashi, M. Yoshimura, Y. Mori, T. Araki, and T. Yasui, “Terahertz comb spectroscopy traceable to microwave frequency standard,” IEEE Trans. THz Sci. Technol. 3, 322–330 (2013).

J. Infrared Millim. Terahertz Waves (1)

H. Füser and M. Bieler, “Terahertz frequency combs,” J. Infrared Millim. Terahertz Waves 35(8), 585–609 (2014).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Asada, S. Suzuki, and N. Kishimoto, “Resonant tunneling diodes for sub-terahertz and terahertz oscillators,” Jpn. J. Appl. Phys. 47(6), 4375–4384 (2008).
[Crossref]

Laser, Photon. Rev. (1)

T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser, Photon. Rev. 3(1-2), 123–137 (2009).
[Crossref]

Nat. Photonics (2)

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
[Crossref]

P. Gaal, M. B. Raschke, K. Reimann, and M. Woerner, “Measuring optical frequencies in the 0–40 THz range with non-synchronized electro–optic sampling,” Nat. Photonics 1(10), 577–580 (2007).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Sci Rep (1)

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci Rep 4, 3816 (2014).
[Crossref] [PubMed]

Supplementary Material (3)

» Media 1: MOV (427 KB)     
» Media 2: MOV (427 KB)     
» Media 3: MOV (1827 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Principle of real-time absolute frequency measurement of CW-THz radiation based on simultaneous measurement of fbeat1, fbeat2, frep1, and frep2 with dual PC-THz combs having different frequency spacings.

Fig. 2
Fig. 2

Experimental setup. PPLN: periodically-poled-lithium-niobate crystal; BS: beam splitter; L: objective lens; PCA1 and PCA2: photoconductive antennas; PC-THz-comb1 and PC-THz-comb2: THz comb of photocarriers with different frequency spacings; AMP: current preamplifier.

Fig. 3
Fig. 3

Temporal changes of (a) fbeat1, (b) fbeat2, and (c) fTHz when frep1 and frep2 were fixed at 100,000,000 Hz and 100,000,050 Hz by laser stabilization control. Sampling rate was 10 MHz.

Fig. 4
Fig. 4

(a) Frequency error in fbeat1 with respect to number of averaged signals or measurement rate. Red dotted line indicates the acceptance frequency error in fbeat1 and fbeat2 to correctly determine m. (b) Comparison of frequency precision and the corresponding frequency error in fTHz with respect to signal-to-noise ratio between Hilbert transformation method and frequency counter method. The measurement rate was set at 10 Hz.

Fig. 5
Fig. 5

(a) Temporal change of fTHz when the fTHz was manually changed within a frequency range of 0.1 THz ± 100 Hz (Media 1). (b) Temporal change of fTHz when fTHz was stepwise tuned at intervals of 200 MHz from 99,801,000,000 Hz to 100,440,000,000 Hz. The measurement rate was set at 100 Hz for both measurements.

Fig. 6
Fig. 6

Comparison of frequency fluctuation in mfrep1 with respect to gate time between stabilized and free-running PC-THz combs.

Fig. 7
Fig. 7

Temporal changes of (a) fbeat1, (b) fbeat2, (c) frep1, (d) frep2, and (e) fTHz when frep1 and frep2 were not stabilized. Sampling rate was 10 MHz.

Fig. 8
Fig. 8

Temporal change of fTHz when fTHz was stepwise tuned at intervals of 200 MHz from 99,801,000,000 Hz to 100,401,000,000 Hz. The measurement rate was set at 100 Hz.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

f THz =m f rep ± f beat ,
m( f rep2 f rep1 )= f beat2 f beat1 .
m= | f beat2 f beat1 | | f rep2 f rep1 | .
f THz =m f rep1 + f beat1 = | f beat2 f beat1 | | f rep2 f rep1 | f rep1 + f beat1 f beat2 f beat1 f rep2 f rep1 <0 f THz =m f rep1 f beat1 = | f beat2 f beat1 | | f rep2 f rep1 | f rep1 f beat1 f beat2 f beat1 f rep2 f rep1 <0 .

Metrics