Abstract

Gas-filled hollow-core photonic crystal fibers are used to stabilize a fiber laser to the 13C2H2 P(16) (ν1+ν3) transition at 1542 nm using saturated absorption. Four hollow-core fibers with different crystal structure are compared in terms of long term lock-point repeatability and fractional frequency instability. The locked fiber laser shows a fractional frequency instability below 4 × 10−12 for averaging time up to 104 s. The lock-point repeatability over more than 1 year is 1.3 × 10−11, corresponding to a standard deviation of 2.5 kHz. A complete experimental investigation of the light-matter interaction between the spatial modes excited in the fibers and the frequency of the locked laser is presented. A simple theoretical model that explains the interaction is also developed.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Acetylene frequency references in gas-filled hollow optical fiber and photonic microcells

Chenchen Wang, Natalie V. Wheeler, Coralie Fourcade-Dutin, Michael Grogan, Thomas D. Bradley, Brian R. Washburn, Fetah Benabid, and Kristan L. Corwin
Appl. Opt. 52(22) 5430-5439 (2013)

10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers

Kevin Knabe, Shun Wu, Jinkang Lim, Karl A. Tillman, Philip S. Light, Francois Couny, Natalie Wheeler, Rajesh Thapa, Andrew M. Jones, Jeffrey W. Nicholson, Brian R. Washburn, Fetah Benabid, and Kristan L. Corwin
Opt. Express 17(18) 16017-16026 (2009)

Fiber laser optical frequency standard at 1.54 μm

Jan Hald, Lars Nielsen, Jan C. Petersen, Poul Varming, and Jens E. Pedersen
Opt. Express 19(3) 2052-2063 (2011)

References

  • View by:
  • |
  • |
  • |

  1. R. Felder, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003),” Metrologia 42, 323–325 (2005).
    [Crossref]
  2. M. de Labachelerie, K. Nakagawa, and M. Ohtsu, “Ultranarrow 13C2H2 saturated-absorption lines at 1.5 μm,” Opt. Lett. 19, 840–842 (1994).
    [Crossref] [PubMed]
  3. J. L. Hall, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
    [Crossref]
  4. C. Chardonnet, F. Guernet, G. Charton, and C. J. Bordé, “Ultrahigh-resolution saturation spectroscopy using slow molecules in an external cell,” Appl. Phys. B: Lasers Opt. 59, 333–343 (1994).
    [Crossref]
  5. C. Edwards, G. Barwood, P. Gill, and W. Rowley, “Development of acetylene-stabilized diode laser frequency standards,” in “15th Annu. Meet. IEEE Lasers Electro-Optics Soc.”, (IEEE, 2002), vol. 1, pp. 281–282.
  6. A. Czajkowski, A. A. Madej, and P. Dubé, “Development and study of a 1.5 μ m optical frequency standard referenced to the P(16) saturated absorption line in the (ν 1+ν 3) overtone band of 13C2H2,” Opt. Commun. 234, 259–268 (2004).
    [Crossref]
  7. J. Hald, L. Nielsen, J. C. Petersen, P. Varming, and J. E. Pedersen, “Fiber laser optical frequency standard at 1.54 μm,” Opt. Express 19, 2052–2063 (2011).
    [Crossref] [PubMed]
  8. R. F. Cregan, B. Mangan, P. Russell, J. Knight, P. Roberts, and D. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
    [Crossref] [PubMed]
  9. F. Benabid, F. Couny, J. C. Knight, T. a. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
    [Crossref] [PubMed]
  10. J. Henningsen, J. Hald, and J. C. Peterson, “Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers,” Opt. Express 13, 10475–10482 (2005).
    [Crossref] [PubMed]
  11. R. Thapa, K. Knabe, M. Faheem, A. Naweed, O. L. Weaver, and K. L. Corwin, “Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber,” Opt. Lett. 31, 2489–2491 (2006).
    [Crossref] [PubMed]
  12. K. Knabe, S. Wu, J. Lim, K. a. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009).
    [Crossref] [PubMed]
  13. P. T. Marty, J. Morel, and T. Feurer, “All-fiber multi-purpose gas cells and their applications in spectroscopy,” J. Light. Technol. 28, 1236–1240 (2010).
    [Crossref]
  14. J. Henningsen and J. Hald, “Dynamics of gas flow in hollow core photonic bandgap fibers,” Appl. Opt. 47, 2790–2797 (2008).
    [Crossref] [PubMed]
  15. C. Wang, N. V. Wheeler, C. Fourcade-Dutin, M. Grogan, T. D. Bradley, B. R. Washburn, F. Benabid, and K. L. Corwin, “Acetylene frequency references in gas-filled hollow optical fiber and photonic microcells,” Appl. Opt. 52, 5430–5439 (2013).
    [Crossref] [PubMed]
  16. C. Wang, N. V. Wheeler, J. Lim, K. Knabe, M. Grogan, Y. Wang, B. R. Washburn, F. Benabid, and K. L. Corwin, “Portable acetylene frequency references inside sealed hollow-core kagome photonic crystal fiber,” in “CLEO2011 - Laser Appl. to Photonic Appl.”, (OSA, 2011), p. CFC1.
  17. P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Design of low-loss and highly birefringent hollow-core photonic crystal fiber,” Opt. Express 14, 7329–7341 (2006).
    [Crossref] [PubMed]
  18. R. M. Gerosa, D. H. Spadoti, L. d. S. Menezes, and C. J. S. de Matos, “In-fiber modal Mach-Zehnder interferometer based on the locally post-processed core of a photonic crystal fiber,” Opt. Express 19, 3124–3129 (2011).
    [Crossref] [PubMed]
  19. M. Kusaba and J. Henningsen, “The ν1+ν3 and the v1+v2+v41+v5−1 combination bands of 13C2H2. linestrengths, broadening parameters, and pressure shifts,” J. Mol. Spectrosc. 209, 216–227 (2001).
    [Crossref]
  20. V. S. Letokhov, High-Resolution Laser Spectroscopy, vol. 13 of Topics in Applied Physics (Springer, 1976).
  21. J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98, 213902 (2007).
    [Crossref] [PubMed]
  22. V. Dangui, H. K. Kim, M. J. F. Digonnet, and G. S. Kino, “Phase sensitivity to temperature of the fundamental mode in air-guiding photonic-bandgap fibers,” Opt. Express 13, 6669–6684 (2005).
    [Crossref] [PubMed]
  23. D. Payne, A. Barlow, and J. Ramskov Hansen, “Development of low- and high-birefringence optical fibers,” IEEE Trans. Microwave Theory Tech. 30, 323–334 (1982).
    [Crossref]
  24. I. Kaminow, “Polarization in optical fibers,” IEEE J. Quantum Electron. 17, 15–22 (1981).
    [Crossref]
  25. W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer, 1996).
    [Crossref]
  26. J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5, 5085 (2014).
    [Crossref] [PubMed]
  27. M. Michieletto, J. K. Lyngsø, J. Lægsgaard, and O. Bang, “Cladding defects in hollow core fibers for surface mode suppression and improved birefringence,” Opt. Express 22, 23324–23332 (2014).
    [Crossref] [PubMed]
  28. E. N. Fokoua, M. N. Petrovich, N. K. Baddela, N. V. Wheeler, J. R. Hayes, F. Poletti, and D. J. Richardson, “Real-time prediction of structural and optical properties of hollow-core photonic bandgap fibers during fabrication,” Opt. Lett. 38, 1382–1384 (2013).
    [Crossref] [PubMed]
  29. J. K. Lyngsø, C. Jakobsen, H. R. Simonsen, and J. Broeng, “Single-mode 7-cell core hollow core photonics crystal fiber with increased bandwidth,” Proc. SPIE in “21st Int. Conf. Opt. Fibre Sensors,” 7753, 77533Q (International Society for Optics and Photonics, 2011).
  30. J. L. Hall and C. J. Borde, “Shift and broadening of saturated absorption resonances due to curvature of the laser wave fronts,” Appl. Phys. Lett. 29, 788–790 (1976).
    [Crossref]
  31. S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, “Dispersion-like signals in velocity-selective saturated-absorption spectroscopy,” Opt. Commun. 192, 49–55 (2001).
    [Crossref]

2014 (2)

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5, 5085 (2014).
[Crossref] [PubMed]

M. Michieletto, J. K. Lyngsø, J. Lægsgaard, and O. Bang, “Cladding defects in hollow core fibers for surface mode suppression and improved birefringence,” Opt. Express 22, 23324–23332 (2014).
[Crossref] [PubMed]

2013 (2)

2011 (2)

2010 (1)

P. T. Marty, J. Morel, and T. Feurer, “All-fiber multi-purpose gas cells and their applications in spectroscopy,” J. Light. Technol. 28, 1236–1240 (2010).
[Crossref]

2009 (1)

2008 (1)

2007 (1)

J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98, 213902 (2007).
[Crossref] [PubMed]

2006 (2)

2005 (4)

F. Benabid, F. Couny, J. C. Knight, T. a. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref] [PubMed]

J. Henningsen, J. Hald, and J. C. Peterson, “Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers,” Opt. Express 13, 10475–10482 (2005).
[Crossref] [PubMed]

R. Felder, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003),” Metrologia 42, 323–325 (2005).
[Crossref]

V. Dangui, H. K. Kim, M. J. F. Digonnet, and G. S. Kino, “Phase sensitivity to temperature of the fundamental mode in air-guiding photonic-bandgap fibers,” Opt. Express 13, 6669–6684 (2005).
[Crossref] [PubMed]

2004 (1)

A. Czajkowski, A. A. Madej, and P. Dubé, “Development and study of a 1.5 μ m optical frequency standard referenced to the P(16) saturated absorption line in the (ν 1+ν 3) overtone band of 13C2H2,” Opt. Commun. 234, 259–268 (2004).
[Crossref]

2001 (2)

M. Kusaba and J. Henningsen, “The ν1+ν3 and the v1+v2+v41+v5−1 combination bands of 13C2H2. linestrengths, broadening parameters, and pressure shifts,” J. Mol. Spectrosc. 209, 216–227 (2001).
[Crossref]

S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, “Dispersion-like signals in velocity-selective saturated-absorption spectroscopy,” Opt. Commun. 192, 49–55 (2001).
[Crossref]

1999 (1)

R. F. Cregan, B. Mangan, P. Russell, J. Knight, P. Roberts, and D. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

1994 (2)

C. Chardonnet, F. Guernet, G. Charton, and C. J. Bordé, “Ultrahigh-resolution saturation spectroscopy using slow molecules in an external cell,” Appl. Phys. B: Lasers Opt. 59, 333–343 (1994).
[Crossref]

M. de Labachelerie, K. Nakagawa, and M. Ohtsu, “Ultranarrow 13C2H2 saturated-absorption lines at 1.5 μm,” Opt. Lett. 19, 840–842 (1994).
[Crossref] [PubMed]

1982 (1)

D. Payne, A. Barlow, and J. Ramskov Hansen, “Development of low- and high-birefringence optical fibers,” IEEE Trans. Microwave Theory Tech. 30, 323–334 (1982).
[Crossref]

1981 (2)

I. Kaminow, “Polarization in optical fibers,” IEEE J. Quantum Electron. 17, 15–22 (1981).
[Crossref]

J. L. Hall, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[Crossref]

1976 (1)

J. L. Hall and C. J. Borde, “Shift and broadening of saturated absorption resonances due to curvature of the laser wave fronts,” Appl. Phys. Lett. 29, 788–790 (1976).
[Crossref]

Allan, D.

R. F. Cregan, B. Mangan, P. Russell, J. Knight, P. Roberts, and D. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Baddela, N. K.

Bang, O.

Barlow, A.

D. Payne, A. Barlow, and J. Ramskov Hansen, “Development of low- and high-birefringence optical fibers,” IEEE Trans. Microwave Theory Tech. 30, 323–334 (1982).
[Crossref]

Barwood, G.

C. Edwards, G. Barwood, P. Gill, and W. Rowley, “Development of acetylene-stabilized diode laser frequency standards,” in “15th Annu. Meet. IEEE Lasers Electro-Optics Soc.”, (IEEE, 2002), vol. 1, pp. 281–282.

Benabid, F.

C. Wang, N. V. Wheeler, C. Fourcade-Dutin, M. Grogan, T. D. Bradley, B. R. Washburn, F. Benabid, and K. L. Corwin, “Acetylene frequency references in gas-filled hollow optical fiber and photonic microcells,” Appl. Opt. 52, 5430–5439 (2013).
[Crossref] [PubMed]

K. Knabe, S. Wu, J. Lim, K. a. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009).
[Crossref] [PubMed]

F. Benabid, F. Couny, J. C. Knight, T. a. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref] [PubMed]

C. Wang, N. V. Wheeler, J. Lim, K. Knabe, M. Grogan, Y. Wang, B. R. Washburn, F. Benabid, and K. L. Corwin, “Portable acetylene frequency references inside sealed hollow-core kagome photonic crystal fiber,” in “CLEO2011 - Laser Appl. to Photonic Appl.”, (OSA, 2011), p. CFC1.

Bird, D. M.

Birks, T. A.

P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Design of low-loss and highly birefringent hollow-core photonic crystal fiber,” Opt. Express 14, 7329–7341 (2006).
[Crossref] [PubMed]

F. Benabid, F. Couny, J. C. Knight, T. a. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref] [PubMed]

Borde, C. J.

J. L. Hall and C. J. Borde, “Shift and broadening of saturated absorption resonances due to curvature of the laser wave fronts,” Appl. Phys. Lett. 29, 788–790 (1976).
[Crossref]

Bordé, C. J.

C. Chardonnet, F. Guernet, G. Charton, and C. J. Bordé, “Ultrahigh-resolution saturation spectroscopy using slow molecules in an external cell,” Appl. Phys. B: Lasers Opt. 59, 333–343 (1994).
[Crossref]

Bradley, T. D.

Broeng, J.

J. K. Lyngsø, C. Jakobsen, H. R. Simonsen, and J. Broeng, “Single-mode 7-cell core hollow core photonics crystal fiber with increased bandwidth,” Proc. SPIE in “21st Int. Conf. Opt. Fibre Sensors,” 7753, 77533Q (International Society for Optics and Photonics, 2011).

Chardonnet, C.

C. Chardonnet, F. Guernet, G. Charton, and C. J. Bordé, “Ultrahigh-resolution saturation spectroscopy using slow molecules in an external cell,” Appl. Phys. B: Lasers Opt. 59, 333–343 (1994).
[Crossref]

Charton, G.

C. Chardonnet, F. Guernet, G. Charton, and C. J. Bordé, “Ultrahigh-resolution saturation spectroscopy using slow molecules in an external cell,” Appl. Phys. B: Lasers Opt. 59, 333–343 (1994).
[Crossref]

Cho, H.

S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, “Dispersion-like signals in velocity-selective saturated-absorption spectroscopy,” Opt. Commun. 192, 49–55 (2001).
[Crossref]

Corwin, K. L.

Couny, F.

Cregan, R. F.

R. F. Cregan, B. Mangan, P. Russell, J. Knight, P. Roberts, and D. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Czajkowski, A.

A. Czajkowski, A. A. Madej, and P. Dubé, “Development and study of a 1.5 μ m optical frequency standard referenced to the P(16) saturated absorption line in the (ν 1+ν 3) overtone band of 13C2H2,” Opt. Commun. 234, 259–268 (2004).
[Crossref]

Dangui, V.

de Labachelerie, M.

de Matos, C. J. S.

Demtröder, W.

W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer, 1996).
[Crossref]

DeSantolo, A.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5, 5085 (2014).
[Crossref] [PubMed]

Digonnet, M. J. F.

DiMarcello, F. V.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5, 5085 (2014).
[Crossref] [PubMed]

Dubé, P.

A. Czajkowski, A. A. Madej, and P. Dubé, “Development and study of a 1.5 μ m optical frequency standard referenced to the P(16) saturated absorption line in the (ν 1+ν 3) overtone band of 13C2H2,” Opt. Commun. 234, 259–268 (2004).
[Crossref]

Edwards, C.

C. Edwards, G. Barwood, P. Gill, and W. Rowley, “Development of acetylene-stabilized diode laser frequency standards,” in “15th Annu. Meet. IEEE Lasers Electro-Optics Soc.”, (IEEE, 2002), vol. 1, pp. 281–282.

Faheem, M.

Felder, R.

R. Felder, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003),” Metrologia 42, 323–325 (2005).
[Crossref]

Feurer, T.

P. T. Marty, J. Morel, and T. Feurer, “All-fiber multi-purpose gas cells and their applications in spectroscopy,” J. Light. Technol. 28, 1236–1240 (2010).
[Crossref]

Fini, J. M.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5, 5085 (2014).
[Crossref] [PubMed]

Fokoua, E. N.

Fourcade-Dutin, C.

Gerosa, R. M.

Gill, P.

C. Edwards, G. Barwood, P. Gill, and W. Rowley, “Development of acetylene-stabilized diode laser frequency standards,” in “15th Annu. Meet. IEEE Lasers Electro-Optics Soc.”, (IEEE, 2002), vol. 1, pp. 281–282.

Grogan, M.

C. Wang, N. V. Wheeler, C. Fourcade-Dutin, M. Grogan, T. D. Bradley, B. R. Washburn, F. Benabid, and K. L. Corwin, “Acetylene frequency references in gas-filled hollow optical fiber and photonic microcells,” Appl. Opt. 52, 5430–5439 (2013).
[Crossref] [PubMed]

C. Wang, N. V. Wheeler, J. Lim, K. Knabe, M. Grogan, Y. Wang, B. R. Washburn, F. Benabid, and K. L. Corwin, “Portable acetylene frequency references inside sealed hollow-core kagome photonic crystal fiber,” in “CLEO2011 - Laser Appl. to Photonic Appl.”, (OSA, 2011), p. CFC1.

Guernet, F.

C. Chardonnet, F. Guernet, G. Charton, and C. J. Bordé, “Ultrahigh-resolution saturation spectroscopy using slow molecules in an external cell,” Appl. Phys. B: Lasers Opt. 59, 333–343 (1994).
[Crossref]

Hald, J.

Hall, J. L.

J. L. Hall, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[Crossref]

J. L. Hall and C. J. Borde, “Shift and broadening of saturated absorption resonances due to curvature of the laser wave fronts,” Appl. Phys. Lett. 29, 788–790 (1976).
[Crossref]

Hayes, J. R.

Henningsen, J.

J. Henningsen and J. Hald, “Dynamics of gas flow in hollow core photonic bandgap fibers,” Appl. Opt. 47, 2790–2797 (2008).
[Crossref] [PubMed]

J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98, 213902 (2007).
[Crossref] [PubMed]

J. Henningsen, J. Hald, and J. C. Peterson, “Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers,” Opt. Express 13, 10475–10482 (2005).
[Crossref] [PubMed]

M. Kusaba and J. Henningsen, “The ν1+ν3 and the v1+v2+v41+v5−1 combination bands of 13C2H2. linestrengths, broadening parameters, and pressure shifts,” J. Mol. Spectrosc. 209, 216–227 (2001).
[Crossref]

Jakobsen, C.

J. K. Lyngsø, C. Jakobsen, H. R. Simonsen, and J. Broeng, “Single-mode 7-cell core hollow core photonics crystal fiber with increased bandwidth,” Proc. SPIE in “21st Int. Conf. Opt. Fibre Sensors,” 7753, 77533Q (International Society for Optics and Photonics, 2011).

Jones, A. M.

Kaminow, I.

I. Kaminow, “Polarization in optical fibers,” IEEE J. Quantum Electron. 17, 15–22 (1981).
[Crossref]

Kim, H. K.

Kino, G. S.

Knabe, K.

Knight, J.

R. F. Cregan, B. Mangan, P. Russell, J. Knight, P. Roberts, and D. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Knight, J. C.

P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Design of low-loss and highly birefringent hollow-core photonic crystal fiber,” Opt. Express 14, 7329–7341 (2006).
[Crossref] [PubMed]

F. Benabid, F. Couny, J. C. Knight, T. a. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref] [PubMed]

Kusaba, M.

M. Kusaba and J. Henningsen, “The ν1+ν3 and the v1+v2+v41+v5−1 combination bands of 13C2H2. linestrengths, broadening parameters, and pressure shifts,” J. Mol. Spectrosc. 209, 216–227 (2001).
[Crossref]

Kwon, T. Y.

S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, “Dispersion-like signals in velocity-selective saturated-absorption spectroscopy,” Opt. Commun. 192, 49–55 (2001).
[Crossref]

Lægsgaard, J.

Lee, H. S.

S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, “Dispersion-like signals in velocity-selective saturated-absorption spectroscopy,” Opt. Commun. 192, 49–55 (2001).
[Crossref]

Letokhov, V. S.

V. S. Letokhov, High-Resolution Laser Spectroscopy, vol. 13 of Topics in Applied Physics (Springer, 1976).

Light, P. S.

Lim, J.

K. Knabe, S. Wu, J. Lim, K. a. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009).
[Crossref] [PubMed]

C. Wang, N. V. Wheeler, J. Lim, K. Knabe, M. Grogan, Y. Wang, B. R. Washburn, F. Benabid, and K. L. Corwin, “Portable acetylene frequency references inside sealed hollow-core kagome photonic crystal fiber,” in “CLEO2011 - Laser Appl. to Photonic Appl.”, (OSA, 2011), p. CFC1.

Lyngsø, J. K.

M. Michieletto, J. K. Lyngsø, J. Lægsgaard, and O. Bang, “Cladding defects in hollow core fibers for surface mode suppression and improved birefringence,” Opt. Express 22, 23324–23332 (2014).
[Crossref] [PubMed]

J. K. Lyngsø, C. Jakobsen, H. R. Simonsen, and J. Broeng, “Single-mode 7-cell core hollow core photonics crystal fiber with increased bandwidth,” Proc. SPIE in “21st Int. Conf. Opt. Fibre Sensors,” 7753, 77533Q (International Society for Optics and Photonics, 2011).

Madej, A. A.

A. Czajkowski, A. A. Madej, and P. Dubé, “Development and study of a 1.5 μ m optical frequency standard referenced to the P(16) saturated absorption line in the (ν 1+ν 3) overtone band of 13C2H2,” Opt. Commun. 234, 259–268 (2004).
[Crossref]

Mangan, B.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5, 5085 (2014).
[Crossref] [PubMed]

R. F. Cregan, B. Mangan, P. Russell, J. Knight, P. Roberts, and D. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Mangan, B. J.

Marty, P. T.

P. T. Marty, J. Morel, and T. Feurer, “All-fiber multi-purpose gas cells and their applications in spectroscopy,” J. Light. Technol. 28, 1236–1240 (2010).
[Crossref]

Menezes, L. d. S.

Meng, L.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5, 5085 (2014).
[Crossref] [PubMed]

Michieletto, M.

Monberg, E. M.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5, 5085 (2014).
[Crossref] [PubMed]

Morel, J.

P. T. Marty, J. Morel, and T. Feurer, “All-fiber multi-purpose gas cells and their applications in spectroscopy,” J. Light. Technol. 28, 1236–1240 (2010).
[Crossref]

Mukasa, K.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5, 5085 (2014).
[Crossref] [PubMed]

Nakagawa, K.

Naweed, A.

Nicholson, J. W.

Nielsen, L.

Ohtsu, M.

Park, S. E.

S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, “Dispersion-like signals in velocity-selective saturated-absorption spectroscopy,” Opt. Commun. 192, 49–55 (2001).
[Crossref]

Payne, D.

D. Payne, A. Barlow, and J. Ramskov Hansen, “Development of low- and high-birefringence optical fibers,” IEEE Trans. Microwave Theory Tech. 30, 323–334 (1982).
[Crossref]

Pedersen, J. E.

Petersen, J. C.

J. Hald, L. Nielsen, J. C. Petersen, P. Varming, and J. E. Pedersen, “Fiber laser optical frequency standard at 1.54 μm,” Opt. Express 19, 2052–2063 (2011).
[Crossref] [PubMed]

J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98, 213902 (2007).
[Crossref] [PubMed]

Peterson, J. C.

Petrovich, M. N.

Poletti, F.

Ramskov Hansen, J.

D. Payne, A. Barlow, and J. Ramskov Hansen, “Development of low- and high-birefringence optical fibers,” IEEE Trans. Microwave Theory Tech. 30, 323–334 (1982).
[Crossref]

Richardson, D. J.

Roberts, P.

R. F. Cregan, B. Mangan, P. Russell, J. Knight, P. Roberts, and D. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Roberts, P. J.

Rowley, W.

C. Edwards, G. Barwood, P. Gill, and W. Rowley, “Development of acetylene-stabilized diode laser frequency standards,” in “15th Annu. Meet. IEEE Lasers Electro-Optics Soc.”, (IEEE, 2002), vol. 1, pp. 281–282.

Russell, P.

R. F. Cregan, B. Mangan, P. Russell, J. Knight, P. Roberts, and D. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Russell, P. S. J.

P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Design of low-loss and highly birefringent hollow-core photonic crystal fiber,” Opt. Express 14, 7329–7341 (2006).
[Crossref] [PubMed]

F. Benabid, F. Couny, J. C. Knight, T. a. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref] [PubMed]

Sabert, H.

Simonsen, H. R.

J. K. Lyngsø, C. Jakobsen, H. R. Simonsen, and J. Broeng, “Single-mode 7-cell core hollow core photonics crystal fiber with increased bandwidth,” Proc. SPIE in “21st Int. Conf. Opt. Fibre Sensors,” 7753, 77533Q (International Society for Optics and Photonics, 2011).

Spadoti, D. H.

Thapa, R.

Tillman, K. a.

Varming, P.

Wang, C.

C. Wang, N. V. Wheeler, C. Fourcade-Dutin, M. Grogan, T. D. Bradley, B. R. Washburn, F. Benabid, and K. L. Corwin, “Acetylene frequency references in gas-filled hollow optical fiber and photonic microcells,” Appl. Opt. 52, 5430–5439 (2013).
[Crossref] [PubMed]

C. Wang, N. V. Wheeler, J. Lim, K. Knabe, M. Grogan, Y. Wang, B. R. Washburn, F. Benabid, and K. L. Corwin, “Portable acetylene frequency references inside sealed hollow-core kagome photonic crystal fiber,” in “CLEO2011 - Laser Appl. to Photonic Appl.”, (OSA, 2011), p. CFC1.

Wang, Y.

C. Wang, N. V. Wheeler, J. Lim, K. Knabe, M. Grogan, Y. Wang, B. R. Washburn, F. Benabid, and K. L. Corwin, “Portable acetylene frequency references inside sealed hollow-core kagome photonic crystal fiber,” in “CLEO2011 - Laser Appl. to Photonic Appl.”, (OSA, 2011), p. CFC1.

Washburn, B. R.

Weaver, O. L.

Wheeler, N.

Wheeler, N. V.

Williams, D. P.

Windeler, R. S.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5, 5085 (2014).
[Crossref] [PubMed]

Wu, S.

Appl. Opt. (2)

Appl. Phys. B: Lasers Opt. (1)

C. Chardonnet, F. Guernet, G. Charton, and C. J. Bordé, “Ultrahigh-resolution saturation spectroscopy using slow molecules in an external cell,” Appl. Phys. B: Lasers Opt. 59, 333–343 (1994).
[Crossref]

Appl. Phys. Lett. (2)

J. L. Hall, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[Crossref]

J. L. Hall and C. J. Borde, “Shift and broadening of saturated absorption resonances due to curvature of the laser wave fronts,” Appl. Phys. Lett. 29, 788–790 (1976).
[Crossref]

IEEE J. Quantum Electron. (1)

I. Kaminow, “Polarization in optical fibers,” IEEE J. Quantum Electron. 17, 15–22 (1981).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

D. Payne, A. Barlow, and J. Ramskov Hansen, “Development of low- and high-birefringence optical fibers,” IEEE Trans. Microwave Theory Tech. 30, 323–334 (1982).
[Crossref]

J. Light. Technol. (1)

P. T. Marty, J. Morel, and T. Feurer, “All-fiber multi-purpose gas cells and their applications in spectroscopy,” J. Light. Technol. 28, 1236–1240 (2010).
[Crossref]

J. Mol. Spectrosc. (1)

M. Kusaba and J. Henningsen, “The ν1+ν3 and the v1+v2+v41+v5−1 combination bands of 13C2H2. linestrengths, broadening parameters, and pressure shifts,” J. Mol. Spectrosc. 209, 216–227 (2001).
[Crossref]

Metrologia (1)

R. Felder, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003),” Metrologia 42, 323–325 (2005).
[Crossref]

Nat. Commun. (1)

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5, 5085 (2014).
[Crossref] [PubMed]

Nature (1)

F. Benabid, F. Couny, J. C. Knight, T. a. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref] [PubMed]

Opt. Commun. (2)

A. Czajkowski, A. A. Madej, and P. Dubé, “Development and study of a 1.5 μ m optical frequency standard referenced to the P(16) saturated absorption line in the (ν 1+ν 3) overtone band of 13C2H2,” Opt. Commun. 234, 259–268 (2004).
[Crossref]

S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, “Dispersion-like signals in velocity-selective saturated-absorption spectroscopy,” Opt. Commun. 192, 49–55 (2001).
[Crossref]

Opt. Express (7)

P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Design of low-loss and highly birefringent hollow-core photonic crystal fiber,” Opt. Express 14, 7329–7341 (2006).
[Crossref] [PubMed]

V. Dangui, H. K. Kim, M. J. F. Digonnet, and G. S. Kino, “Phase sensitivity to temperature of the fundamental mode in air-guiding photonic-bandgap fibers,” Opt. Express 13, 6669–6684 (2005).
[Crossref] [PubMed]

J. Henningsen, J. Hald, and J. C. Peterson, “Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers,” Opt. Express 13, 10475–10482 (2005).
[Crossref] [PubMed]

K. Knabe, S. Wu, J. Lim, K. a. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009).
[Crossref] [PubMed]

J. Hald, L. Nielsen, J. C. Petersen, P. Varming, and J. E. Pedersen, “Fiber laser optical frequency standard at 1.54 μm,” Opt. Express 19, 2052–2063 (2011).
[Crossref] [PubMed]

R. M. Gerosa, D. H. Spadoti, L. d. S. Menezes, and C. J. S. de Matos, “In-fiber modal Mach-Zehnder interferometer based on the locally post-processed core of a photonic crystal fiber,” Opt. Express 19, 3124–3129 (2011).
[Crossref] [PubMed]

M. Michieletto, J. K. Lyngsø, J. Lægsgaard, and O. Bang, “Cladding defects in hollow core fibers for surface mode suppression and improved birefringence,” Opt. Express 22, 23324–23332 (2014).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Rev. Lett. (1)

J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98, 213902 (2007).
[Crossref] [PubMed]

Science (1)

R. F. Cregan, B. Mangan, P. Russell, J. Knight, P. Roberts, and D. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Other (5)

C. Edwards, G. Barwood, P. Gill, and W. Rowley, “Development of acetylene-stabilized diode laser frequency standards,” in “15th Annu. Meet. IEEE Lasers Electro-Optics Soc.”, (IEEE, 2002), vol. 1, pp. 281–282.

V. S. Letokhov, High-Resolution Laser Spectroscopy, vol. 13 of Topics in Applied Physics (Springer, 1976).

W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer, 1996).
[Crossref]

C. Wang, N. V. Wheeler, J. Lim, K. Knabe, M. Grogan, Y. Wang, B. R. Washburn, F. Benabid, and K. L. Corwin, “Portable acetylene frequency references inside sealed hollow-core kagome photonic crystal fiber,” in “CLEO2011 - Laser Appl. to Photonic Appl.”, (OSA, 2011), p. CFC1.

J. K. Lyngsø, C. Jakobsen, H. R. Simonsen, and J. Broeng, “Single-mode 7-cell core hollow core photonics crystal fiber with increased bandwidth,” Proc. SPIE in “21st Int. Conf. Opt. Fibre Sensors,” 7753, 77533Q (International Society for Optics and Photonics, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 WFT analysis of the spectra collected. The HOMs/surface modes are represented by the yellow/orange features. The the red border represent the band gap edge/cladding modes (C7_S). The “flat” yellow feature present in all the measurements (Δng≈0.08) is an artifact introduced by the setup. The colors represent the light intensity, according to the legend [a.u.].
Fig. 2
Fig. 2 Schematic layout of the SAS Setup. OI: optical isolator. (P)BS: (polarized) beam splitter. L1–4: lenses. Half WP: half wave plate.
Fig. 3
Fig. 3 Stable environment test: Frequency of the locked laser over time (left). The results are plotted with a relative shift of 100 kHz for clarity, after the frequency of the reference laser [7] is subtracted. Fractional frequency instability (Allan deviation) of the four fibers (right).
Fig. 4
Fig. 4 Stress test. Frequency of the locked laser over time (left). The results are plotted with a relative shift of 100 kHz for clarity, after the frequency of the reference laser [7] is subtracted. Fractional frequency instability (Allan deviation) of the four fibers (right). The temperature ramp applied is plotted in the bottom-right corner.
Fig. 5
Fig. 5 Left: Summary of the performance achieved using the C7_S fiber in a temperature stabilized environment (red). The system is compared with the reference laser [7] stabilized to a bulk glass cell (green) and with the best performance reported in [12] for an gas-filled HC-fiber stabilized laser (blue). Right: The lock-point repeatability over 7 measurements. The error bars represent the root mean square value of the measured data.
Fig. 6
Fig. 6 Simulation results of C7_L. The mode trajectories (left) and the loss of the different modes (right) are plotted. The FM is plotted in green, the cladding modes in orange and the surface modes in grey. Three HOMs (red, violet and black dots) and a surface mode (blue) are highlighted. A dashed blue line at 1542 nm is added. The surface modes on the left figure are omitted for clarity.
Fig. 7
Fig. 7 The group index evaluation of the various modes is compared with the experimental data of the fiber C7_L from Fig. 1 (left). The colors are the same used in Fig. 6. The FM is visible at Δng = 0 (green). The intensity profile of the different modes simulated is plotted (right). The HOM represented in black is in fact the superposition of two different modes, as highlighted by the mode intensity profiles on the right.
Fig. 8
Fig. 8 Schematic representation of the light-matter interaction. The green arrows indicate the FM, the black ones the HOM component. The interactions are depicted with dotted-dashed line in green (FM-FM), red (FM-HOM and HOM-FM) and black (HOM-HOM). The number reported under each mode component refers to the associated normalized light intensity. The components are also enumerated for clarity. The axis orientation chosen is shown.

Tables (1)

Tables Icon

Table 1 Summary of the fiber characteristics.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n g = n eff λ d n eff d λ
k i v = k j v
{ β i = n eff i k 0 X ^ β 0 = n 0 k 0 X ^ cos θ i = n eff i n 0 { θ 1 , 3 = 0.11 θ 2 , 4 = 0.16
k 0 [ cos θ i sin θ i ] [ v x v y ] = k 0 [ cos ( π + θ j ) sin ( π + θ j ) ] [ v x v y ] Δ v i j = v λ 0 sin ( θ j θ i 2 )
I ( v ) i = 1 2 j = 3 4 I i j 4 π Γ 0 ( v v 0 ± Δ v i j ) 2 + ( Γ 0 2 ) 2

Metrics