Abstract

Near-field enhancement of the electric field by metallic nanostructures is important in non-linear optical applications such as surface enhanced Raman scattering. One approach to producing strong localization of the electric field is to couple a dark, non-radiating plasmonic mode with a broad dipolar resonator that is detectable in the far-field. However, characterizing or predicting the degree of the coupling between these modes for a complicated nanostructure can be quite challenging. Here we develop a robust method to solve the T-matrix, the matrix that predicts the scattered electric fields of the incident light, based on finite-difference time-domain (FDTD) simulations and least square fitting algorithms. This method allows us to simultaneously calculate the T-matrix for a broad spectral range. Using this method, the coupling between the electric dipole and quadrupole modes of spiky nanoshells is evaluated. It is shown that the built-in disorder in the structure of these nanoshells allows for coupling between the dipole modes of various orientations as well as coupling between the dipole and the quadrupole modes. A coupling strength of about 5% between these modes can explain the apparent interference features observed in the single particle scattering spectrum. This effect is experimentally verified by single particle backscattering measurements of spiky nanoshells. The modal interference in disordered spiky nanoshells can explain the origin of the spectrally broad quadrupole resonances that result in strong Quadrupole Enhanced Raman Scattering (QERS) in these nanoparticles.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Geometric effects on far-field coupling between multipoles of nanoparticles in square arrays

Drew DeJarnette, D. Keith Roper, and Braden Harbin
J. Opt. Soc. Am. B 29(1) 88-100 (2012)

Controlling Fano lineshapes in plasmon-mediated light coupling into a substrate

P. Spinelli, C. van Lare, E. Verhagen, and A. Polman
Opt. Express 19(S3) A303-A311 (2011)

Unidirectional scattering by nanoparticles near substrates: generalized Kerker conditions

Anders Pors, Sebastian K. H. Andersen, and Sergey I. Bozhevolnyi
Opt. Express 23(22) 28808-28828 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
    [Crossref]
  2. B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15, 16–25 (2012).
    [Crossref]
  3. P.-J. Huang, L.-L. Tay, J. Tanha, S. Ryan, and L.-K. Chau, “Single-domain antibody-conjugated nanoaggregate-embedded beads for targeted detection of pathogenic bacteria,” Chem. - Eur. J. 15, 9330–9334 (2009).
    [Crossref] [PubMed]
  4. K. L. Rule and P. J. Vikesland, “Surface-enhanced resonance Raman spectroscopy for the rapid detection of cryptosporidium parvum and giardia lamblia,” Environ. Sci. Technol. 43, 1147–1152 (2009).
    [Crossref] [PubMed]
  5. J. Song, Z. Fang, C. Wang, J. Zhou, B. Duan, L. Pu, and H. Duan, “Photolabile plasmonic vesicles assembled from amphiphilic gold nanoparticles for remote-controlled traceable drug delivery,” Nanoscale 5, 5816–5824 (2013).
    [Crossref] [PubMed]
  6. C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett. 4, 2355–2359 (2004).
    [Crossref]
  7. J. B. Herzog, M. W. Knight, Y. Li, K. M. Evans, N. J. Halas, and D. Natelson, “Dark plasmons in hot spot generation and polarization in interelectrode nanoscale junctions,” Nano Lett. 13, 1359–1364 (2013).
    [Crossref] [PubMed]
  8. H. Wang and N. J. Halas, “Mesoscopic Au ‘meatball’ particles,” Adv. Mater. 20, 820–825 (2008).
    [Crossref]
  9. H. Liang, Z. Li, W. Wang, Y. Wu, and H. Xu, “Highly surface-roughened “flower-like” silver nanoparticles for extremely sensitive substrates of surface-enhanced Raman scattering,” Adv. Mater. 21, 4614–4618 (2009).
    [Crossref]
  10. S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11, 1657–1663 (2011).
    [Crossref] [PubMed]
  11. J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12, 1660–1667 (2012).
    [Crossref] [PubMed]
  12. Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4, 1664–1670 (2010).
    [Crossref] [PubMed]
  13. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
    [Crossref]
  14. S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in Fano resonances,” Nano Lett. 10, 2694–2701 (2010).
    [Crossref] [PubMed]
  15. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
    [Crossref]
  16. F. López-Tejeira, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys. 14, 023035 (2012).
    [Crossref]
  17. L.-Y. Yin, Y.-H. Huang, X. Wang, S.-T. Ning, and S.-D. Liu, “Double Fano resonances in nanoring cavity dimers: the effect of plasmon hybridization between dark subradiant modes,” AIP Adv. 4, 077113 (2014).
    [Crossref]
  18. G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. (Leipzig) 330, 377–445 (1908).
    [Crossref]
  19. J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10, 4680–4685 (2010).
    [Crossref] [PubMed]
  20. F. López-Tejeira, R. Paniagua-Domínguez, and J. A. Sánchez-Gil, “High-performance nanosensors based on plasmonic Fano-like interference: probing refractive index with individual nanorice and nanobelts,” ACS nano 6, 8989–8996 (2012).
    [Crossref] [PubMed]
  21. L. Tsang, J. A. Kong, and K.-H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley-Interscience, 2000).
    [Crossref]
  22. P. Waterman, “Matrix formulation of electromagnetic scattering,” Proc. IEEE 53, 805–812 (1965).
    [Crossref]
  23. F. M. Kahnert, J. J. Stamnes, and K. Stamnes, “Application of the extended boundary condition method to particles with sharp edges: a comparison of two surface integration approaches,” Appl. Opt. 40, 3101–3109 (2001).
    [Crossref]
  24. A. Lakhtakia, “Iterative extended boundary condition method for scattering by objects of high aspect ratios,” J. Acoust. Soc. Am. 76, 906–912 (1984).
    [Crossref]
  25. T. Nieminen, H. Rubinsztein-Dunlop, and N. Heckenberg, “Calculation of the T-matrix: general considerations and application of the point-matching method,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 1019–1029 (2003).
    [Crossref]
  26. D. W. Mackowski, “Discrete dipole moment method for calculation of the T matrix for nonspherical particles,” J. Opt. Soc. A 19, 881–893 (2002).
    [Crossref]
  27. V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-Matrix calculation via discrete dipole approximation, point matching and exploiting symmetry,” J. Quant. Spectrosc. Radiat. Transfer 110, 1460–1471 (2009).
    [Crossref]
  28. V. L. Loke, T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “FDFD/T-matrix hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 106, 274–284 (2007).
    [Crossref]
  29. T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, ““Hybrid” T-matrix methods,” in Electromagnetic and Light Scattering – Theory and Applications VII, T. Wriedt, ed. (2003), pp 263–266.
  30. B. L. Sanchez-Gaytan and S.-J. Park, “Spiky gold nanoshells,” Langmuir 26, 19170–19174 (2010).
    [Crossref] [PubMed]
  31. B. L. Sanchez-Gaytan, P. Swanglap, T. J. Lamkin, R. J. Hickey, Z. Fakhraai, S. Link, and S.-J. Park, “Spiky gold nanoshells: synthesis and enhanced scattering properties,” J. Phys. Chem. C 116, 10318–10324 (2012).
    [Crossref]
  32. B. L. Sanchez-Gaytan, Z. Qian, S. P. Hastings, M. L. Reca, Z. Fakhraai, and S.-J. Park, “Controlling the topography and surface plasmon resonance of gold nanoshells by a templated surfactant-assisted seed growth method,” J. Phys. Chem. C 117, 8916–8923 (2013).
    [Crossref]
  33. S. P. Hastings, P. Swanglap, Z. Qian, Y. Fang, S.-J. Park, S. Link, N. Engheta, and Z. Fakhraai, “Quadrupole-enhanced Raman scattering,” ACS Nano 8, 9025–9034 (2014).
    [Crossref] [PubMed]
  34. W. Haynes, ed., CRC Handbook of Chemistry and Physics, 95th ed. (CRC /Taylor and Francis), (internet version 2015).
  35. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 2004).
  36. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A: Pure Appl. Opt. 9, S196–S203 (2007).
    [Crossref]
  37. “Moore-Penrose pseudoinverse of matrix - MATLAB pinv,” Viewed on August 30, 2014 at http://www.mathworks.com/help/matlab/ref/pinv.html .
  38. C. H. Papas, Theory of Electromagnetic Wave Propagation (Dover Publications, Inc., 1988).

2014 (2)

L.-Y. Yin, Y.-H. Huang, X. Wang, S.-T. Ning, and S.-D. Liu, “Double Fano resonances in nanoring cavity dimers: the effect of plasmon hybridization between dark subradiant modes,” AIP Adv. 4, 077113 (2014).
[Crossref]

S. P. Hastings, P. Swanglap, Z. Qian, Y. Fang, S.-J. Park, S. Link, N. Engheta, and Z. Fakhraai, “Quadrupole-enhanced Raman scattering,” ACS Nano 8, 9025–9034 (2014).
[Crossref] [PubMed]

2013 (3)

B. L. Sanchez-Gaytan, Z. Qian, S. P. Hastings, M. L. Reca, Z. Fakhraai, and S.-J. Park, “Controlling the topography and surface plasmon resonance of gold nanoshells by a templated surfactant-assisted seed growth method,” J. Phys. Chem. C 117, 8916–8923 (2013).
[Crossref]

J. Song, Z. Fang, C. Wang, J. Zhou, B. Duan, L. Pu, and H. Duan, “Photolabile plasmonic vesicles assembled from amphiphilic gold nanoparticles for remote-controlled traceable drug delivery,” Nanoscale 5, 5816–5824 (2013).
[Crossref] [PubMed]

J. B. Herzog, M. W. Knight, Y. Li, K. M. Evans, N. J. Halas, and D. Natelson, “Dark plasmons in hot spot generation and polarization in interelectrode nanoscale junctions,” Nano Lett. 13, 1359–1364 (2013).
[Crossref] [PubMed]

2012 (6)

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15, 16–25 (2012).
[Crossref]

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
[Crossref]

F. López-Tejeira, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys. 14, 023035 (2012).
[Crossref]

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12, 1660–1667 (2012).
[Crossref] [PubMed]

B. L. Sanchez-Gaytan, P. Swanglap, T. J. Lamkin, R. J. Hickey, Z. Fakhraai, S. Link, and S.-J. Park, “Spiky gold nanoshells: synthesis and enhanced scattering properties,” J. Phys. Chem. C 116, 10318–10324 (2012).
[Crossref]

F. López-Tejeira, R. Paniagua-Domínguez, and J. A. Sánchez-Gil, “High-performance nanosensors based on plasmonic Fano-like interference: probing refractive index with individual nanorice and nanobelts,” ACS nano 6, 8989–8996 (2012).
[Crossref] [PubMed]

2011 (1)

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11, 1657–1663 (2011).
[Crossref] [PubMed]

2010 (5)

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10, 4680–4685 (2010).
[Crossref] [PubMed]

B. L. Sanchez-Gaytan and S.-J. Park, “Spiky gold nanoshells,” Langmuir 26, 19170–19174 (2010).
[Crossref] [PubMed]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4, 1664–1670 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in Fano resonances,” Nano Lett. 10, 2694–2701 (2010).
[Crossref] [PubMed]

2009 (4)

P.-J. Huang, L.-L. Tay, J. Tanha, S. Ryan, and L.-K. Chau, “Single-domain antibody-conjugated nanoaggregate-embedded beads for targeted detection of pathogenic bacteria,” Chem. - Eur. J. 15, 9330–9334 (2009).
[Crossref] [PubMed]

K. L. Rule and P. J. Vikesland, “Surface-enhanced resonance Raman spectroscopy for the rapid detection of cryptosporidium parvum and giardia lamblia,” Environ. Sci. Technol. 43, 1147–1152 (2009).
[Crossref] [PubMed]

H. Liang, Z. Li, W. Wang, Y. Wu, and H. Xu, “Highly surface-roughened “flower-like” silver nanoparticles for extremely sensitive substrates of surface-enhanced Raman scattering,” Adv. Mater. 21, 4614–4618 (2009).
[Crossref]

V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-Matrix calculation via discrete dipole approximation, point matching and exploiting symmetry,” J. Quant. Spectrosc. Radiat. Transfer 110, 1460–1471 (2009).
[Crossref]

2008 (2)

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
[Crossref]

H. Wang and N. J. Halas, “Mesoscopic Au ‘meatball’ particles,” Adv. Mater. 20, 820–825 (2008).
[Crossref]

2007 (2)

V. L. Loke, T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “FDFD/T-matrix hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 106, 274–284 (2007).
[Crossref]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A: Pure Appl. Opt. 9, S196–S203 (2007).
[Crossref]

2004 (1)

C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett. 4, 2355–2359 (2004).
[Crossref]

2003 (1)

T. Nieminen, H. Rubinsztein-Dunlop, and N. Heckenberg, “Calculation of the T-matrix: general considerations and application of the point-matching method,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 1019–1029 (2003).
[Crossref]

2002 (1)

D. W. Mackowski, “Discrete dipole moment method for calculation of the T matrix for nonspherical particles,” J. Opt. Soc. A 19, 881–893 (2002).
[Crossref]

2001 (1)

1984 (1)

A. Lakhtakia, “Iterative extended boundary condition method for scattering by objects of high aspect ratios,” J. Acoust. Soc. Am. 76, 906–912 (1984).
[Crossref]

1965 (1)

P. Waterman, “Matrix formulation of electromagnetic scattering,” Proc. IEEE 53, 805–812 (1965).
[Crossref]

1908 (1)

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. (Leipzig) 330, 377–445 (1908).
[Crossref]

Adato, R.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
[Crossref]

Altug, H.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
[Crossref]

Arju, N.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
[Crossref]

Bao, J.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10, 4680–4685 (2010).
[Crossref] [PubMed]

Bao, K.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11, 1657–1663 (2011).
[Crossref] [PubMed]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10, 4680–4685 (2010).
[Crossref] [PubMed]

Bardhan, R.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10, 4680–4685 (2010).
[Crossref] [PubMed]

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in Fano resonances,” Nano Lett. 10, 2694–2701 (2010).
[Crossref] [PubMed]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 2004).

Branczyk, A. M.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A: Pure Appl. Opt. 9, S196–S203 (2007).
[Crossref]

Capasso, F.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10, 4680–4685 (2010).
[Crossref] [PubMed]

Chau, L.-K.

P.-J. Huang, L.-L. Tay, J. Tanha, S. Ryan, and L.-K. Chau, “Single-domain antibody-conjugated nanoaggregate-embedded beads for targeted detection of pathogenic bacteria,” Chem. - Eur. J. 15, 9330–9334 (2009).
[Crossref] [PubMed]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Dieringer, J. A.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
[Crossref]

Ding, K.-H.

L. Tsang, J. A. Kong, and K.-H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley-Interscience, 2000).
[Crossref]

Duan, B.

J. Song, Z. Fang, C. Wang, J. Zhou, B. Duan, L. Pu, and H. Duan, “Photolabile plasmonic vesicles assembled from amphiphilic gold nanoparticles for remote-controlled traceable drug delivery,” Nanoscale 5, 5816–5824 (2013).
[Crossref] [PubMed]

Duan, H.

J. Song, Z. Fang, C. Wang, J. Zhou, B. Duan, L. Pu, and H. Duan, “Photolabile plasmonic vesicles assembled from amphiphilic gold nanoparticles for remote-controlled traceable drug delivery,” Nanoscale 5, 5816–5824 (2013).
[Crossref] [PubMed]

Engheta, N.

S. P. Hastings, P. Swanglap, Z. Qian, Y. Fang, S.-J. Park, S. Link, N. Engheta, and Z. Fakhraai, “Quadrupole-enhanced Raman scattering,” ACS Nano 8, 9025–9034 (2014).
[Crossref] [PubMed]

Evans, K. M.

J. B. Herzog, M. W. Knight, Y. Li, K. M. Evans, N. J. Halas, and D. Natelson, “Dark plasmons in hot spot generation and polarization in interelectrode nanoscale junctions,” Nano Lett. 13, 1359–1364 (2013).
[Crossref] [PubMed]

Fakhraai, Z.

S. P. Hastings, P. Swanglap, Z. Qian, Y. Fang, S.-J. Park, S. Link, N. Engheta, and Z. Fakhraai, “Quadrupole-enhanced Raman scattering,” ACS Nano 8, 9025–9034 (2014).
[Crossref] [PubMed]

B. L. Sanchez-Gaytan, Z. Qian, S. P. Hastings, M. L. Reca, Z. Fakhraai, and S.-J. Park, “Controlling the topography and surface plasmon resonance of gold nanoshells by a templated surfactant-assisted seed growth method,” J. Phys. Chem. C 117, 8916–8923 (2013).
[Crossref]

B. L. Sanchez-Gaytan, P. Swanglap, T. J. Lamkin, R. J. Hickey, Z. Fakhraai, S. Link, and S.-J. Park, “Spiky gold nanoshells: synthesis and enhanced scattering properties,” J. Phys. Chem. C 116, 10318–10324 (2012).
[Crossref]

Fan, J. A.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10, 4680–4685 (2010).
[Crossref] [PubMed]

Fang, Y.

S. P. Hastings, P. Swanglap, Z. Qian, Y. Fang, S.-J. Park, S. Link, N. Engheta, and Z. Fakhraai, “Quadrupole-enhanced Raman scattering,” ACS Nano 8, 9025–9034 (2014).
[Crossref] [PubMed]

Fang, Z.

J. Song, Z. Fang, C. Wang, J. Zhou, B. Duan, L. Pu, and H. Duan, “Photolabile plasmonic vesicles assembled from amphiphilic gold nanoparticles for remote-controlled traceable drug delivery,” Nanoscale 5, 5816–5824 (2013).
[Crossref] [PubMed]

Frontiera, R. R.

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15, 16–25 (2012).
[Crossref]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Goodrich, G. P.

C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett. 4, 2355–2359 (2004).
[Crossref]

Grady, N. K.

C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett. 4, 2355–2359 (2004).
[Crossref]

Hafner, J. H.

C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett. 4, 2355–2359 (2004).
[Crossref]

Halas, N. J.

J. B. Herzog, M. W. Knight, Y. Li, K. M. Evans, N. J. Halas, and D. Natelson, “Dark plasmons in hot spot generation and polarization in interelectrode nanoscale junctions,” Nano Lett. 13, 1359–1364 (2013).
[Crossref] [PubMed]

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12, 1660–1667 (2012).
[Crossref] [PubMed]

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11, 1657–1663 (2011).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10, 4680–4685 (2010).
[Crossref] [PubMed]

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in Fano resonances,” Nano Lett. 10, 2694–2701 (2010).
[Crossref] [PubMed]

H. Wang and N. J. Halas, “Mesoscopic Au ‘meatball’ particles,” Adv. Mater. 20, 820–825 (2008).
[Crossref]

C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett. 4, 2355–2359 (2004).
[Crossref]

Hastings, S. P.

S. P. Hastings, P. Swanglap, Z. Qian, Y. Fang, S.-J. Park, S. Link, N. Engheta, and Z. Fakhraai, “Quadrupole-enhanced Raman scattering,” ACS Nano 8, 9025–9034 (2014).
[Crossref] [PubMed]

B. L. Sanchez-Gaytan, Z. Qian, S. P. Hastings, M. L. Reca, Z. Fakhraai, and S.-J. Park, “Controlling the topography and surface plasmon resonance of gold nanoshells by a templated surfactant-assisted seed growth method,” J. Phys. Chem. C 117, 8916–8923 (2013).
[Crossref]

Heckenberg, N.

T. Nieminen, H. Rubinsztein-Dunlop, and N. Heckenberg, “Calculation of the T-matrix: general considerations and application of the point-matching method,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 1019–1029 (2003).
[Crossref]

Heckenberg, N. R.

V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-Matrix calculation via discrete dipole approximation, point matching and exploiting symmetry,” J. Quant. Spectrosc. Radiat. Transfer 110, 1460–1471 (2009).
[Crossref]

V. L. Loke, T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “FDFD/T-matrix hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 106, 274–284 (2007).
[Crossref]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A: Pure Appl. Opt. 9, S196–S203 (2007).
[Crossref]

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, ““Hybrid” T-matrix methods,” in Electromagnetic and Light Scattering – Theory and Applications VII, T. Wriedt, ed. (2003), pp 263–266.

Henry, A.-I.

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15, 16–25 (2012).
[Crossref]

Herzog, J. B.

J. B. Herzog, M. W. Knight, Y. Li, K. M. Evans, N. J. Halas, and D. Natelson, “Dark plasmons in hot spot generation and polarization in interelectrode nanoscale junctions,” Nano Lett. 13, 1359–1364 (2013).
[Crossref] [PubMed]

Hickey, R. J.

B. L. Sanchez-Gaytan, P. Swanglap, T. J. Lamkin, R. J. Hickey, Z. Fakhraai, S. Link, and S.-J. Park, “Spiky gold nanoshells: synthesis and enhanced scattering properties,” J. Phys. Chem. C 116, 10318–10324 (2012).
[Crossref]

Huang, P.-J.

P.-J. Huang, L.-L. Tay, J. Tanha, S. Ryan, and L.-K. Chau, “Single-domain antibody-conjugated nanoaggregate-embedded beads for targeted detection of pathogenic bacteria,” Chem. - Eur. J. 15, 9330–9334 (2009).
[Crossref] [PubMed]

Huang, Y.-H.

L.-Y. Yin, Y.-H. Huang, X. Wang, S.-T. Ning, and S.-D. Liu, “Double Fano resonances in nanoring cavity dimers: the effect of plasmon hybridization between dark subradiant modes,” AIP Adv. 4, 077113 (2014).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 2004).

Kahnert, F. M.

Khanikaev, A. B.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
[Crossref]

Knight, M. W.

J. B. Herzog, M. W. Knight, Y. Li, K. M. Evans, N. J. Halas, and D. Natelson, “Dark plasmons in hot spot generation and polarization in interelectrode nanoscale junctions,” Nano Lett. 13, 1359–1364 (2013).
[Crossref] [PubMed]

Knöner, G.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A: Pure Appl. Opt. 9, S196–S203 (2007).
[Crossref]

Kong, J. A.

L. Tsang, J. A. Kong, and K.-H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley-Interscience, 2000).
[Crossref]

Lakhtakia, A.

A. Lakhtakia, “Iterative extended boundary condition method for scattering by objects of high aspect ratios,” J. Acoust. Soc. Am. 76, 906–912 (1984).
[Crossref]

Lamkin, T. J.

B. L. Sanchez-Gaytan, P. Swanglap, T. J. Lamkin, R. J. Hickey, Z. Fakhraai, S. Link, and S.-J. Park, “Spiky gold nanoshells: synthesis and enhanced scattering properties,” J. Phys. Chem. C 116, 10318–10324 (2012).
[Crossref]

Lassiter, J. B.

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12, 1660–1667 (2012).
[Crossref] [PubMed]

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in Fano resonances,” Nano Lett. 10, 2694–2701 (2010).
[Crossref] [PubMed]

Li, Y.

J. B. Herzog, M. W. Knight, Y. Li, K. M. Evans, N. J. Halas, and D. Natelson, “Dark plasmons in hot spot generation and polarization in interelectrode nanoscale junctions,” Nano Lett. 13, 1359–1364 (2013).
[Crossref] [PubMed]

Li, Z.

H. Liang, Z. Li, W. Wang, Y. Wu, and H. Xu, “Highly surface-roughened “flower-like” silver nanoparticles for extremely sensitive substrates of surface-enhanced Raman scattering,” Adv. Mater. 21, 4614–4618 (2009).
[Crossref]

Liang, H.

H. Liang, Z. Li, W. Wang, Y. Wu, and H. Xu, “Highly surface-roughened “flower-like” silver nanoparticles for extremely sensitive substrates of surface-enhanced Raman scattering,” Adv. Mater. 21, 4614–4618 (2009).
[Crossref]

Link, S.

S. P. Hastings, P. Swanglap, Z. Qian, Y. Fang, S.-J. Park, S. Link, N. Engheta, and Z. Fakhraai, “Quadrupole-enhanced Raman scattering,” ACS Nano 8, 9025–9034 (2014).
[Crossref] [PubMed]

B. L. Sanchez-Gaytan, P. Swanglap, T. J. Lamkin, R. J. Hickey, Z. Fakhraai, S. Link, and S.-J. Park, “Spiky gold nanoshells: synthesis and enhanced scattering properties,” J. Phys. Chem. C 116, 10318–10324 (2012).
[Crossref]

Liu, S.-D.

L.-Y. Yin, Y.-H. Huang, X. Wang, S.-T. Ning, and S.-D. Liu, “Double Fano resonances in nanoring cavity dimers: the effect of plasmon hybridization between dark subradiant modes,” AIP Adv. 4, 077113 (2014).
[Crossref]

Loke, V. L.

V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-Matrix calculation via discrete dipole approximation, point matching and exploiting symmetry,” J. Quant. Spectrosc. Radiat. Transfer 110, 1460–1471 (2009).
[Crossref]

V. L. Loke, T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “FDFD/T-matrix hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 106, 274–284 (2007).
[Crossref]

Loke, V. L. Y.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A: Pure Appl. Opt. 9, S196–S203 (2007).
[Crossref]

López-Tejeira, F.

F. López-Tejeira, R. Paniagua-Domínguez, and J. A. Sánchez-Gil, “High-performance nanosensors based on plasmonic Fano-like interference: probing refractive index with individual nanorice and nanobelts,” ACS nano 6, 8989–8996 (2012).
[Crossref] [PubMed]

F. López-Tejeira, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys. 14, 023035 (2012).
[Crossref]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Mackowski, D. W.

D. W. Mackowski, “Discrete dipole moment method for calculation of the T matrix for nonspherical particles,” J. Opt. Soc. A 19, 881–893 (2002).
[Crossref]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4, 1664–1670 (2010).
[Crossref] [PubMed]

Manoharan, V. N.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10, 4680–4685 (2010).
[Crossref] [PubMed]

Mie, G.

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. (Leipzig) 330, 377–445 (1908).
[Crossref]

Moshchalkov, V. V.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4, 1664–1670 (2010).
[Crossref] [PubMed]

Mukherjee, S.

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in Fano resonances,” Nano Lett. 10, 2694–2701 (2010).
[Crossref] [PubMed]

Natelson, D.

J. B. Herzog, M. W. Knight, Y. Li, K. M. Evans, N. J. Halas, and D. Natelson, “Dark plasmons in hot spot generation and polarization in interelectrode nanoscale junctions,” Nano Lett. 13, 1359–1364 (2013).
[Crossref] [PubMed]

Nehl, C. L.

C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett. 4, 2355–2359 (2004).
[Crossref]

Nieminen, T.

T. Nieminen, H. Rubinsztein-Dunlop, and N. Heckenberg, “Calculation of the T-matrix: general considerations and application of the point-matching method,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 1019–1029 (2003).
[Crossref]

Nieminen, T. A.

V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-Matrix calculation via discrete dipole approximation, point matching and exploiting symmetry,” J. Quant. Spectrosc. Radiat. Transfer 110, 1460–1471 (2009).
[Crossref]

V. L. Loke, T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “FDFD/T-matrix hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 106, 274–284 (2007).
[Crossref]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A: Pure Appl. Opt. 9, S196–S203 (2007).
[Crossref]

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, ““Hybrid” T-matrix methods,” in Electromagnetic and Light Scattering – Theory and Applications VII, T. Wriedt, ed. (2003), pp 263–266.

Ning, S.-T.

L.-Y. Yin, Y.-H. Huang, X. Wang, S.-T. Ning, and S.-D. Liu, “Double Fano resonances in nanoring cavity dimers: the effect of plasmon hybridization between dark subradiant modes,” AIP Adv. 4, 077113 (2014).
[Crossref]

Nordlander, P.

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12, 1660–1667 (2012).
[Crossref] [PubMed]

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11, 1657–1663 (2011).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4, 1664–1670 (2010).
[Crossref] [PubMed]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10, 4680–4685 (2010).
[Crossref] [PubMed]

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in Fano resonances,” Nano Lett. 10, 2694–2701 (2010).
[Crossref] [PubMed]

Paniagua-Domínguez, R.

F. López-Tejeira, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys. 14, 023035 (2012).
[Crossref]

F. López-Tejeira, R. Paniagua-Domínguez, and J. A. Sánchez-Gil, “High-performance nanosensors based on plasmonic Fano-like interference: probing refractive index with individual nanorice and nanobelts,” ACS nano 6, 8989–8996 (2012).
[Crossref] [PubMed]

Papas, C. H.

C. H. Papas, Theory of Electromagnetic Wave Propagation (Dover Publications, Inc., 1988).

Park, S.-J.

S. P. Hastings, P. Swanglap, Z. Qian, Y. Fang, S.-J. Park, S. Link, N. Engheta, and Z. Fakhraai, “Quadrupole-enhanced Raman scattering,” ACS Nano 8, 9025–9034 (2014).
[Crossref] [PubMed]

B. L. Sanchez-Gaytan, Z. Qian, S. P. Hastings, M. L. Reca, Z. Fakhraai, and S.-J. Park, “Controlling the topography and surface plasmon resonance of gold nanoshells by a templated surfactant-assisted seed growth method,” J. Phys. Chem. C 117, 8916–8923 (2013).
[Crossref]

B. L. Sanchez-Gaytan, P. Swanglap, T. J. Lamkin, R. J. Hickey, Z. Fakhraai, S. Link, and S.-J. Park, “Spiky gold nanoshells: synthesis and enhanced scattering properties,” J. Phys. Chem. C 116, 10318–10324 (2012).
[Crossref]

B. L. Sanchez-Gaytan and S.-J. Park, “Spiky gold nanoshells,” Langmuir 26, 19170–19174 (2010).
[Crossref] [PubMed]

Parkin, S. J.

V. L. Loke, T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “FDFD/T-matrix hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 106, 274–284 (2007).
[Crossref]

Pu, L.

J. Song, Z. Fang, C. Wang, J. Zhou, B. Duan, L. Pu, and H. Duan, “Photolabile plasmonic vesicles assembled from amphiphilic gold nanoparticles for remote-controlled traceable drug delivery,” Nanoscale 5, 5816–5824 (2013).
[Crossref] [PubMed]

Qian, Z.

S. P. Hastings, P. Swanglap, Z. Qian, Y. Fang, S.-J. Park, S. Link, N. Engheta, and Z. Fakhraai, “Quadrupole-enhanced Raman scattering,” ACS Nano 8, 9025–9034 (2014).
[Crossref] [PubMed]

B. L. Sanchez-Gaytan, Z. Qian, S. P. Hastings, M. L. Reca, Z. Fakhraai, and S.-J. Park, “Controlling the topography and surface plasmon resonance of gold nanoshells by a templated surfactant-assisted seed growth method,” J. Phys. Chem. C 117, 8916–8923 (2013).
[Crossref]

Reca, M. L.

B. L. Sanchez-Gaytan, Z. Qian, S. P. Hastings, M. L. Reca, Z. Fakhraai, and S.-J. Park, “Controlling the topography and surface plasmon resonance of gold nanoshells by a templated surfactant-assisted seed growth method,” J. Phys. Chem. C 117, 8916–8923 (2013).
[Crossref]

Ringe, E.

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15, 16–25 (2012).
[Crossref]

Rodríguez-Oliveros, R.

F. López-Tejeira, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys. 14, 023035 (2012).
[Crossref]

Rubinsztein-Dunlop, H.

V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-Matrix calculation via discrete dipole approximation, point matching and exploiting symmetry,” J. Quant. Spectrosc. Radiat. Transfer 110, 1460–1471 (2009).
[Crossref]

V. L. Loke, T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “FDFD/T-matrix hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 106, 274–284 (2007).
[Crossref]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A: Pure Appl. Opt. 9, S196–S203 (2007).
[Crossref]

T. Nieminen, H. Rubinsztein-Dunlop, and N. Heckenberg, “Calculation of the T-matrix: general considerations and application of the point-matching method,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 1019–1029 (2003).
[Crossref]

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, ““Hybrid” T-matrix methods,” in Electromagnetic and Light Scattering – Theory and Applications VII, T. Wriedt, ed. (2003), pp 263–266.

Rule, K. L.

K. L. Rule and P. J. Vikesland, “Surface-enhanced resonance Raman spectroscopy for the rapid detection of cryptosporidium parvum and giardia lamblia,” Environ. Sci. Technol. 43, 1147–1152 (2009).
[Crossref] [PubMed]

Ryan, S.

P.-J. Huang, L.-L. Tay, J. Tanha, S. Ryan, and L.-K. Chau, “Single-domain antibody-conjugated nanoaggregate-embedded beads for targeted detection of pathogenic bacteria,” Chem. - Eur. J. 15, 9330–9334 (2009).
[Crossref] [PubMed]

Sanchez-Gaytan, B. L.

B. L. Sanchez-Gaytan, Z. Qian, S. P. Hastings, M. L. Reca, Z. Fakhraai, and S.-J. Park, “Controlling the topography and surface plasmon resonance of gold nanoshells by a templated surfactant-assisted seed growth method,” J. Phys. Chem. C 117, 8916–8923 (2013).
[Crossref]

B. L. Sanchez-Gaytan, P. Swanglap, T. J. Lamkin, R. J. Hickey, Z. Fakhraai, S. Link, and S.-J. Park, “Spiky gold nanoshells: synthesis and enhanced scattering properties,” J. Phys. Chem. C 116, 10318–10324 (2012).
[Crossref]

B. L. Sanchez-Gaytan and S.-J. Park, “Spiky gold nanoshells,” Langmuir 26, 19170–19174 (2010).
[Crossref] [PubMed]

Sánchez-Gil, J. A.

F. López-Tejeira, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys. 14, 023035 (2012).
[Crossref]

F. López-Tejeira, R. Paniagua-Domínguez, and J. A. Sánchez-Gil, “High-performance nanosensors based on plasmonic Fano-like interference: probing refractive index with individual nanorice and nanobelts,” ACS nano 6, 8989–8996 (2012).
[Crossref] [PubMed]

Shah, N. C.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
[Crossref]

Sharma, B.

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15, 16–25 (2012).
[Crossref]

Shvets, G.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
[Crossref]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10, 4680–4685 (2010).
[Crossref] [PubMed]

Sobhani, H.

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12, 1660–1667 (2012).
[Crossref] [PubMed]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4, 1664–1670 (2010).
[Crossref] [PubMed]

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in Fano resonances,” Nano Lett. 10, 2694–2701 (2010).
[Crossref] [PubMed]

Song, J.

J. Song, Z. Fang, C. Wang, J. Zhou, B. Duan, L. Pu, and H. Duan, “Photolabile plasmonic vesicles assembled from amphiphilic gold nanoparticles for remote-controlled traceable drug delivery,” Nanoscale 5, 5816–5824 (2013).
[Crossref] [PubMed]

Sonnefraud, Y.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4, 1664–1670 (2010).
[Crossref] [PubMed]

Stamnes, J. J.

Stamnes, K.

Stiles, P. L.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
[Crossref]

Stilgoe, A. B.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A: Pure Appl. Opt. 9, S196–S203 (2007).
[Crossref]

Swanglap, P.

S. P. Hastings, P. Swanglap, Z. Qian, Y. Fang, S.-J. Park, S. Link, N. Engheta, and Z. Fakhraai, “Quadrupole-enhanced Raman scattering,” ACS Nano 8, 9025–9034 (2014).
[Crossref] [PubMed]

B. L. Sanchez-Gaytan, P. Swanglap, T. J. Lamkin, R. J. Hickey, Z. Fakhraai, S. Link, and S.-J. Park, “Spiky gold nanoshells: synthesis and enhanced scattering properties,” J. Phys. Chem. C 116, 10318–10324 (2012).
[Crossref]

Tam, F.

C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett. 4, 2355–2359 (2004).
[Crossref]

Tanha, J.

P.-J. Huang, L.-L. Tay, J. Tanha, S. Ryan, and L.-K. Chau, “Single-domain antibody-conjugated nanoaggregate-embedded beads for targeted detection of pathogenic bacteria,” Chem. - Eur. J. 15, 9330–9334 (2009).
[Crossref] [PubMed]

Tay, L.-L.

P.-J. Huang, L.-L. Tay, J. Tanha, S. Ryan, and L.-K. Chau, “Single-domain antibody-conjugated nanoaggregate-embedded beads for targeted detection of pathogenic bacteria,” Chem. - Eur. J. 15, 9330–9334 (2009).
[Crossref] [PubMed]

Tsang, L.

L. Tsang, J. A. Kong, and K.-H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley-Interscience, 2000).
[Crossref]

Van Dorpe, P.

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12, 1660–1667 (2012).
[Crossref] [PubMed]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4, 1664–1670 (2010).
[Crossref] [PubMed]

Van Duyne, R. P.

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15, 16–25 (2012).
[Crossref]

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
[Crossref]

Vandenbosch, G. A.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4, 1664–1670 (2010).
[Crossref] [PubMed]

Verellen, N.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4, 1664–1670 (2010).
[Crossref] [PubMed]

Vikesland, P. J.

K. L. Rule and P. J. Vikesland, “Surface-enhanced resonance Raman spectroscopy for the rapid detection of cryptosporidium parvum and giardia lamblia,” Environ. Sci. Technol. 43, 1147–1152 (2009).
[Crossref] [PubMed]

Wang, C.

J. Song, Z. Fang, C. Wang, J. Zhou, B. Duan, L. Pu, and H. Duan, “Photolabile plasmonic vesicles assembled from amphiphilic gold nanoparticles for remote-controlled traceable drug delivery,” Nanoscale 5, 5816–5824 (2013).
[Crossref] [PubMed]

Wang, H.

H. Wang and N. J. Halas, “Mesoscopic Au ‘meatball’ particles,” Adv. Mater. 20, 820–825 (2008).
[Crossref]

Wang, W.

H. Liang, Z. Li, W. Wang, Y. Wu, and H. Xu, “Highly surface-roughened “flower-like” silver nanoparticles for extremely sensitive substrates of surface-enhanced Raman scattering,” Adv. Mater. 21, 4614–4618 (2009).
[Crossref]

Wang, X.

L.-Y. Yin, Y.-H. Huang, X. Wang, S.-T. Ning, and S.-D. Liu, “Double Fano resonances in nanoring cavity dimers: the effect of plasmon hybridization between dark subradiant modes,” AIP Adv. 4, 077113 (2014).
[Crossref]

Waterman, P.

P. Waterman, “Matrix formulation of electromagnetic scattering,” Proc. IEEE 53, 805–812 (1965).
[Crossref]

Wen, F.

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12, 1660–1667 (2012).
[Crossref] [PubMed]

Wu, C.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
[Crossref]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10, 4680–4685 (2010).
[Crossref] [PubMed]

Wu, Y.

H. Liang, Z. Li, W. Wang, Y. Wu, and H. Xu, “Highly surface-roughened “flower-like” silver nanoparticles for extremely sensitive substrates of surface-enhanced Raman scattering,” Adv. Mater. 21, 4614–4618 (2009).
[Crossref]

Xu, H.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11, 1657–1663 (2011).
[Crossref] [PubMed]

H. Liang, Z. Li, W. Wang, Y. Wu, and H. Xu, “Highly surface-roughened “flower-like” silver nanoparticles for extremely sensitive substrates of surface-enhanced Raman scattering,” Adv. Mater. 21, 4614–4618 (2009).
[Crossref]

Yanik, A. A.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
[Crossref]

Ye, J.

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12, 1660–1667 (2012).
[Crossref] [PubMed]

Yin, L.-Y.

L.-Y. Yin, Y.-H. Huang, X. Wang, S.-T. Ning, and S.-D. Liu, “Double Fano resonances in nanoring cavity dimers: the effect of plasmon hybridization between dark subradiant modes,” AIP Adv. 4, 077113 (2014).
[Crossref]

Zhang, S.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11, 1657–1663 (2011).
[Crossref] [PubMed]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Zhou, J.

J. Song, Z. Fang, C. Wang, J. Zhou, B. Duan, L. Pu, and H. Duan, “Photolabile plasmonic vesicles assembled from amphiphilic gold nanoparticles for remote-controlled traceable drug delivery,” Nanoscale 5, 5816–5824 (2013).
[Crossref] [PubMed]

ACS Nano (2)

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4, 1664–1670 (2010).
[Crossref] [PubMed]

F. López-Tejeira, R. Paniagua-Domínguez, and J. A. Sánchez-Gil, “High-performance nanosensors based on plasmonic Fano-like interference: probing refractive index with individual nanorice and nanobelts,” ACS nano 6, 8989–8996 (2012).
[Crossref] [PubMed]

S. P. Hastings, P. Swanglap, Z. Qian, Y. Fang, S.-J. Park, S. Link, N. Engheta, and Z. Fakhraai, “Quadrupole-enhanced Raman scattering,” ACS Nano 8, 9025–9034 (2014).
[Crossref] [PubMed]

Adv. Mater. (2)

H. Wang and N. J. Halas, “Mesoscopic Au ‘meatball’ particles,” Adv. Mater. 20, 820–825 (2008).
[Crossref]

H. Liang, Z. Li, W. Wang, Y. Wu, and H. Xu, “Highly surface-roughened “flower-like” silver nanoparticles for extremely sensitive substrates of surface-enhanced Raman scattering,” Adv. Mater. 21, 4614–4618 (2009).
[Crossref]

AIP Adv. (1)

L.-Y. Yin, Y.-H. Huang, X. Wang, S.-T. Ning, and S.-D. Liu, “Double Fano resonances in nanoring cavity dimers: the effect of plasmon hybridization between dark subradiant modes,” AIP Adv. 4, 077113 (2014).
[Crossref]

Ann. Phys. (Leipzig) (1)

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. (Leipzig) 330, 377–445 (1908).
[Crossref]

Annu. Rev. Anal. Chem. (1)

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
[Crossref]

Appl. Opt. (1)

Chem. - Eur. J. (1)

P.-J. Huang, L.-L. Tay, J. Tanha, S. Ryan, and L.-K. Chau, “Single-domain antibody-conjugated nanoaggregate-embedded beads for targeted detection of pathogenic bacteria,” Chem. - Eur. J. 15, 9330–9334 (2009).
[Crossref] [PubMed]

Environ. Sci. Technol. (1)

K. L. Rule and P. J. Vikesland, “Surface-enhanced resonance Raman spectroscopy for the rapid detection of cryptosporidium parvum and giardia lamblia,” Environ. Sci. Technol. 43, 1147–1152 (2009).
[Crossref] [PubMed]

J. Acoust. Soc. Am. (1)

A. Lakhtakia, “Iterative extended boundary condition method for scattering by objects of high aspect ratios,” J. Acoust. Soc. Am. 76, 906–912 (1984).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A: Pure Appl. Opt. 9, S196–S203 (2007).
[Crossref]

J. Opt. Soc. A (1)

D. W. Mackowski, “Discrete dipole moment method for calculation of the T matrix for nonspherical particles,” J. Opt. Soc. A 19, 881–893 (2002).
[Crossref]

J. Phys. Chem. C (2)

B. L. Sanchez-Gaytan, P. Swanglap, T. J. Lamkin, R. J. Hickey, Z. Fakhraai, S. Link, and S.-J. Park, “Spiky gold nanoshells: synthesis and enhanced scattering properties,” J. Phys. Chem. C 116, 10318–10324 (2012).
[Crossref]

B. L. Sanchez-Gaytan, Z. Qian, S. P. Hastings, M. L. Reca, Z. Fakhraai, and S.-J. Park, “Controlling the topography and surface plasmon resonance of gold nanoshells by a templated surfactant-assisted seed growth method,” J. Phys. Chem. C 117, 8916–8923 (2013).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (3)

V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-Matrix calculation via discrete dipole approximation, point matching and exploiting symmetry,” J. Quant. Spectrosc. Radiat. Transfer 110, 1460–1471 (2009).
[Crossref]

V. L. Loke, T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “FDFD/T-matrix hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 106, 274–284 (2007).
[Crossref]

T. Nieminen, H. Rubinsztein-Dunlop, and N. Heckenberg, “Calculation of the T-matrix: general considerations and application of the point-matching method,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 1019–1029 (2003).
[Crossref]

Langmuir (1)

B. L. Sanchez-Gaytan and S.-J. Park, “Spiky gold nanoshells,” Langmuir 26, 19170–19174 (2010).
[Crossref] [PubMed]

Mater. Today (1)

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15, 16–25 (2012).
[Crossref]

Nano Lett. (6)

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11, 1657–1663 (2011).
[Crossref] [PubMed]

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12, 1660–1667 (2012).
[Crossref] [PubMed]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10, 4680–4685 (2010).
[Crossref] [PubMed]

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in Fano resonances,” Nano Lett. 10, 2694–2701 (2010).
[Crossref] [PubMed]

C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett. 4, 2355–2359 (2004).
[Crossref]

J. B. Herzog, M. W. Knight, Y. Li, K. M. Evans, N. J. Halas, and D. Natelson, “Dark plasmons in hot spot generation and polarization in interelectrode nanoscale junctions,” Nano Lett. 13, 1359–1364 (2013).
[Crossref] [PubMed]

Nanoscale (1)

J. Song, Z. Fang, C. Wang, J. Zhou, B. Duan, L. Pu, and H. Duan, “Photolabile plasmonic vesicles assembled from amphiphilic gold nanoparticles for remote-controlled traceable drug delivery,” Nanoscale 5, 5816–5824 (2013).
[Crossref] [PubMed]

Nat. Mater. (2)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
[Crossref]

New J. Phys. (1)

F. López-Tejeira, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys. 14, 023035 (2012).
[Crossref]

Proc. IEEE (1)

P. Waterman, “Matrix formulation of electromagnetic scattering,” Proc. IEEE 53, 805–812 (1965).
[Crossref]

Other (6)

“Moore-Penrose pseudoinverse of matrix - MATLAB pinv,” Viewed on August 30, 2014 at http://www.mathworks.com/help/matlab/ref/pinv.html .

C. H. Papas, Theory of Electromagnetic Wave Propagation (Dover Publications, Inc., 1988).

W. Haynes, ed., CRC Handbook of Chemistry and Physics, 95th ed. (CRC /Taylor and Francis), (internet version 2015).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 2004).

L. Tsang, J. A. Kong, and K.-H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley-Interscience, 2000).
[Crossref]

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, ““Hybrid” T-matrix methods,” in Electromagnetic and Light Scattering – Theory and Applications VII, T. Wriedt, ed. (2003), pp 263–266.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

(a) SEM images of the nanoparticles used in this study. (b)–(f) Examples of single particle backscattering spectra. (b) and (c) show a pronounced double peak, while (d)–(f) show single backscattering peaks.

Fig. 2
Fig. 2

Cross sections of ten random modeled spiky nanoshells with a polystyrene core of radius 48 nm covered with 60 spiky cones. The height, tip diameter and the cone angles were randomly varied between 50 nm and 65 nm, between 2 nm and 6 nm, and between 30 and 75 degrees, respectively. In two of the ten simulations a prominent double peak is observed, although all of them have smaller features which are due to modal interference. Due to the large number of degrees of freedom, a wide range of behavior is in principle possible for this type of geometry, and this data set only captures some of this variation. This data set was previously used in [33], and additional structural details and optical properties in the near-field can be found there.

Fig. 3
Fig. 3

(a) Experimentally measured backscattering spectrum of a single spiky nanoshell with a characteristic double peak feature. The inset shows an SEM image of a typical spiky nanoshell (note that this spectrum does not correspond to this particle). (b) The backscattering cross section of a model disordered spiky nanoshell (inset) simulated using FDTD. In this orientation, the simulated spectrum also shows a double peak feature.

Fig. 4
Fig. 4

The T-matrix of a gold sphere with radius 52 nm. (a) The T-matrix at 476 nm, where each position denotes the absolute value of that T-matrix entry. The strongest terms are diagonal terms for the dipole modes. Due to the spherical symmetry, all modes have equal values (although this was not enforced at any point). The matrix is nearly diagonal as expected. (b)–(d) The scattering and extinction cross sections and backscattering differential cross section from FDTD simulations(circles), compared with the values predicted by the T-matrix (solid line), and the Mie theory prediction (crosses).

Fig. 5
Fig. 5

The T-matrix of a gold ellipsoid with values of radii of 52 nm, 40 nm and 40 nm. (a) The T-matrix at 541 nm, near the main plasmon peak of the structure. Each position denotes the absolute value of that T-matrix entry. The strongest terms are diagonal terms for the dipole modes, but the asymmetry creates strong off-diagonal mixing terms between the dipoles. (b) The calculated scattering cross section for 3 orientations of ellipsoid: 0 degrees, 45 degrees and 90 degrees (open symbols) as compared with the corresponding spectra directly calculated using FDTD. Here at 0 degrees the electric field is perpendicular to the long axis of the ellipsoid and the propagation is in the direction of the long axis (as schematically shown in the inset of (b)) and at 90 degrees the electric field is parallel to the long axis of the ellipsoid and the propagation in the direction normal to the long axis. The orientations plotted here were not included in the fitting data set for the T-matrix evaluation.

Fig. 6
Fig. 6

(a) The T-matrix at λ = 696 nm, the wavelength of the maximum dip in the backscattering peak. Here the T(EE) quadrant is shown in the top left corner while T(MM) is in the bottom right. (b) Off-diagonal terms of the same T-matrix, normalized to the T-matrix entry with the highest absolute value. Each position in both (a) and (b) denotes the absolute value of that T-matrix entry.

Fig. 7
Fig. 7

The cross sections associated with only the diagonal terms of the full T-matrix for the orientation and particle shown in Fig. 3(b). (a) The diagonal electric dipole cross section. (b) The diagonal electric quadrupole cross section, exhibiting substantial breadth but greatly suppressed scattering. (c) The diagonal magnetic dipole cross section exhibits no clear peak and is nearly two orders of magnitude weaker than the electric dipole. The magnetic dipole contributes only a background to the particle cross section.

Fig. 8
Fig. 8

(a) Total scattering cross section, σscatter, of the model spiky nanoshell of Fig. 3(b) with the same orientation as in Fig. 3(b). (b) Total scattering cross section, σscatter, of the same nanoshell at a different orientation with regards to the incident field. At this orientation the interference pattern is less evident.

Fig. 9
Fig. 9

(a) Total scattering cross section calculated using FDTD (red circles), compared with the total scattering cross section spectra calculated using the full T-matrix solution (black solid lines) and a non-mixing T-matrix solution (gray solid lines). (b) Backscattering cross section calculated using FDTD (purple circles), compared with the total scattering cross section spectra calculated using the full T-matrix solution (black solid lines) and a non-mixing T-matrix solution (gray solid lines). The inset squares indicate the elements of the T-matrix which can be non-zero for each model.

Fig. 10
Fig. 10

The extinction cross section at the same orientations as the data shown in Fig. 9 of the paper. (a) The T-matrix solution for a strictly diagonal (non-mixing) T-matrix. (b) The T-matrix solution where mode mixing is allowed only between the electric dipole modes, but is diagonal in all other modes. (c) The T-matrix solution for the block-diagonal matrix with mode mixing between all electrical modes and between all magnetic modes. It is evident that quadrupole→dipole mixing is required to fully capture the behavior of the system. In each case the line represents the values calculated using the T-matrix and the circles represent the simulated cross section.

Fig. 11
Fig. 11

The scattering (a)–(c) and extinction (d)–(f) cross sections for a different orientation than the one shown in Fig. 9 in the paper. (a,d) show the solutions for a strictly diagonal (non-mixing) T-matrix model. (b,e) show the T-matrix solution when mode mixing is allowed between the electric dipole modes, but the matrix is diagonal in all others modes. (c,f) The full T-matrix solution with block-diagonal mode mixing. It is evident that quadrupole→dipole mode mixing is required to fully capture the behavior of the system. From the results above, we can see that without this mixing, it is not possible to account for the phase or orientation dependence of the modal mixing. In each case the line represents the model values and the circles represent the simulated cross section.

Fig. 12
Fig. 12

(a) The residual function of the scattering cross section as described in Eq. (11). This plot is shown normalized to the total cross section in Fig. 13. (b) The magnitude of the off diagonal terms corresponding to mode mixing between dipole→dipole (dashed purple) and quadrupole→dipole(solid black) modes as described in Eq. (12) and Eq. (13).

Fig. 13
Fig. 13

The residual function of the scattering cross section as described in Eq. (11), normalized by the total scattering cross section.

Fig. 14
Fig. 14

The T-matrix calculated for an ordered version of the model spiky nanoshell, with the same number of cones(60), but identical cone sizes and shapes. The cones have 57 nm height, cone angle 47 degrees, and tip radius 4 nm. These represent the average values used in the disordered nanoshells. (a) The full T-matrix solution for this structure at 696 nm. Each position denotes the absolute value of that T-matrix entry. The diagonal dipole modes are the dominant terms and all nearly equal, which indicates that this structure is mostly isotropic in the far-field. (b)The off-axis terms. These terms are a factor of 10 smaller than those observed in the disordered structure and a factor of 200 smaller than the strength of the dipole modes. (c) Scattering cross section of the ordered nanoshell as calculated by FDTD (open symbols) compared with the cross section calculated using the T-matrix (solid line). (d) Extinction cross section of the ordered nanoshell as calculated by FDTD (open symbols) compared with the cross section calculated using the T-matrix (solid line). Both the scattering and the extinction cross sections are independent of direction of illumination within the accuracy of these calculations. This is further evidence that this particle is isotropic in the far-field, while the disordered structure is not.

Fig. 15
Fig. 15

Quadrupole moment broadening for a typical orientation of the disordered particle in Fig. 3(b). For this illumination, light propagated in the ŷ direction and was polarized along . In the absence of disorder, the only excited quadrupole is in the yz plane, and forms a narrow peak around 630 nm. This data appeared in our previous studies of this particle [33]

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

σ scatter = λ 2 2 π n = 1 ( 2 n + 1 ) ( | a n | 2 + | b n | 2 )
( d σ d Ω ) bs = λ 2 16 π 2 | n = 1 ( 2 n + 1 ) ( 1 ) n [ a n b n ] | 2
E i ( r ) = m , n [ a m n i ( M ) RgM m n ( r ) + a m n i ( N ) RgN m n ( r ) ]
E s ( r ) = m , n [ a m n s ( M ) M m n ( r ) + a m n s ( N ) N m n ( r ) ]
a s = T a i
σ scatter , β ^ ( ϕ i , θ i ) = 16 π 2 k 2 n , m { | m n i n ( 1 ) m γ m n T m n m n ( M M ) C ¯ m , n ( θ i , ϕ i ) β ^ | 2 + | m , n i n ( 1 ) m γ m n T m n m n ( E E ) B ¯ m n ( θ i , ϕ i ) i β ^ | 2 }
d σ bs , β ( ϕ i , θ i ) d Ω = 16 π 2 k 2 | m n m n ( 1 ) m + n i n n 1 γ m n γ m n { C ¯ m n ( θ i , ϕ i ) T m n m n ( M M ) [ C ¯ m n ( θ i , ϕ i ) β ^ ] B ¯ m n ( θ i , ϕ i ) T m n m n ( E E ) [ B ¯ m n ( θ i , ϕ i ) β ^ ] } | 2
A s = T A i
T n m n m = i a n m , i s a n m , i i i ( a n m , i i ) 2
σ scatter , β Diagonal ( ϕ i , θ i ) = 16 π 2 k 2 n , m { | i n ( 1 ) m γ m n T m n m n ( M M ) C ¯ m n ( θ i , ϕ i ) β ^ | 2 + | i n ( 1 ) m γ m n T m n m n ( E E ) B ¯ m n ( θ i , ϕ i ) i β ^ | 2 }
Residual = σ scatter , β ( ϕ i , θ i ) σ scatter , β Diagonal ( ϕ i , θ i )
σ scatter , β dipole , dipole ( ϕ i , θ i ) = 16 π 2 k 2 n = 1 , m | n = 1 , m m i ( 1 ) m γ m 1 T m 1 m 1 ( E E ) B ¯ m 1 ( θ i , ϕ i ) i β ^ | 2
σ scatter , β quad , dipole ( ϕ i , θ i ) = 16 π 2 k 2 n = 1 , m | n = 2 , m ( 1 ) m + 1 γ m 2 T m 1 m 2 ( E E ) B ¯ m 2 ( θ i , ϕ i ) i β ^ | 2
T m n ( m ) n ( i j ) = ( 1 ) m + m T m n m n ( j i )
F ̿ ( θ , ϕ ; θ , ϕ ) = 4 π k n , m , n , m ( 1 ) m i n n 1 × { [ T m n m n ( M M ) γ m n C ¯ m n ( θ , ϕ ) + T m n m n ( E M ) i γ m n B ¯ m n ( θ , ϕ ) ] γ m n C ¯ m n ( θ , ϕ ) + [ T m n m n ( M E ) γ m n C ¯ m n ( θ , ϕ ) + T m n m n ( E E ) i γ m n B ¯ m n ( θ , ϕ ) ] γ m n B ¯ m n ( θ , ϕ ) i }
γ n m = ( 2 n + 1 ) ( n m ) ! 4 π n ( n + 1 ) ( n + m ) !
σ scatter β ^ ( ϕ i , θ i ) = 4 π d Ω [ | f v β ^ ( θ , ϕ ; θ i , ϕ i ) | 2 + | f h β ^ ( θ , ϕ ; θ i , ϕ i ) | 2 ] = 16 π 2 k 2 n , m { | m , n i n ( 1 ) m γ m n T m n m n ( M M ) C ¯ m n ( θ i , ϕ i ) β ^ | 2 + | m n i n ( 1 ) m γ m n T m n m n ( E E ) B ¯ m n ( θ i , ϕ i ) i β ^ | 2 }
σ e β = 4 π k Im [ β ^ F ̿ ( θ i , ϕ i , θ i , ϕ i ) β ^ ] = 16 π 2 k 2 Im [ n m m n ( 1 ) m i n n 1 γ m n γ m n { [ β ^ C ¯ m n ( θ i , ϕ i ) ] T m n m n ( M M ) [ C ¯ m n ( θ i , ϕ i ) β ^ ] + [ β ^ B ¯ m n ( θ i , ϕ i ) ] T m n m n ( E E ) [ B ¯ m n ( θ i , ϕ i ) β ^ ] } ]
d σ bs , β ^ ( ϕ i , θ i ) d Ω = F ̿ ( π θ i , π + ϕ i , θ i , ϕ i ) β ^ 2 = 16 π 2 k 2 n m m n ( 1 ) m + n i n n 1 γ m n γ m n { C ¯ m n ( θ i , ϕ i ) T m n m n ( M M ) [ C ¯ m n ( θ i , ϕ i ) β ^ ] B ¯ m n ( θ i , ϕ i ) T m n m n ( E E ) [ B ¯ m n ( θ i , ϕ i ) β ^ ] } 2
[ | | | | a s , 1 a s , 2 a s , N | | | | ] = T [ | | | | a i , 1 a i , 2 a i , N | | | | ] A s = T A i
T = A s [ A i ] 1
A s = T A i
y = M x
arg min x | M x y | = pinv ( M ) y
( A s ) T = ( A i ) T ( T ) T
( T n th row ) T = pinv ( A i T ) [ A n th row s ] T
Q α β = i ω J α r r β + J β ( r ) r α d V

Metrics