Abstract

We present the design of a novel platform that is able to combine optical frequency bands spanning 4.2 octaves from ultraviolet to mid-wave infrared into a single, low M2 output waveguide. We present the design and realization of a key component in this platform that combines the wavelength bands of 350 nm – 1500 nm and 1500 nm – 6500 nm with demonstrated efficiency greater than 90% in near-infrared and mid-wave infrared. The multi-octave spectral beam combiner concept is realized using an integrated platform with silicon nitride waveguides and silicon waveguides. Simulated bandwidth is shown to be over four octaves, and measured bandwidth is shown over two octaves, limited by the availability of sources.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multifunctional integrated photonics in the mid-infrared with suspended AlGaAs on silicon

Jeff Chiles, Nima Nader, Eric J. Stanton, Daniel Herman, Galan Moody, Jiangang Zhu, J. Connor Skehan, Biswarup Guha, Abijith Kowligy, Juliet T. Gopinath, Kartik Srinivasan, Scott A. Diddams, Ian Coddington, Nathan R. Newbury, Jeffrey M. Shainline, Sae Woo Nam, and Richard P. Mirin
Optica 6(9) 1246-1254 (2019)

Integrated GaN photonic circuits on silicon (100) for second harmonic generation

Chi Xiong, Wolfram Pernice, Kevin K. Ryu, Carsten Schuck, King Y. Fong, Tomas Palacios, and Hong X. Tang
Opt. Express 19(11) 10462-10470 (2011)

Ultrabroadband spectral beam combiner spanning over three octaves

Craig D. Stacey, Chris Stace, and Roy G. Clarke
Appl. Opt. 52(29) 7200-7205 (2013)

References

  • View by:
  • |
  • |
  • |

  1. B. G. Lee, J. Kansky, A. K. Goyal, C. Pflügl, L. Diehl, M. A. Belkin, A. Sanchez, and F. A. Capasso, “Beam combining of quantum cascade laser arrays,” Opt. Express 17(18), 16216–16224 (2009).
    [Crossref] [PubMed]
  2. A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38(6), 582–591 (2002).
    [Crossref]
  3. I. H. White, “A multichannel grating cavity laser for wavelength division multiplexing applications,” J. Lightwave Technol. 9(7), 893–899 (1991).
    [Crossref]
  4. L. Wang, C. Tong, H. Peng, and J. Zhang, “High power semiconductor laser beam combining technology and its applications,” Proc. SPIE 8796, 87961N (2013).
    [Crossref]
  5. F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
    [Crossref] [PubMed]
  6. E. J. Bochove, “Theory of spectral beam combining of fiber lasers,” IEEE J. Quantum Electron. 38(5), 432–445 (2002).
    [Crossref]
  7. V. Daneu, A. Sanchez, T. Y. Fan, H. K. Choi, G. W. Turner, and C. C. Cook, “Spectral beam combining of a broad-stripe diode laser array in an external cavity,” Opt. Lett. 25(6), 405–407 (2000).
    [Crossref] [PubMed]
  8. C. D. Stacey, C. Stace, and R. G. Clarke, “Ultrabroadband spectral beam combiner spanning over three octaves,” Appl. Opt. 52(29), 7200–7205 (2013).
    [Crossref] [PubMed]
  9. H. H. Chang, Y. H. Kuo, R. Jones, A. Barkai, and J. E. Bowers, “Integrated hybrid silicon triplexer,” Opt. Express 18(23), 23891–23899 (2010).
    [Crossref] [PubMed]
  10. J. T. Bovington, M. J. R. Heck, and J. E. Bowers, “Heterogeneous lasers and coupling to Si₃N₄ near 1060 nm,” Opt. Lett. 39(20), 6017–6020 (2014).
    [Crossref] [PubMed]
  11. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
    [Crossref] [PubMed]
  12. A. Spott, M. L. Davenport, J. Peters, J. T. Bovington, M. J. Heck, J. E. Bowers, and J. R. Meyer, “A CW mid-infrared hybrid silicon laser at room temperature,” in Proceedings of IEEE Photonics Conference (2014), paper PD 1.
  13. M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
    [Crossref]
  14. D. Dai, Z. Wang, J. F. Bauters, M. C. Tien, M. J. Heck, D. J. Blumenthal, and J. E. Bowers, “Low-loss Si3N4 arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides,” Opt. Express 19(15), 14130–14136 (2011).
    [Crossref] [PubMed]
  15. G. Kurczveil, M. J. R. Heck, J. D. Peters, J. M. Garcia, D. Spencer, and J. E. Bowers, “An integrated hybrid silicon multiwavelength AWG laser,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1521–1527 (2011).
    [Crossref]
  16. J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, and J. E. Bowers, “Silicon on ultra-low-loss waveguide photonic integration platform,” Opt. Express 21(1), 544–555 (2013).
    [Crossref] [PubMed]
  17. M. Piels, J. F. Bauters, M. L. Davenport, M. J. R. Heck, and J. E. Bowers, “Low-loss silicon nitride AWG demultiplexer heterogeneously integrated with hybrid III–V/silicon photodetectors,” J. Lightwave Technol. 32(4), 817–823 (2014).
  18. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
    [Crossref]
  19. A. Gorin, A. Jaouad, E. Grondin, V. Aimez, and P. Charette, “Fabrication of silicon nitride waveguides for visible-light using PECVD: a study of the effect of plasma frequency on optical properties,” Opt. Express 16(18), 13509–13516 (2008).
    [Crossref] [PubMed]
  20. R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt. 8(10), 840–848 (2006).
    [Crossref]
  21. J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M. C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
    [Crossref] [PubMed]
  22. A. F. Milton and W. K. Burns, “Tapered velocity couplers for integrated optics: design,” Appl. Opt. 14(5), 1207–1212 (1975).
    [Crossref] [PubMed]
  23. X. Sun, H. C. Liu, and A. Yariv, “Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system,” Opt. Lett. 34(3), 280–282 (2009).
    [Crossref] [PubMed]
  24. L. A. Coldren, S. W. Corzine, and M. L. Mašanović, Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, 2012), Chap. 6.
  25. Z. Wang and D. Dai, “Ultrasmall Si-nanowire-based polarization rotator,” J. Opt. Soc. Am. B 25(5), 747–753 (2008).
    [Crossref]

2014 (2)

2013 (4)

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

L. Wang, C. Tong, H. Peng, and J. Zhang, “High power semiconductor laser beam combining technology and its applications,” Proc. SPIE 8796, 87961N (2013).
[Crossref]

C. D. Stacey, C. Stace, and R. G. Clarke, “Ultrabroadband spectral beam combiner spanning over three octaves,” Appl. Opt. 52(29), 7200–7205 (2013).
[Crossref] [PubMed]

J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, and J. E. Bowers, “Silicon on ultra-low-loss waveguide photonic integration platform,” Opt. Express 21(1), 544–555 (2013).
[Crossref] [PubMed]

2012 (1)

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (2)

2009 (2)

2008 (2)

2006 (2)

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt. 8(10), 840–848 (2006).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[Crossref] [PubMed]

2002 (2)

A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38(6), 582–591 (2002).
[Crossref]

E. J. Bochove, “Theory of spectral beam combining of fiber lasers,” IEEE J. Quantum Electron. 38(5), 432–445 (2002).
[Crossref]

2000 (1)

1991 (1)

I. H. White, “A multichannel grating cavity laser for wavelength division multiplexing applications,” J. Lightwave Technol. 9(7), 893–899 (1991).
[Crossref]

1975 (1)

Aimez, V.

Austin, D. R.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref] [PubMed]

Barkai, A.

Barton, J. S.

Baudisch, M.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref] [PubMed]

Bauters, J. F.

Belkin, M. A.

Biegert, J.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref] [PubMed]

Blumenthal, D. J.

Bochove, E. J.

E. J. Bochove, “Theory of spectral beam combining of fiber lasers,” IEEE J. Quantum Electron. 38(5), 432–445 (2002).
[Crossref]

Bovington, J. T.

Bowers, J. E.

J. T. Bovington, M. J. R. Heck, and J. E. Bowers, “Heterogeneous lasers and coupling to Si₃N₄ near 1060 nm,” Opt. Lett. 39(20), 6017–6020 (2014).
[Crossref] [PubMed]

M. Piels, J. F. Bauters, M. L. Davenport, M. J. R. Heck, and J. E. Bowers, “Low-loss silicon nitride AWG demultiplexer heterogeneously integrated with hybrid III–V/silicon photodetectors,” J. Lightwave Technol. 32(4), 817–823 (2014).

J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, and J. E. Bowers, “Silicon on ultra-low-loss waveguide photonic integration platform,” Opt. Express 21(1), 544–555 (2013).
[Crossref] [PubMed]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

D. Dai, Z. Wang, J. F. Bauters, M. C. Tien, M. J. Heck, D. J. Blumenthal, and J. E. Bowers, “Low-loss Si3N4 arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides,” Opt. Express 19(15), 14130–14136 (2011).
[Crossref] [PubMed]

G. Kurczveil, M. J. R. Heck, J. D. Peters, J. M. Garcia, D. Spencer, and J. E. Bowers, “An integrated hybrid silicon multiwavelength AWG laser,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1521–1527 (2011).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M. C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
[Crossref] [PubMed]

H. H. Chang, Y. H. Kuo, R. Jones, A. Barkai, and J. E. Bowers, “Integrated hybrid silicon triplexer,” Opt. Express 18(23), 23891–23899 (2010).
[Crossref] [PubMed]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[Crossref] [PubMed]

Buchwald, W. R.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt. 8(10), 840–848 (2006).
[Crossref]

Burns, W. K.

Capasso, F. A.

Chang, H. H.

Charette, P.

Chen, A.

Choi, H. K.

Clarke, R. G.

Cohen, O.

Cook, C. C.

Couairon, A.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref] [PubMed]

Dai, D.

Daneu, V.

Davenport, M. L.

Diehl, L.

Doylend, J. K.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, and J. E. Bowers, “Silicon on ultra-low-loss waveguide photonic integration platform,” Opt. Express 21(1), 544–555 (2013).
[Crossref] [PubMed]

Emelett, S. J.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt. 8(10), 840–848 (2006).
[Crossref]

Faccio, D.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref] [PubMed]

Fan, T. Y.

Fang, A. W.

Garcia, J. M.

G. Kurczveil, M. J. R. Heck, J. D. Peters, J. M. Garcia, D. Spencer, and J. E. Bowers, “An integrated hybrid silicon multiwavelength AWG laser,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1521–1527 (2011).
[Crossref]

Gorin, A.

Goyal, A. K.

Grondin, E.

Heck, M. J.

Heck, M. J. R.

Heideman, R. G.

Hemmer, M.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref] [PubMed]

Jain, S.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Jaouad, A.

John, D.

Jones, R.

Kansky, J.

Kosterev, A. A.

A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38(6), 582–591 (2002).
[Crossref]

Kuo, Y. H.

Kurczveil, G.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

G. Kurczveil, M. J. R. Heck, J. D. Peters, J. M. Garcia, D. Spencer, and J. E. Bowers, “An integrated hybrid silicon multiwavelength AWG laser,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1521–1527 (2011).
[Crossref]

Lee, B. G.

Leinse, A.

Liu, H. C.

Milton, A. F.

Paniccia, M. J.

Park, H.

Peng, H.

L. Wang, C. Tong, H. Peng, and J. Zhang, “High power semiconductor laser beam combining technology and its applications,” Proc. SPIE 8796, 87961N (2013).
[Crossref]

Peters, J. D.

G. Kurczveil, M. J. R. Heck, J. D. Peters, J. M. Garcia, D. Spencer, and J. E. Bowers, “An integrated hybrid silicon multiwavelength AWG laser,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1521–1527 (2011).
[Crossref]

Pflügl, C.

Piels, M.

Sanchez, A.

Silva, F.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref] [PubMed]

Soref, R.

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

Soref, R. A.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt. 8(10), 840–848 (2006).
[Crossref]

Spencer, D.

G. Kurczveil, M. J. R. Heck, J. D. Peters, J. M. Garcia, D. Spencer, and J. E. Bowers, “An integrated hybrid silicon multiwavelength AWG laser,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1521–1527 (2011).
[Crossref]

Srinivasan, S.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Stace, C.

Stacey, C. D.

Sun, X.

Tang, Y.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Thai, A.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref] [PubMed]

Tien, M. C.

Tittel, F. K.

A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38(6), 582–591 (2002).
[Crossref]

Tong, C.

L. Wang, C. Tong, H. Peng, and J. Zhang, “High power semiconductor laser beam combining technology and its applications,” Proc. SPIE 8796, 87961N (2013).
[Crossref]

Turner, G. W.

Wang, L.

L. Wang, C. Tong, H. Peng, and J. Zhang, “High power semiconductor laser beam combining technology and its applications,” Proc. SPIE 8796, 87961N (2013).
[Crossref]

Wang, Z.

White, I. H.

I. H. White, “A multichannel grating cavity laser for wavelength division multiplexing applications,” J. Lightwave Technol. 9(7), 893–899 (1991).
[Crossref]

Yariv, A.

Zhang, J.

L. Wang, C. Tong, H. Peng, and J. Zhang, “High power semiconductor laser beam combining technology and its applications,” Proc. SPIE 8796, 87961N (2013).
[Crossref]

Appl. Opt. (2)

IEEE J. Quantum Electron. (2)

A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38(6), 582–591 (2002).
[Crossref]

E. J. Bochove, “Theory of spectral beam combining of fiber lasers,” IEEE J. Quantum Electron. 38(5), 432–445 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

G. Kurczveil, M. J. R. Heck, J. D. Peters, J. M. Garcia, D. Spencer, and J. E. Bowers, “An integrated hybrid silicon multiwavelength AWG laser,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1521–1527 (2011).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. A, Pure Appl. Opt. (1)

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt. 8(10), 840–848 (2006).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

Opt. Express (7)

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[Crossref] [PubMed]

B. G. Lee, J. Kansky, A. K. Goyal, C. Pflügl, L. Diehl, M. A. Belkin, A. Sanchez, and F. A. Capasso, “Beam combining of quantum cascade laser arrays,” Opt. Express 17(18), 16216–16224 (2009).
[Crossref] [PubMed]

H. H. Chang, Y. H. Kuo, R. Jones, A. Barkai, and J. E. Bowers, “Integrated hybrid silicon triplexer,” Opt. Express 18(23), 23891–23899 (2010).
[Crossref] [PubMed]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M. C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
[Crossref] [PubMed]

D. Dai, Z. Wang, J. F. Bauters, M. C. Tien, M. J. Heck, D. J. Blumenthal, and J. E. Bowers, “Low-loss Si3N4 arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides,” Opt. Express 19(15), 14130–14136 (2011).
[Crossref] [PubMed]

J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, and J. E. Bowers, “Silicon on ultra-low-loss waveguide photonic integration platform,” Opt. Express 21(1), 544–555 (2013).
[Crossref] [PubMed]

A. Gorin, A. Jaouad, E. Grondin, V. Aimez, and P. Charette, “Fabrication of silicon nitride waveguides for visible-light using PECVD: a study of the effect of plasma frequency on optical properties,” Opt. Express 16(18), 13509–13516 (2008).
[Crossref] [PubMed]

Opt. Lett. (3)

Proc. SPIE (1)

L. Wang, C. Tong, H. Peng, and J. Zhang, “High power semiconductor laser beam combining technology and its applications,” Proc. SPIE 8796, 87961N (2013).
[Crossref]

Other (2)

A. Spott, M. L. Davenport, J. Peters, J. T. Bovington, M. J. Heck, J. E. Bowers, and J. R. Meyer, “A CW mid-infrared hybrid silicon laser at room temperature,” in Proceedings of IEEE Photonics Conference (2014), paper PD 1.

L. A. Coldren, S. W. Corzine, and M. L. Mašanović, Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, 2012), Chap. 6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) Cross-sectional view of the waveguide types: silicon nitride (top) and silicon (bottom). (b) Schematic design of multi-octave spectral beam combiner with integrated laser array with multiple lasers labeled “X” and each spectral band labeled “Y” formatted “λ X-Y”.
Fig. 2
Fig. 2 Example of an adiabatic taper from a buried Si3N4 rib (a) to buried channel (b) type waveguide. Facet cross-sections show the partially etched waveguide on the left and fully etched waveguide on the right. The top SiO2 cladding shown in the facet cross-sections is not shown in the taper diagram.
Fig. 3
Fig. 3 Ultra-broadband combiner schematic. Blue color represents 200 nm tall Si3N4 and the grey color represents SiO2, which also clads the Si3N4 by 2 μm above and below. Transverse mode profiles are shown at three different positions along the BPM simulated propagation.
Fig. 4
Fig. 4 Effective indices in the bar (dashed lines) and cross (solid lines) waveguides of the ultra-broadband combiner as a function of position along the coupler length for (a) 780 nm, (b) 1550 nm, and (c) 3600 nm. Each position along the coupler length corresponds to the tapered bar and cross waveguide widths as shown in Fig. 3.
Fig. 5
Fig. 5 Ultra-broadband combiner and input tapered waveguide schematic. Light blue color represents 100 nm tall Si3N4 and blue color represents 200 nm tall Si3N4.
Fig. 6
Fig. 6 Simulations of fundamental mode (a) transmission vs. wavelength and (b) transmission vs. coupler length.
Fig. 7
Fig. 7 Simulation launching TE0 and TE1 modes and measuring the overlap integral with the TE0 and TE1 modes at the output.
Fig. 8
Fig. 8 Microscope picture of fabricated ultra-broadband combiners top view and facet view.
Fig. 9
Fig. 9 Measurement setup for (a) NIR and (b) mid-IR insertion losses.
Fig. 10
Fig. 10 Transmission vs. coupler length for (a) 780 nm wavelength bar input and (b) 3600 nm wavelength cross input including overlaid BPM simulated transmission for each. RMS error of 5% is represented by error bars.
Fig. 11
Fig. 11 Transmission vs. coupler length for (a) 1310 nm, (b) 1430 nm, and (c) 1550 nm wavelengths in the bar and cross inputs including overlaid BPM simulated transmission in (c).
Fig. 12
Fig. 12 Transmission vs. wavelength for 300 μm coupler length in the bar and cross inputs including overlaid BPM simulated transmission.

Tables (1)

Tables Icon

Table 1 Effective indices and bi-level taper transmissiona for applicable wavelengths of each input waveguide.

Metrics